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Abstract: The development of accurate protein function annotation methods has emerged as a

major unsolved biological problem. Protein similarity networks, one approach to function annota-
tion via annotation transfer, group proteins into similarity-based clusters. An underlying assump-

tion is that the edge metric used to identify such clusters correlates with functional information. In

this contribution, this assumption is evaluated by observing topologies in similarity networks using
three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity

(active site profiling, implemented in DASP). Network topologies for four well-studied protein

superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were
compared with curated functional hierarchies and structure. As expected, network topology differs,

depending on edge metric; comparison of topologies provides valuable information on structure/

function relationships. Subnetworks based on active site similarity correlate with known functional
hierarchies at a single edge threshold more often than sequence- or structure-based networks.

Sequence- and structure-based networks are useful for identifying sequence and domain similar-
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ities and differences; therefore, it is important to consider the clustering goal before deciding
appropriate edge metric. Further, conserved active site residues identified in enolase and GST

active site subnetworks correspond with published functionally important residues. Extension of
this analysis yields predictions of functionally determinant residues for GST subgroups. These

results support the hypothesis that active site similarity-based networks reveal clusters that share

functional details and lay the foundation for capturing functionally relevant hierarchies using an
approach that is both automatable and can deliver greater precision in function annotation than

current similarity-based methods.

Keywords: active site profiling; similarity-based clustering; network-based clustering; protein simi-

larity network analysis; Structure-Function Linkage Database (SFLD); protein function annotation;

function annotation transfer

Introduction

As high-throughput sequencing has become faster and

easier to accomplish, protein sequences have accumu-

lated at an astounding rate.1 Structure characteriza-

tion methods lag far behind the efficiency of

sequencing, but even structure determination lies well

ahead of the speed and cost of experimental function

characterization. A key to effective utilization of the

massive sequence databases is understanding the

function of the encoded proteins; however, in 2005 it

was estimated that less than 5% of functions had been

experimentally determined.2 As the rate of sequencing

continues to increase, this issue becomes more acute

as function annotation is essential to understanding

the underlying biology. The need for accurate protein

function annotation using automated approaches has

become critical, as large-scale experimental function

determination is infeasible at the level of detail useful

to understanding biological mechanism.

Of major concern is that automated approaches

to functional annotation are prone to misannota-

tion,3,4 sometimes at “alarmingly high levels.”5 A

major contributor is “over-annotation,” or assigning

functional detail to a protein without sufficient sup-

porting evidence. Often, over-annotation is due to

function annotation transfer from a known protein to

one of unknown function based on pairwise sequence

similarity comparisons. As pairwise comparisons are

typically based on overall sequence similarity without

regard to residue motifs that may distinguish their

different reaction specificities, the predicted annota-

tion lacks the informative larger context obtained

from placing the unknown sequence in a multiple

sequence alignment or phylogenetic tree. To identify

molecular functional details that better distinguish

specific functions among distantly related proteins, it

is essential to move beyond simple comparisons of

full-length sequences,6,7 but execution remains a sig-

nificant challenge with the speed and scale required.

“Protein similarity networks” [conceptually illus-

trated in Fig. 1(A)] have recently been used to study

and visualize sequence, structure, and function rela-

tionships on a large-scale.8–11 Most typically used with

sequence data,10,12–16 these networks can be associ-

ated with many different types of functional informa-

tion for interactive exploration using programs such

as Cytoscape.17 As they can realistically handle many

thousands of homologous proteins (or hundreds of

structures), similarity networks offer a powerfully use-

ful context by which functional properties of uncharac-

terized proteins can be inferred or hypothesized from

those of experimentally characterized proteins with

which they cluster. One starts with a fully connected

network, in which each edge represents a quantitative

pairwise comparison between each pair of nodes (pro-

teins) in the network. As the threshold of the edge

metric is increased [illustrated in Fig. 1(A,B)] edges

that fall below the threshold are removed, resulting in

smaller clusters whose nodes share more similarity

among themselves than with other clusters or single-

ton nodes.

In this work, we have generated networks and

clustered proteins using three different similarity fea-

tures: sequence, three dimensional structure, and

active site microenvironments. Accuracy of function-

ally relevant clustering was evaluated based on com-

parison to the expert manual curation provided by

the Structure-Function Linkage Database (SFLD)18

for four different enzyme superfamilies (Table I) that

exhibit a diversity of structural and functional rela-

tionships: enolase, peroxiredoxin (Prx), glutathione

transferase (GST), and crotonase. SFLD curation has

previously been used as a gold standard19 to evaluate

methods for clustering sequence or structural data

into functionally relevant groups.12,13,16,20,21

The SFLD defines a hierarchical classification

system of protein function in enzyme superfami-

lies.22 Each level within the hierarchy corresponds

to a level of molecular functional detail [Fig. 1(C)].18

Protein sets are grouped most broadly into superfa-

milies, composed of proteins that share a common

partial reaction step or other chemical capability,

typically catalyzed by a core group of well-conserved

key residues. Superfamilies are divided into sub-

groups, distinguished by sequence information and

sometimes differences in domain structure or major

inserts; proteins in each subgroup have more shared

functional features than the superfamily as a whole.
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Finally, subgroups are divided into families, which

are sets of proteins that perform the same chemical

reaction with a similar mechanism. This hierarchical

classification scheme defines molecular function at

various levels of detail [Fig. 1(C)]. Comparison with

the similarity networks presented here allows us to

evaluate how network topology at each edge metric

and threshold compares to levels of functional detail

in this hierarchy [Fig. 1(B)].

Here, we compare networks created using three

different edge metrics to each of the SFLD hierarchi-

cal levels of superfamily, subgroup, and family. Edge

metrics evaluated are: full-length sequence similarity,

overall structure similarity, and active site motif simi-

larity (hereinafter called “full sequence,” “structure,”

and “active site profiling (ASP),” respectively). To dis-

tinguish functionally relevant clusters for each super-

family, all-by-all pairwise comparisons of each feature

type were generated and visualized as networks [illus-

trated for the enolases in Fig. 1(B)]. BLAST scores23

were used as the edge metric for full sequence-based

networks, and TM-Align scores24 as the edge metric

Figure 1. Conceptual illustration of network-based clustering, which, ideally, would produce a functional hierarchy matching

the SFLD. A. A similarity network is composed of nodes (proteins) connected to one another with edges (pairwise similarity

scores). As the edge threshold is increased, all scores below that threshold are removed, producing distinct clusters. B. An

actual similarity network hierarchy for the enolase superfamily. Each protein structure is represented by a node; pairwise ASP

scores are represented by edges. This network is clustered into groups roughly mimicking subgroup annotations (border color

and node shape) at a threshold of 0.31, but begins to break into specific families (fill color) and smaller groups at a threshold of

0.6. C. The SFLD defines a functional hierarchy, with superfamilies defined as sets of proteins which share a mechanistic step

and the most detailed level, families, defined as sets of proteins which share entire mechanisms. Subgroups are illustrated with

border color and families are illustrated with fill color.

