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Introduction
The mammalian cortex is composed of an incredible diversity 
of neurons and glial cells which arise from the differentiation 
of neural stem cells (NSC) during embryonic stages and the 
first postnatal weeks. During this process, the transition from 
NSC to fully differentiated neurons and glia is called neuro-
genesis and gliogenesis, respectively. While most of the special-
ized stem cells are capable of producing several different 
lineages, NSC produce different cell types sequentially and 
their potentiality decreases with time in a phenomenon called 
sequential fate restriction.1,2 Indeed, NSC switch from prolif-
erative symmetrical divisions to asymmetrical cell division to 
sequentially produce all cortical neurons which will populate 
the 6 different layers of the cortex. Finally, NSC switch to glio-
genesis which persists after birth. The mechanisms regulating 
this temporal differentiation progression are not fully under-
stood. In recent years, it has become clear that both extracel-
lular factors as well as intracellular cues can control the 
proliferation/differentiation balance in NSC. Among the 
extracellular factors, nutrients modulate fundamental cellular 
processes including proliferation, secretion, and autophagy.3 In 
addition to their bioenergetics intracellular function, recent 
work showed that extracellular nutrients and intracellular 
metabolites can influence cell state by acting as signaling mol-
ecules affecting both signaling pathways and gene expression 
particularly through their effect on chromatin modifications. 
Indeed, most chromatin-modifying enzymes require substrates 
or cofactors that are intermediates of cellular metabolism.4 
Thus, variation of these metabolic inputs will determine 
epigenome remodeling and transcription. This is of interest 
because epigenetics, which are defined as the heritable traits 

that involve chromatin changes rather than DNA sequence 
alterations, control gene expression which is at the heart of dif-
ferentiation and development. In fact, long-term epigenetic 
silencing of key developmental genes that are associated with 
specific cell lineages is at the center of NSC fate restriction.5

Epigenetic landscape can be modified by DNA and histone 
modification enzymes following metabolic changes, and con-
versely, epigenetic mechanisms can regulate the cellular metab-
olome through modulating metabolic gene expression. Thus, 
understanding the interplay between metabolism and epige-
netics has proven to be a difficult task. Extensive research dur-
ing the past decades has focused on elucidating the roles of 
metabolic pathways in the control of stem cells fate decisions; 
however, the role they may play during neurogenesis has been 
largely understudied. In this review, we will summarize the 
recent research progress in the epigenetic and metabolic regu-
lation of NSC cell fate and discuss how the understanding of 
the link between epigenetic and metabolism could identify new 
vintage points in the field of neurogenesis.

The Cerebrospinal Fluid and Neurogenesis
NSC are in permanent and direct contact with the cerebrospi-
nal fluid (CSF) at the ventricular surface from the earliest 
stages of brain development. Indeed, the primitive cerebroven-
tricular system emerges with the closure of the neural tube 
which entraps some of the amniotic fluid and serves as the ini-
tial CSF. The CSF is then actively regenerated throughout 
embryogenesis and adulthood from arterial blood by the cho-
roid plexus tissues.6 The CSF has been shown to have age-
dependent effect on NSC proliferation suggesting that its 
composition is relevant to normal corticogenesis.7 Due to the 
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advancement in proteomics, the highly dynamic CSF pro-
teome starts to be characterized and have revealed similarities 
between human and rodent proteomes at different time points 
during corticogenesis.8,9 While we are only beginning to 
uncover CSF composition, the range of factors present in the 
CSF known to be important for NSC already includes fibro-
blast growth factors (FGF), insulin-like growth factor (IGF), 
sonic hedgehog (Shh), and retinoic acid (RA). Interestingly, 
the presence of regulators of lipid metabolism, glucose, as well 
as folate and some of its derivatives has also been reported10; 
however, the metabolic profile of CSF during corticogenesis 
has yet to be established. Finally, whether variation of CSF 
composition can have great influence on NSC intracellular 
metabolites levels and how that will affect neurogenesis will 
require further investigation.