Table I. Four Functionally Diverse Superfamilies were used to Create Protein Networks

Superfamily Subgroup (no. representative proteins)

Enolase (159) Enolase (20), GalD (1), GlucD (16), MR (56), ManD (17), MAL (3), MLE (46)
Peroxiredoxin (Prx) (47) AhpC-Prx1 (17), AhpE (1), BCP-PrxQ (6), Prx5 (7), Prx6 (3), Tpx (9), unchar-

acterized (4)
Glutathione Transferase (GST) (127) AMPS (42), Main 1 (13), Main 2 (9), Main 3 (7), Main 4 (14), Main 5 (3),

Main 6 (1), Main 7 (1), Main 8 (7), Main 9 (6), Main 10 (4), Main Remain-
der (11), Remainder (5), Xi (4)

Crotonase (88) Crotonase Like (70), Retro-Claisenase-like (2), uncharacterized (16)

ManD: mannonate dehydratase; GlucD: glucarate dehydratase; GalD: galactarate dehydratase; MAL: methylaspartate
ammonia lyase; MR: mandelate racemase; MLE: muconate cycloisomerase.
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for structure-based networks. Both of these methods

have previously been used as metrics for

sequence25–27 and structural28–30 comparison, respec-

tively. For active site comparison, we used active site

profiling, a method previously developed to identify

and quantitatively compare active site microenviron-

ments.31 Active site features are captured from

sequence fragments in the structural vicinity of the

defined functional site; these fragments are then

aligned into a continuous sequence called an active

site signature (Fig. 2). Active site similarity between

two proteins is quantified by calculating a pairwise

active site profile (ASP) score which takes into

account residue identity, strong similarity, weak simi-

larity, and gaps in the alignment between two active

site signatures.31 Using the pairwise ASP score

between two signatures as the edge metric, these net-

works can be created in a manner analogous to those

generated using full sequence or structure similarity

scores.

The results indicate that networks based on

active site microenvironment features often identify

similarity groupings that are more consistent with

known functional groups. Sequence- and structure-

based networks identify overall sequence similarity

or major structural rearrangements, respectively.

They may define functional similarity at the super-

family and, sometimes, subgroup level, but they may

lose the details of molecular function at the sub-

group and family level. Active site comparisons are

useful in capturing detailed functional differences.

This work lays the foundation for identifying func-

tionally relevant hierarchies of annotation detail on

a large scale using an approach that can deliver

greater precision than current sequence-based meth-

ods and that is amenable to automated application.

Results and Discussion

Similarities and differences in clustering are

observed using sequence-based, structure-

based, and signature-based networks

Three network series were created for proteins of

known structure in each superfamily: enolase, peroxir-

edoxin (Prx), glutathione transferase (GST), and croto-

nase (Table I). Each series was created using a

different edge metric—pairwise BLAST scores,23 TM-

Align scores,24 or active site profiling (ASP) scores31—

for the sequence-, structure-, and signature-based

networks, respectively (see Methods). To create the

fully-connected networks, proteins were compared in

an all-by-all pairwise manner. Edges were filtered at

increasingly stringent thresholds [Fig. 1(A)], eliminat-

ing the weakest relationships, forming clusters with

relatively higher scoring edges and, thus, proteins

more “closely related” (with “relationship” defined by

the edge metric), as illustrated for the enolases [Fig.

1(B)]. Select examples from the network series for the

enolase superfamily are shown in Figure 3. More com-

plete network series for each superfamily are in Sup-

porting Information Figures 1 to 4.

Some subgroups cluster consistently across net-

works and score thresholds. For instance, the eno-

lase subgroup of the enolase superfamily clusters

together consistently by all three metrics, even at

stringent edge thresholds (Fig. 3 and Supporting

Information Fig. 1, pink vees). The GlucD subgroup

is also clustered consistently (Fig. 3 and Supporting

Information Fig. 1, purple hexagons).

Other subgroups and families show significant

differences in clustering, even at the least stringent

edge thresholds. The MLE subgroup (Fig. 3 and

Supporting Information Fig. 1, blue outlined circles)

is extremely difficult to annotate at a detailed

level;32,33 network analysis shows clustering varia-

tion between the three edge metrics even at the

least stringent edge thresholds (Fig. 3, left panels).

At the most relaxed thresholds, the MLE subgroup

clusters with the MR and ManD subgroups in the

structure- and sequence-based networks, while

ManD becomes its own cluster early in the

signature-based network series (Supporting Informa-

tion Fig. 1). Detailed observation of families within

the MLE subgroup shows differing clustering pat-

terns between the networks. For instance, the Dipe-

pEp family (Fig. 3 and Supporting Information Fig.

1, cyan blue circles) forms different clusters in each

of the three networks at these more stringent

thresholds (Fig. 3 and Supporting Information Fig.

1, orange boxes). In the signature-based networks,

DipepEp proteins cluster together with several other

families until an edge threshold of 0.65, at which

time they break into two groups of three and several

singlets. In structure-based networks, these proteins

also cluster with other MLE families until an edge

threshold of 0.92, at which point it breaks into a

cluster of eight and multiple singlets; at the final

threshold of 0.95, this family “disintegrates” into sin-

glets and doublets. In the sequence-based networks,

this family clusters with other MLE families, except

at the relatively relaxed threshold of 1e-20 a sepa-

rate triplet is formed. At a threshold of 1e-30, an

additional cluster of five proteins split into their

own group, while the remaining four proteins

remain clustered with other proteins from other

MLE families. Likewise, the enoyl CoA hydratase

(subsequently referred to as enoyl) family of the cro-

tonase superfamily forms different clusters in each

network series (Supporting Information Fig. 4, royal

blue circles), consistent with previous data suggest-

ing that this family may be mechanistically diverse

and difficult to annotate.34,35 In the structure- and

sequence-based networks, an enoyl triplet forms at

relatively relaxed thresholds of 0.50 and 1e-15,

respectively (Supporting Information Fig. 4, red

circles) while the remaining enoyl proteins cluster

1426 PROTEINSCIENCE.ORG Sequence-, Structure-, Signature-Based Networks



with many other families (Supporting Information

Fig. 4, blue circles). Conversely, in the signature-

based network, most of the enoyl proteins stay in

one large cluster up through filter 0.45 (Supporting

Information Fig. 4, black circle) before separating at

filter 0.50. These three network series demonstrate

that subgroups and families separate into smaller

clusters at different thresholds depending on the

edge metric used in creation of the network and how

similar the subgroup or family is compared with

other subgroups and families in the superfamily.

These specific examples prompted us to attempt

to quantify the observations further. Thus, we counted

the number of SFLD-defined subgroups (enolase, Prx,

Figure 3. Representative signature-, structure-, and sequence-based network series for the enolase superfamily. The

signature-, structure-, and sequence-based networks are shown at the top, middle, and bottom of the figure, respectively.

From left to right, increasingly stringent edge thresholds for each network type, resulting in clusters that share more similarity

(with similarity defined based on the edge metric). SFLD subgroup designations are indicated with both node shape and node

border color, and the SFLD family designations are indicated with node fill color according to the legend. Filter levels (or edge

thresholds) for each network were chosen in a qualitative fashion such that the number and size of protein clusters were rela-

tively consistent between the three networks for a superfamily. More comprehensive networks for all four superfamilies are pre-

sented in Supporting Information Figures 1 to 4. The meaning of “no filter” for the initial sequence-based network is described

in Supporting Information Figure 5.

Figure 2. Representation of active site profiling to generate an active site signature. The protein structure is used to define the

microenvironment surrounding an enzyme’s active site. Multiple user-identified key residues (A) define the structural location of

the active site. All residues within 10 Å of one of the key residues are considered to be part of the active site microenvironment

(B). These residues are extracted from the protein sequence (C) and aligned N-C terminus to create the active site signature

(D). Dashes and text color separate the non-contiguous fragments in this example (PDB: 1MDR).

Leuthaeuser et al. PROTEIN SCIENCE VOL 24:1423—1439 1427
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GST) or families (crotonase) that form distinct, all-

inclusive clusters at each edge threshold for each of

the three network types, and the threshold with the

highest count was identified for each network (Sup-

porting Information Figs. 1–4, blue stars). In two of

the four superfamilies (enolase and crotonase), the

ASP-based networks clustered more functional groups

(subgroups and families, respectively) with 100%

accuracy than either sequence- or structure-based net-

works. Five enolase subgroups are identified distinctly

in the ASP-based networks at the best threshold,

while only three are identified distinctly in both the

sequence- and structure-based networks at the best

threshold (Supporting Information Fig. 1, blue stars).

For the crotonases, the ASP-based networks identified

six families distinctly while the structure- and

sequence-based networks identified four and five,

respectively (Supporting Information Fig. 4, blue

stars). For the Prx and GST superfamilies, the ASP-

based networks and sequence-based networks each

clustered four SFLD subgroups with 100% accuracy,

while the structure-based network only identified

either two (Prx) or three (GST) subgroups distinctly

at the best threshold. It is important to note that

while other thresholds could have been chosen for use

in this analysis, we do not believe that would signifi-

cantly affect the conclusions drawn. Therefore, we

hypothesize that subnetworks identified by comparing

features in the active site microenvironment, as done

in the signature-based networks, can be used to iden-

tify molecular functional details more accurately than

sequence- and structure-based comparisons. This

hypothesis is explored in more detail in subsequent

sections.

Signature-based networks suggest overall

subgroup active site similarity not captured

in sequence-based networks

A quantitative example demonstrates the specific

details that distinguish sequence- and signature-

based networks. In the enolase superfamily, the MR

subgroup (green diamonds) clusters with the MLE

Figure 4. Analysis of the ASPs identifies why MR, MLE, and ManD proteins cluster differently in signature- and sequence-

based networks. A. In the signature-based network (A, left) the MR (green diamond) and MLE (blue circle) subgroups cluster

together at the 0.25 edge threshold (green arrow) while the ManD subgroup (orange parallelogram) is a distinct subnetwork.

Conversely, in the sequence-based network (A, right), the MR and ManD subgroups cluster together at the 1E-20 edge

threshold (blue arrow) while MLE proteins fall in different subnetworks. B. Signature logos of the MR, MLE, and ManD

signature-based subnetworks (edge threshold 0.30) show similarities and differences within the subgroup active sites (yellow

arrows). C. Structures of the MR, MLE, and ManD active sites (top to bottom) shown in PDBs 2HNE, 1NU5, and 2QJJ,

respectively. The residues highlighted with yellow arrows in B are represented with black side chains in the structures.
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subgroup (blue circles) in the signature-based net-

works [Fig. 4(A), green arrow], but clusters with the

ManD subgroup (orange parallelograms) in the

sequence-based networks [Fig. 4(A), blue arrow].

To illustrate the origin of the sequence-based net-

work topology, multiple sequence alignments (MSAs)

were constructed for the MR/ManD and MR/MLE

clusters (Supporting Information File 2). Across all

sequences in the MR/MLE cluster, just one position

was completely conserved and one showed weak simi-

larity. Conversely, for the MR/ManD cluster, the MSA

contained six completely conserved, four strongly sim-

ilar, and three weakly similar positions. These obser-

vations demonstrate quantitatively why the MR and

ManD subgroups cluster together in the sequence-

based network.

Active site similarity for the three subgroups

was compared by creating active site signature logos

from the signature-based network clusters (Support-

ing Information File 3) at a threshold roughly corre-

sponding to the SFLD-defined subgroups (score

threshold of 0.30). (The threshold with the greatest

number of distinctly identified subgroups (score

threshold of 0.35; Supporting Information Fig. 1,

blue star) was not used for this analysis as the MR

subgroup is separated into multiple subnetworks at

that threshold rendering the signature logo useless.)

Three residues (other than the key residues) are

quite similar between the MR and MLE signatures

and, thus, likely causing much of the division of the

signature-based clusters [yellow arrows, Fig. 4(B),

black side chains, Fig. 4(C)]. For example, Lys in

active site signature position 2 is observed in the

MR and MLE proteins (K218 in 2HNE and K163 in

1NU5, respectively); whereas, Arg is observed in the

ManD proteins (R147 in 2QJJ). In MR and MLE

proteins, this conserved Lys is the electrophilic resi-

due interacting with a carboxylate oxygen. The con-

served Arg in this position of ManD proteins forms a

dyad with Tyr 159 (in 2QJJ) and acts as the base.36

Interestingly, the analogous ManD electrophilic resi-

due to the MLE and MR Lys is Arg 283 (in 2QJJ)

which is highly conserved in logo position 37 [Fig.

4(B), yellow arrow].36 Other differences highlighted

in the signature logos may play structural roles

important for preserving specific reaction steps.