Metabolism and Epigenetic Modifications in NSC
Early pioneering studies have linked metabolic gradients to 
developmental patterning indicating that metabolic differences 

are intrinsically and functionally linked to cell differentiation 
in different developmental contexts.11,12 Flexibility in energy 
metabolism supports stage-specific energetic demands. The 
most known metabolic rewiring is the glycolysis/oxidative 
phosphorylation (OXPHOS) switch where glycolysis main-
tains stemness through provision of energy and OXPHOS 
allows for more efficient energy production to match the needs 
of the differentiating progeny.13 For instance, in drosophila, 
this metabolic switch was shown to trigger neuroblasts termi-
nal differentiation during metamorphosis.14 However, in mam-
mals, while most studies have focused on the role of metabolites 
in adult NSC,15–17 much less is known regarding their function 
in embryonic NSC. Transcriptomic approaches have high-
lighted the temporal changes in both NSC metabolic gene 
expression and NSC epigenetic landscape during sequential 
generation of the different neuronal subtypes hinting toward 
their important role in corticogenesis.18,19 Given the fact that 
metabolism intermediates are often used as cofactors and sub-
strates for epigenetic modifying enzymes (Figure 1), we focus 

Figure 1.  Overview of metabolic pathways implicated in epigenetic modifications in NSC. Metabolites that are used as substrates and cofactors for 

reactions that coordinate epigenetic status are highlighted in blue color. Epigenetic modificatons are represented as methylation and acetylation marks on 

histones. α-KG indicates α-ketoglutarate; βOHB, β-hydroxybutyrate; Ac, acetyl; CoA, co-enzyme; DNMT, DNA methyltransferase; FAD, flavine adenine 

dinucleotide; FADH2, flavin adenine dinucleotide dihydride; G-6-P, glucose-6-phosphate; G-3-P, glyceraldehyde-3-phosphate; GSH, glutathione; GSSG, 

glutathione disulfide; HAT, histone acetyltransferases; Hcy, homocysteine; HDM, histone demethylases; HDAC, histone deacetylase; HMT, histone 

methyltransferase; JMJC, Jumonji domain demethylase; LSD1, lysine-specific demethylase 1; Me, methyl; NAD+, nicotinamide adenine dinucleotide; 

NADH, nicotinamide adenine dinucleotide hydride; PPP, pentose phosphate pathway; P, phosphate; ROS, reactive oxygen species; SAH, 

S-adenosylhomocysteine; SAM, S-adenosylmethionine; TCA, tricarboxylic acid; TET2, ten-eleven translocation 2; THF, tetrahydrofolate.



Fawal and Davy	 3

on the link between the major metabolic pathways and NSC 
fate.

One-carbon pathway

One-carbon (1C) metabolism consists of a series of complex 
cyclical reactions in which a single carbon unit is transferred 
from donors to acceptors. It comprised 2 intertwined path-
ways: the folate and methionine pathways. The folate pathway 
is involved in DNA synthesis with the production of purine 
and pyrimidine via the metabolism of tetrahydrofolate (THF). 
However, the methionine pathway is involved in methylation 
reactions as it converts methionine to S-adenosyl methionine 
(SAM), which is a methyl donor.20 1C metabolism is impli-
cated in NSC self-renewal and differentiation as its deficiency 
inhibited the proliferation of both embryonic NSC in vitro and 
adult hippocampal NSC.21,22 Furthermore, in vitro folate sup-
plementation increases NSC proliferation and neuronal differ-
entiation by enhancing DNA methyltransferases (DNMT).23,24 
Finally, folate supplementation during pregnancy facilitates 
oligodendrocyte differentiation.25 Recent work from us has 
shown that inhibition of the folate pathway induced a deple-
tion of embryonic NSC in vivo.26 NSC depletion was corre-
lated to decreased methylation on lysine 4 of histone 3 
(H3K4me3) at the promoter of key progenitor genes. 
Furthermore, we have identified a link between 1C metabolism 
and the cell-cell communication pathway Eph-Ephrins. This is 
of interest as it identifies metabolites of the folate pathway as 
signaling molecules connecting extracellular signals to cellular 
gene expression. Whether 1C metabolism–driven epigenetic 
alterations are involved throughout embryonic neurogenesis or 
are required at a specific stage to drive NSC specification war-
rants future investigation.