Despite the higher overall sequence similarity

observed between the MR and ManD subgroups, the

MR and MLE subgroups cluster together in the

signature-based networks because their active sites

share more similar features than either does with

the ManD site. These common features are part of

Figure 5. Signature-based networks cluster proteins based on active site similarity, while structure-based and sequence-based

networks identify domain differences. A. In the Prx signature-based network (top left), all seven members of the Prx5 subgroup

cluster together at edge threshold 0.50 (black circle). In the structure-based network (top right), six Prx5 proteins cluster

together at edge threshold 0.85 (blue circle) while 1NM3 becomes a singlet in its own subnetwork (red circle). The node color

and shape is based on SFLD subgroup annotation, as indicated in the legend. A close up view of the active site environment is

shown for all Prx5 subgroup members (1NM3 in red and the other six proteins in blue; bottom left). Colored portions represent

the active site signature fragments for each protein, and the three key residues used to define the active site are shown as ball

and stick models. The complete protein structure for all Prx5 proteins (bottom right) shows that 1NM3 (red) contains an extra

glutaredoxin-like domain attached to the protein’s C terminus compared with the other six Prx5 proteins (blue). B. A triplet of

enoyl family proteins cluster together in the structure- and sequence-based networks (red circles) while the other enoyl proteins

remain in one cluster (blue circles). In the signature-based network, however, the triplet is part of the large cluster of enoyl pro-

teins (black circle). A close up view of the active site environment is shown for the enoyl triplet (red) and a representative from

the large enoyl cluster (blue) (bottom left). Colored portions represent the active site signature fragments for each protein, and

the three key residues used to define the active site are shown as ball and stick models. The complete protein structure for

these same proteins (bottom right) shows that the enoyl triplet proteins (red) contain an extra domain compared with the repre-

sentative enoyl protein (blue).
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common MR and MLE mechanistic details, as previ-

ously reported,36 suggesting the utility of signature-

based networks in identifying such features.

Sequence-based networks, however, are incredi-

bly useful in identifying evolutionary relationships,

as demonstrated previously in the literature.37,38

Further, when evolutionary relationships correlate

with molecular function, sequence-based networks

mimic functional relationships.39–41 It is critical to

note, however, that evolutionary relationships do not

always correlate with functional relationships, espe-

cially at the detailed level of molecular function,42

and therefore one must be cautious when interpret-

ing sequence-based clustering patterns.

Signature-based networks highlight active site

similarity despite differences in domain
composition

One common issue observed in annotation transfer

is that of “extra domains.” Domains may be added to

proteins in a modular fashion,43 sometimes bringing

a new molecular function, often without affecting

the original domain’s molecular function.44 We eval-

uated how domain structure impacted network

topology in sequence-, structure-, and signature-

based networks.

Prx5 is a subgroup of the Prx superfamily.45 All

seven proteins in the Prx5 subgroup form a distinct

subnetwork in the signature-based network at an

edge threshold where the subgroup is distinctly

defined [Fig. 5(A) and Supporting Information Fig.

2, black circle]. However, only six Prx5 proteins clus-

ter in the structure-based network at a similar

threshold [Fig. 5(A), blue circle], leaving 1NM3 as a

singlet [Fig. 5(A), red circle]. A closer look reveals

that the 1NM3 active site is essentially identical to

other Prx5 active sites [Fig. 5(A), bottom left],

explaining why all Prx5 proteins cluster in the

signature-based network. On the other hand, 1NM3

is an outlier in the structure-based networks

because it contains a glutaredoxin domain covalently

attached to its C-terminus [Fig. 5(A), bottom right,

red domain].

A similar example is seen in the crotonase

superfamily. In the signature-based network, the

enoyl family forms one subnetwork at a score

threshold of 0.45 [Fig. 5(B) and Supporting Informa-

tion Fig. 4, black circle]. Conversely, in both the

structure-based network [Fig. 5(B), top middle] and

the sequence-based network [Fig. 5(B), top right], an

enoyl triplet [Fig. 5(B), red circles] forms at less

stringent score thresholds, while the remaining

enoyl proteins cluster in one subnetwork [Fig. 5(B),

blue circles]. Closer inspection of the active site

microenvironment [Fig. 5(B), bottom left] reveals

significant similarity between the enoyl triplet (red)

and a representative enoyl from the larger cluster

(blue). However, an examination of full protein

structure [Fig. 5(B), bottom right] indicates the

enoyl triplet proteins (red) contain an additional

domain, causing this triplet to form a distinct sub-

network in both the structure- and sequence-based

networks [Fig. 5(B), red circles].

Both results indicate that structure-based net-

works identify structural relationships including

additional or missing domains, without regard to

functional implications. Signature-based networks

are less sensitive to such modifications (unless they

would impact the functional site) and, instead, focus

on functional site features. These examples demon-

strate the value in comparing the three networks

because each network provides unique information

not encompassed by the other networks. It also

points out the importance of understanding the

desired goal in using similarity-based clustering, as

the edge metric impacts what is learned from the

network topologies.

Active site signature logos highlight previously

identified mechanistically important residues

The SFLD hierarchical function classification organ-

izes proteins based on functional site details,18 thus

providing information about mechanistically impor-

tant residues. However, years of work by expert

curators were required to produce this detail on

each superfamily—more efficient and rapid methods

are essential. While networks have emerged as an

efficient method to cluster proteins based on similar-

ity, the protein clusters identified from networks

must be functionally relevant to be accurately uti-

lized in identifying mechanistic determinants.

Examples in Figures 4 and 5 demonstrate that

signature-based networks cluster proteins with simi-

lar functional site features; consequently, we explore

using residue conservation in each cluster’s active

site profile to identify mechanistically important res-

idues for that cluster.

Previously, this approach identified functional

site residues in subgroups of the Prx superfamily.

ASPs identified subgroup-specific functionally

important residues, including a potentially impor-

tant Glu in the AhpC/Prx1 subgroup.45 Subsequent

combined molecular dynamics and electrostatics

calculations indicate that this residue does, indeed,

play an important functional role.46 In the current

network analysis, the AhpC/Prx1/Prx6 subgroup is

distinct and the Glu is well conserved in signature

logos for this subgroup [Supporting Fig. 5(A), pink

arrow].

This previous work on the Prxs and the network

topology observations described herein suggest a

generalizable and efficient strategy for producing

hypotheses about the mechanistically determinant

residues in each signature-based cluster. We first

further validate this approach by comparison to

experiment in the enolase and GST superfamilies,
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and then utilize the proposed approach to hypothe-

size novel functionally important residues in clusters

of the GST superfamily. (With the limited data in

the structure database, the crotonase clusters are

too small to draw meaningful conclusions [Support-

ing Information Fig. 5(B)]).

Rakus et al. annotated subgroup-specific resi-

dues at the ends of seven structurally conserved

beta strands (b2–b8) in the enolase active site.36 The

active site signatures for all enolase superfamily

proteins contain strands b2 through b6 [Fig. 6(A),

green strands], while b7 and b8 [Fig. 6(A), magenta

strands] lie outside the 10 Å signature radius (see

Methods). The residues near the end of strands b3,

b4, and b5 were the key residues used to define

active site signatures [Fig. 6(A), black ball and

stick]; these correspond to positions 10, 19, and 29

in the signature logos [Fig. 6(B), black stars; resi-

dues D198, E224, and D249 in 1BKH].

Though the threshold with the greatest number

of distinctly identified subgroups in the enolase

superfamily is 0.35 (Supporting Information Fig. 1,

blue stars), the MR subgroup is more complete at

threshold 0.30 and only two proteins are incorrectly

grouped (brown triangle in MLE cluster and green

diamond in ManD cluster) so the clusters at this

threshold were used in the analysis. We wanted to

compare residue conservation in active site profiles

with previously published results; therefore, Weblo-

gos47 were created for the signature-based clusters

(herein referred to as signature logos) at an edge

threshold of 0.30 [Fig. 6(B)]. We compared the resi-

dues reported by Rakus et al. to those conserved in

each signature-based cluster. All functionally impor-

tant residues noted by Rakus et al. near the ends of

b2–b6 are easily identified in the logos created from

active site signature-based subnetworks of the eno-

lase superfamily [Fig. 6(B), circles above signature

logos]. Residues near the b3 and b4 termini are well

conserved throughout the superfamily [Fig. 6(B),

large D and E, top logo], while the residues at the

b2, b5, and b6 termini distinguish each subgroup.

According to Rakus et al., the MLE, MR, and GlucD

subgroups share a conserved Lys residue at the b2

terminus, which is well conserved in signature logo

position 2 [Fig. 6(B), orange circles]. By comparison,

residues at the b2 terminus for the enolase, MAL

and ManD subgroups are Glu, His, and Arg, respec-

Figure 6.

Figure 6. Signature logos highlight residues known to be

functionally important in the enolase superfamily. A. Green

ribbons represent regions included in the active site signature

(b2–b6) and magenta ribbons represent b7 and b8 which are

not included in the active site signature but were analyzed by

Rakus et al.36 Tan areas represent the remaining protein

structure. The three key residues defining the active site

region (black side chains) are located on strands b3, b4, and

b5, respectively. B. Signature logos were created for the

entire enolase superfamily (top) and the six major groups

identified as signature-based subnetworks at edge score

threshold of 0.30, a cutoff chosen to correlate with the SFLD

subgroups [see Fig. 2(A) and Supporting Information Fig. 2

for the network series]. Node color is based on SFLD sub-

group and family designation (color key in Fig. 2). Clusters

are labeled with the dominant subgroup and the number of

proteins in the cluster. The key residues used to create active

site signatures are labeled with black stars in the top signa-

ture logo. Functionally relevant residues in each subgroup at

the ends of b2, b5, and b6 as reported by Rakus et al. are

identified with orange circles, green circles, and fuchsia

circles, respectively. The residues in positions 10 (Asp) and

19 (Glu) of the figure were invariant throughout the superfam-

ily and, therefore, not labeled with colored circles in each

subgroup. Note that the MAL subgroup only contains three

nonredundant structures so signature conservation analysis

in this subgroup should be considered preliminary. Represen-

tative examples of the orange, green, and fuchsia conserved

residues, respectively, in each subgroup are the following:

MR (1MDR)—K164, E247, D270; MLE (1BKH)—K167, K169,

D249, K273; enolase (1E9I)—E167, D316, K341; ManD

(2QJJ)—R147, E262, R283; GlucD (1BQG)—K211, K213,

N295, D319; MAL (1KD0)—H194, D307, K331.
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tively. Similarly, the enolase, MAL, and MLE sub-

groups share an Asp residue near the b5 terminus

[Fig. 6(B), green circles], while Glu is found in that

position in the MR and ManD subgroups, and Asn

in the GlucD subgroup. Finally, at the b6 terminus,

the enolase, MAL, and MLE subgroups contain a

Lys, the MR and GlucD subgroups share an Asp,

and the ManD proteins contain an Arg [Fig. 6(B),

fuchsia circles]. This analysis demonstrates that

ASPs can efficiently identify known mechanistically

important residues in the enolase subgroups, similar

to previous results for the Prxs, suggesting an effi-

cient and automatable strategy for hypothesizing

residues that distinguish functional subgroups in

other superfamilies.

As has been noted previously,31 functional resi-

due identification using this approach is not neces-

sarily complete, as some residues (such as those on

b7 and b8 in the enolases) may fall outside of the 10

Å signature radius. Despite this lack of complete-

ness, the similarity network clustering based on

active site signatures was still able to separate the

enolase subgroups, identifying a larger number of

distinct subgroups at a single threshold than either

sequence- or structure-based clustering (Supporting

Information Fig. 1, blue stars). Further, recent work

by Petrey et al. suggests using small areas of protein

structures rather than full sequence and structure

comparisons is more appropriate for relating protein

function.48

Relationships derived from active site signature

networks lead to hypotheses regarding

functionally important residues
This same approach was used to predict functionally

relevant residues in the GSTs (Fig. 7). SFLD-

identified GST subgroups cluster distinctly into sub-

networks at an edge threshold of 0.35 (Supporting

Information Fig. 3, blue star); thus, subnetworks at

this threshold were analyzed with signature logos

(Fig. 7, residues discussed are marked with stars

and circles). The six largest subnetworks were used

in this analysis, including two distinct AMPS clus-

ters (AMPS.A and AMPS.B). Several smaller subnet-

works are observed at this threshold, but are not

Figure 7. Active site signature logos for subnetworks of the GST superfamily highlight possible mechanistically determinant

residues. A. Signature logos were created for the entire GST superfamily (top logo) and the six largest subnetworks identified at

an edge threshold of 0.35 in the signature-based network. Black stars (top logo) indicate the three key residues used to create

the active site signatures. Black circles (top logo) indicate residues, displayed as black side chains in B–E, well conserved

throughout the superfamily. Colored circles indicate residues conserved within a subnetwork, but not conserved throughout the

superfamily—these are represented with subgroup-colored side chains in B–E. Yellow circles indicate residues reported as

functionally relevant in the literature. Blue circles indicate residues discussed in detail in the text. Pink circles indicate well-

conserved residues not discussed in the text. Node colors are based on SFLD subgroup (key in Supporting Information Fig. 1).

Subnetworks are labeled with the dominant SFLD subgroup and the number of proteins. B–E. Residues displayed in green, red,

orange, and pink are conserved in Main.4 (1JLV), Main.1 (1A0F), Main.2 (3C8E), and Main.8 subgroup (1E6B), respectively.

Hydrogen bonds are represented by blue lines in all structures.
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analyzed as each is composed of too few proteins to

confidently identify conserved residues.

Some residues are conserved throughout the

superfamily that have been previously identified.

The cis-Pro (P53 in 1JLV) and the Ile (I68 in 1JLV)

are both well conserved throughout the superfamily

[Fig. 7(A), black circles]; the Pro is reportedly

required for binding site formation,49 while the Ile is

important for structural stability of the active site.50

Additionally, some subgroup-specific residues

easily identified in the GST signature logos have

been previously identified [Fig. 7(A), yellow circles].

For example, a Ser in logo position 7, previously

shown to activate the bound glutathione (GSH),51 is

highly conserved in Main.4 (S9 in 1JLV) and Main.8

(S17 in 1E6B) subgroups. Similarly, the conserved

Thr in that same position in the Main.2 subgroup

(T52 in 3C8E) plays a role in ligand binding.52 In

the AMPS subgroup, the Tyr in signature position 3

(Y6 in 1C72) has been reported to hydrogen bond to

the sulfur of the GSH ligand, stabilizing a nucleo-

philic thiolate.51,53

Other residues are well conserved in one or

more subgroups, but have not been previously

reported [Fig. 7(A), blue circles]. For instance, a Thr

in logo position 24 (T54 in 1JLV) is well conserved

in the Main.4 subnetwork. Hydrogen bonding in the

immediate area [Fig. 7(B), blue lines] indicates this

Thr may play a role in stabilizing P53 and I68,

which, as noted above, are important for ligand

binding. In the Main.1 subnetwork, a well-conserved

Cys in logo position 9 (C10 in 1A0F) has been previ-

ously reported to bind GSH.51 The complete conser-

vation of Ser in position 10 of this subgroup (S11 in

1A0F) suggests it may play an important role

through binding stabilization as well, possibly

through hydrogen bonding to the nearby beta sheet

[Fig. 7(C), blue lines]. Similarly, the well conserved

NGXK motif in the Main.2 subgroup [Fig. 7(A), blue

circles; residues 54–57 in 3C8E] has not been previ-

ously reported as functionally relevant. Hydrogen

bonding between N54 and K57 [Fig. 7(C), blue line]

and the structural proximity to the ligand-binding

Thr [Fig. 7(A), yellow circle] suggests the hypothesis

that this motif plays a role in protein stability and

ligand binding. In the Main.8 subnetwork, a Tyr

(Y12 in 1E6B) and an Arg (R24 in 1E6B) are both

highly conserved [Fig. 7(A), blue circles] and may

play a supporting role to the previously identified

Ser [Fig. 7(A), yellow circle] that is crucial for ligand

binding.51 Both Tyr and Arg participate in hydrogen

bonding within the active site [Fig. 7(E), blue lines],

supporting this hypothesis. There are many other

subnetwork-specific residues identified in these sig-

nature logos that are conserved in the active site

region [Fig. 7(A), pink circles] and may play a role

in ligand binding and catalytic activity.

The rapid and efficient identification of residues

specific to signature-based subnetworks illustrates a

useful and automatable approach to identifying

mechanistically important residues that distinguish

the functionally relevant subgroups in a protein

superfamily.

Role of edge metric threshold in identifying the
topologically-based and functionally relevant

subnetworks and their hierarchical relationships

As described above, functionally relevant clusters

can be identified from the signature-based subnet-

works and signature logos built from these subnet-

works highlight well-conserved residues that play

important functional roles within each cluster. How-

ever, such data are only advantageous if the edge

metric used to define the subnetworks correlates

with functional relevance because network topology

and, thus, subnetworks (functionally relevant clus-

ters) vary with the edge metric threshold [Fig.

1(A,B)]. A nontrivial question is how to determine

the “correct” edge or score threshold that identifies

functionally relevant clusters. We note that the diffi-

culty of defining a useful threshold reflects complica-

tions of evolution—every superfamily has evolved at

different rates and under different constraints on

folding, structure and function.

In the results described in this manuscript, we

used the edge threshold that most closely resembles

SFLD subgroups (families for the crotonases) while

keeping the subgroups (and families) as intact as

possible. This technique is analogous to that used by

Mashiyama et al. when determining the GST sub-

group designations based on current experimental

annotations.52 In the enolase superfamily, a thresh-

old of 0.30 produced clusters that matched the six

SFLD subgroups almost perfectly [Fig. 6(B)]. Like-

wise, a threshold of 0.35 in the GST signature-based

network separated all subgroups into distinct clus-

ters and was, therefore, used to define groups for

the signature logos [Fig. 7(A)]. Signature logos were

also created for the Prx and crotonase superfamilies

at thresholds of 0.35 and 0.40 (Supporting Informa-

tion Fig. 5), respectively, scores at which the subnet-

works correlate with the SFLD subgroups (Prx) and

families (crotonase) (Supporting Information Figs. 2

and 4).

We note that these chosen thresholds do not

always match with the threshold identifying the most

subgroups (or families) distinctly and completely

(Supporting Information Figs. 1–4, blue stars). The

blue stars provide a quantitative comparison between

the network series—and the approach optimizes for

smaller, homogeneous clusters. On the other hand,

residue conservation was compared with literature-

described subgroups and, thus, threshold was chosen

to optimize comparison to literature-identified clus-

ters. We chose to use clusters containing one or two
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extra proteins that did not belong rather than using

clusters that contained just half of the subgroup or

family of interest, which would provide less statistical

significance to the residue conservation analysis.

Further investigation of functionally relevant

hierarchies by exploring network topologies at

multiple edge thresholds
While it is illuminating to identify and compare

functionally relevant clusters at a single edge

threshold, one benefit of analyzing similarity net-

works is the potential to identify functional hierar-

chies (Fig. 1). Can thresholds that reproduce the

SFLD functional hierarchy (or other functionally

relevant hierarchy), as illustrated in Figure 1, be

identified?

A key goal is to develop a process that would

identify the appropriate score thresholds to cluster

the protein sequence universe into functionally rele-

vant hierarchies (Fig. 1). Thus, network topology at

increasingly stringent edge thresholds should iden-

tify hierarchical relationships within a superfamily

(Fig. 1). We evaluate the counts of edge thresholds

at which the most subgroups and families are identi-

fied (stars in Supporting Information Figs. 1–4) to

determine if such a hierarchy can be observed in the

results presented here. Subgroups are identified in

the Prx, GST and enolase families at edge thresh-

olds of 0.3 to 0.4 in the signature-based networks,

while the crotonase families (a finer level of func-

tional detail) are most readily identified at an edge

threshold of 0.5. Therefore, in the signature-based

networks for this very limited set of superfamilies,

the threshold for identification of families is more

stringent than subgroups, correlating with a

required hierarchy. On the other hand, the subgroup

and family thresholds overlap in the sequence- and

structure-based networks: subgroups are identified

at thresholds of 0.84 to 0.92 (structure-based net-

works) and 1e-20-1e-35 (sequence-based networks),

while families are identified at 0.92 (structure-based

networks) and 1e-35 (signature-based networks). All

observations are taken from a very limited data set

of four superfamilies. If this observation holds for

additional superfamilies and edge thresholds in

signature-based networks can distinguish levels of

functional hierarchies (as we propose would be ideal,

Fig. 1), these results open the pathway for develop-

ing an automated method for clustering the universe

of protein sequences.

Given the results presented here, we ask if an

example of such hierarchy can be observed in the

current results. While most protein subgroups have

too few structures to hypothesize functional hierar-

chies, the AMPS subgroup in the GST superfamily

contains over forty structures that include the

literature-described subfamilies of Alpha, Mu, Pi

and Sigma, which are not distinguished in SFLD.

Topology of the signature-based network splits this

subgroup into two clusters at an edge threshold of

0.35, AMPS.A and AMPS.B [Fig. 8(A), blue and red

circles]. Further, a more stringent threshold of 0.45

produces a topology of three distinct subnetworks

created from AMPS.A (AMPS.A.1, AMPS.A.2, and

AMPS.A.3), creating four total AMPS clusters [Fig.

8(B), blue and red circles]. Between edge thresholds

of 0.35 and 0.45, all other subgroup clusters are

largely unchanged. Signature logos created for the

three largest AMPS groups [Fig. 8(C)] identify major

differences between the clusters, residues which we

hypothesize as mechanistically significant [Fig.

8(D)].

The AMPS.A.1 cluster contains three well-

conserved residues [Fig. 8(C), cyan circles] at logo

positions 4 (F8 in 1GSQ), 11 (E15 in 1GSQ), and 25

(L53 in 1GSQ), suggesting that this cluster may be

comprised of the Pi and Sigma families of the AMPS

subgroup.51 Likewise, conserved residues in the

AMPS.A.2 cluster [Fig. 8(C), orange circles], such as

Gly in logo position 2 (G5 in 1C72), Trp in position 4

(W7 in 1C72), and Asn in position 21 (N58 in 1C72),

suggest these proteins belong to the Mu family of

the AMPS subgroup.51 Finally, positions 10 (M16 in

1EV4), 22 (V55 in 1EV4) and 29 (T68 in 1EV4) in

the AMPS.B cluster are well-conserved and unique

[Fig. 8(C), green circles] suggesting that this cluster

contains the Alpha family of the AMPS subgroup.51

This result suggests the intriguing possibility of

identifying functional hierarchies in each protein

superfamily, as suggested by the analysis of the

AMPS subgroup [Fig. 8(E)]. Such hierarchies could

be defined at multiple levels of functional detail,

depending on the needs of the investigator. Clearly

further work is needed in additional superfamilies

across sequence (not just structure) space to identify

edge thresholds that divide superfamilies into these

functionally relevant hierarchies; such work is

ongoing.

Conclusion

In computational assignment of protein function,

sequence similarity is often used to transfer function

annotation from one protein to another. An underly-

ing assumption in this approach is that proteins

with full sequence similarity share similar function.

In this manuscript, we explored what can be learned

about protein function assignment based on similar-

ity clustering using a method in which we identify

clusters from network topologies produced using

three different similarity measures as edge metrics.

We compared with pologies of sequence-based, struc-

ture-based, and signature-based networks to deter-

mine how well subnetworks compared with the

functional hierarchy defined by SFLD.

As has been shown in the extensive literature,

sequence-based networks can identify evolutionary
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Figure 8. AMPS subgroup signature-based clustering suggests hierarchical organization of function. A. At the 0.35 edge threshold

in the signature-based network, the AMPS subgroups splits into two distinct clusters; A (blue circle) and B (red circle). B. At the

0.45 edge threshold in the signature-based network, the AMPS.A cluster splits into three smaller clusters (blue circles) while the

AMPS.B cluster only loses one protein (red circle). C. Signature logos were created for the three largest AMPS clusters at edge

threshold 0.45 of the signature-based GST network. Clusters are labeled with the number of proteins comprising the cluster. Col-

ored circles above the logos indicate residues, represented with similar-colored side chains in D, conserved within a subnetwork

but not conserved throughout the entire subgroup. D. Residues distinctly conserved within the AMPS.A.1, AMPS.A.2, and AMPS.B

subnetworks are mapped onto representatives from each cluster (1GSQ—cyan, 1C72—orange, 1EV4—green, respectively). E. A

functional hierarchy for the AMPS subgroup is defined from the signature-based network clustering. AMPS.A and AMPS.B are the

two main AMPS clusters at a 0.35 edge threshold. At the 0.45 edge threshold, the AMPS.A cluster breaks into three smaller clusters

while the AMPS.B cluster remains mostly the same. *The cluster is too small for detailed active site analysis.
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relationships;37,38 these networks also identify func-

tional relationships when evolution correlates with

function, which is very often the case at the superfam-

ily level and, as shown here, is frequently (but not

always) the case at the subgroup level. Structure-

based networks identify structure-based differences,

including domain additions, which would identify the

potential of additional functional sites within the pro-

tein. Signature-based networks often identify more

detailed molecular functional relationships and, impor-

tantly, can identify functional hierarchies relating sub-

groups and families. Additionally, mechanistically

important residues can be identified from the con-

served residues in the signature-based subnetworks.

The results show that signature-based similarity

networks introduce an efficient, accurate way to

define functionally relevant groups, an approach

suggested by Zhang et al.,11 and identify mechanisti-

cally important residues in those groups. This

approach can be applied systematically and on a

large-scale, which would contribute significantly to

guiding manual curation efforts. Finally, this analy-

sis provides a foundation for development of semi-

and fully automated tools that can use sequence,

structure, and active site data to group proteins in

functionally relevant ways useful for many different

applications.

Materials and Methods

Protein set
The Structure Function Linkage Database (SFLD)18

is a collection of well-studied and well-curated pro-

teins developed19 and often referred to as a “gold

standard” set.12,16,20,21,54 These proteins have been

manually curated and assigned to superfamilies,

subgroups and families [Fig. 1(C)], based on similar-

ity in mechanistic and specificity determinants.18

Some of these proteins have been experimentally

studied; therefore, this set serves as a comparison

tool for other protein classification methods. [We

note that this Gold Standard set, originally pub-

lished in 2005, is now represented by many more

proteins. The newer data alter to some extent the

original functional assignments. To address this, an

updated Gold Standard set is under development

(personal communication, S. Brown and P. Babbitt)].

In this work, three superfamilies manually

curated by SFLD curators were evaluated: enolase,

glutathione transferases (GST) and crotonase. A

fourth well-studied superfamily, the peroxiredoxins

(Prx), was also analyzed using this method. Prx pro-

teins of known structure were taken from Nelson

et al.45 and these are now available in the SFLD. A

summary of proteins in each superfamily are pro-

vided in Table I; details about protein structures

used in each subgroup and family within each

superfamily are provided in Supporting Information

File 4.

To accurately compare results, it is critical to

create networks using the same number of proteins

for each of the three edge metrics. Structure-based

networks require a solved three-dimensional protein

structure; thus, the set of structures available in the

SFLD as of April 2013 were utilized for all network

evaluations. Groups of proteins exhibiting high lev-

els of sequence identity produced clusters that were

highly similar in all three networks, cluttering net-

work visualization and hindering analysis. There-

fore, superfamily members of known structure were

evaluated for redundancy. Redundancy was identi-

fied by aligning all pairs of sequences using

Stretcher55 and calculating the percent identity for

each pair within the superfamily. One protein, at

random, was retained from each group of proteins

that shared 95% full sequence identity; this repre-

sentative set of non-redundant proteins for each

superfamily was used in all network evaluations.

The full list of representative and redundant pro-

teins for each superfamily is provided in Supporting

Information File 4.

Clustering evaluated using sequence-,
structure-, and signature-based scoring

methods

Networks were created for the proteins in each

superfamily using ClusterMaker,56 a plugin for the

Cytoscape software package57 that has implemented

the Markov clustering algorithm (MCL).58 The

appropriate edge metric (ASP score, TM-Align score,

or BLAST score) was used for the array source with

all other default parameters used. After clustering,

a force directed layout based on the scoring metric

was applied to arrange and visualize the networks.

Different scoring methods were used as the edge

metric in each of the three networks: full-length

sequence comparison using the BLAST scoring func-

tion;23 full-length structure comparison using the

TM-Align scoring function;24 and active site signa-

ture comparison using the active site profile (ASP)

scoring function.31 Sequence comparison edge

weights were determined based on the more signifi-

cant of the two reciprocal BLAST e-values between

two proteins, run with default parameters. BLAST

scores represent the likelihood of the sequence simi-

larity being solely due to chance; most values are in

the range [0, 1] with smaller values corresponding

to higher similarity.23 Structure comparison edge

weights were determined by the TM-Align score

between two proteins, normalized by the average

length of the two proteins. TM-Align scores repre-

sent the length-normalized structural similarity of

two proteins, weighting the more similar areas

stronger than the less similar areas; the scores are

in the range [0, 1] with larger values corresponding
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to higher similarity.24 Active site similarity edge

weights were determined based on the ASP scoring

function, which takes into account residue identity,

strong similarity, weak similarity, and gaps in the

pairwise active site profile alignment and is normal-

ized by the total length of the pairwise alignment.31

ASP scores represent the length-normalized sequen-

tial and structural similarity of the active site micro-

environment of two proteins; the scores are in the

range [-0.5, 1] with larger values corresponding to

higher similarity.31

Active site signatures31 for each protein are

determined from the structure surrounding user-

identified key residues. Three key active site residues

were defined for each superfamily from SFLD-

identified enzymatically active residues and key resi-

dues for the remaining proteins were identified using

structural overlays (Supporting Information Fig. 6) in

Chimera.59 A full list of all key residues can be found

in Supporting Information File 4. Active site profil-

ing31 was performed as implemented in the Deacon

Active Site Profiler (DASP).60,61 Briefly, for each pro-

tein, all residues for which any atom lies within 10 Å

of the center of mass of one of the key residues are

extracted and aligned N-to-C terminus to create an

active site signature. Single residues and fragments of

length two are eliminated from the signature. Pair-

wise active site signature comparison edge weights

were determined using an in-house Python script that

utilizes the signature similarity scoring metric previ-

ously described.31 The networks created using the

BLAST, TM-Align, and ASP scoring metrics are

referred to as sequence-based, structure-based, and

signature-based networks, respectively.

Clusters defined by edge thresholding produce

subnetworks

For each network, subnetworks or clusters were

defined by the edge threshold (a “filter”) applied to

the edge weights. At a given edge threshold, all

edges with scores below that threshold are removed.

When the threshold is applied, these missing edges

produce distinct subnetworks, where the edges

within the subnetwork have pairwise edge scores

more significant than the threshold, and the edges

that previously connected the subnetworks have

been removed due to less significant scores. We

explored the formation of subnetworks (or clusters)

at different score thresholds, so we could compare

the hierarchy of subnetwork formation in each

superfamily. It is important to note that at each

edge metric threshold, the MCL clustering algorithm

may remove some edges that are above the thresh-

old during the clustering process. For example,

edges removed from the BLAST network during

clustering are very large compared with the majority

of edges that are quite small (Supporting Informa-

tion Fig. 7); thus, the clustering algorithm removes

the edges with the extremely large scores at the “no

filter” edge threshold producing multiple subnet-

works before edge threshold application.

To compare how accurately each of the three

networks identified known functional groups, we

counted the number of clusters that were distinct

and all inclusive of a subgroup (for enolase, Prx, and

GST) or family (for crotonase) at each edge thresh-

old in each of the three networks. Subgroups or fam-

ilies with only one protein structure were not part of

the count, and uncharacterized proteins were

ignored in all clusters. The highest count for each

network series was marked (Supporting Information

Figs. 1–4, blue stars) and analyzed.

Signature similarity visualized using active site

signature logos

Sequence logos for the protein clusters were created

using WebLogo version 3.3.47 Signatures were first

split into their noncontiguous fragments. To make the

signature logos as accurate as possible, each signature

fragment must be a consistent length for all of the

proteins in a superfamily. Towards this goal, each

fragment in all proteins in a superfamily was aligned

based on structural overlays and both ends of the

fragment were extended in each signature using the

contiguous protein sequence until each fragment was

a consistent length for all proteins in the superfamily.

The fragments were then concatenated to form final

signatures. Fragment extension and concatenation

was subsequently added to DASP to more accurately

group proteins based on their active site microenvir-

onment (manuscript in prep). To create the figures,

default settings from the Weblogo website (http://

weblogo.berkeley.edu/) were used except for the small

sample correction, which decreases the height of all of

the letters in small samples; given the small sample

sizes, it was important for all letters to be visible for

the analysis. In the signature logos, the larger the let-

ter, the more frequent that residue is found in that

position throughout the set of active site signatures.

These graphical representations allow simple compari-

son of the active site signatures between different

clusters of proteins. Signature similarity figures were

created for the enolase [Fig. 6(B)], GST [Fig. 7(A)],

Prx [Supporting Information Fig. 5(A)], and crotonase

[Supporting Information Fig. 5(B)] superfamilies.
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