Lipids pathway

Lipids, which have been often considered as membrane compo-
nents, can also function as signal transduction molecules.27 
Lipids can act either by binding specific receptors and/or mod-
ulating the environment of receptors associated with lipid rafts; 
thus, lipid metabolism is important for the interaction between 
adult NSC and their niche.28 Lipid production is upregulated in 
adult NSC through the fatty acid synthase (FASN)-dependent 
de novo lipogenesis which is essential for NSC proliferation as 
well as neurogenesis.29 While lipid metabolism has been shown 
to regulate the relative proportions of asymmetric/symmetric 
divisions in adult NSC, not much is known on its role in NSC 
at the embryonic stages. Recent evidences have linked lipids 
breakdown through the fatty acid oxidation (FAO) to NSC 
activity during development. Indeed, FAO inhibition led to a 
reduced NSC pool due to their increased differentiation and 
reduced self-renewal.30 Lipid metabolism has also been associ-
ated with epigenetic reprogramming. Histone acetyltransferases 
(HAT) use lipid-derived acetyl-CoA as a major source for 

histone acetylation and have been shown to drive cellular 
growth by promoting histone acetylation and expression of 
growth-related genes.31 Furthermore, acetyl-CoA can be 
reduced to produce beta-hydroxybutyrate (βOHB) which is an 
endogenous inhibitor of histone deacetylases (HDAC).32 
Finally, pharmacological inhibition of histone deacetylation 
promoted neuronal differentiation while decreasing astrocyte 
differentiation in vitro.33 While the tight connection between 
lipid metabolism and epigenetic regulations of gene expression 
has been consolidated in different stem cells as well as adult 
neurogenesis, whether it can exert similar functions in embry-
onic NSC remains to be elucidated.

Glutamine pathway

Glutamine (GLN) is the most abundant amino acid in plasma, 
up to 60% of the total free amino acid pool, and is the primary 
nutrient for maintaining and promoting cellular function.34 
The function of GLN goes beyond that of a simple metabolic 
fuel or protein precursor as it is actively involved in several cell-
specific processes including nucleotide synthesis, cell survival/
proliferation, redox homeostasis, and fatty acid synthesis.35 In 
NSC, the GLN pathway is essential for their growth and long-
term maintenance and is upregulated in astrocytic lineages.36,37 
Moreover, removal of GLN from growth culture medium 
impairs the spontaneous differentiation of cortical neurons in 
vitro.38 Glutamate, which is produced by GLN hydrolysis, is a 
precursor in the synthesis of reduced glutathione and thus reg-
ulates NSC redox balance. This balance is important to control 
reactive oxygen species (ROS) levels which play a role in main-
taining the proliferation of adult progenitor cells within this 
neurogenic niche.39

GLN undergoes deamination to produce α-ketoglutarate 
(α-KG) through 2 pathways, namely, Glutaminase I and II 
pathways, which is a tricarboxylic acid cycle (TCA)-Cycle 
intermediate and a substrate for demethylases that modify both 
proteins and DNA. Indeed, α-KG is used as a substrate by 
Jumonji-C domain containing histone demethylases ( JMJC) 
and Tet-DNA demethylases. High α-KG levels promote naïve 
pluripotency by suppressing the accumulation of repressive his-
tone modifications and DNA methylation in mouse embryonic 
stem cells.39 Even though many studies have highlighted the 
importance of GLN metabolism in stem cell maintenance and 
differentiation, its function in embryonic NSC needs to be fur-
ther characterized.

Glycolysis and pentose phosphate pathway

Glucose is imported into cells via glucose transporters (GLUT) 
and is a pivotal source of fuel that is used in different metabolic 
pathways. Glucose is metabolized into pyruvate (glycolysis) 
which can either be fermented into lactate or shuttled into 
the mitochondria to be used in the tricarboxylic acid (TCA) 
cycle (OXPHOS).17 Glycolysis is critical for the function of 
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embryonic NSC as neural tube abnormalities are detected in 
diabetic pregnancies.40 Neuronal differentiation from human 
embryonic stem cells–derived NSC is accompanied by meta-
bolic reprogramming from aerobic glycolysis to neuronal 
OXPHOS.41 The TCA cycle provides several intermediates 
that are used in numerous other reactions. Among these inter-
mediates, acetyl-CoA and α-KG are described above, as well as 
the reducing agents nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FADH2). FAD, the 
oxidized form of FADH2, is a cofactor for the lysine-specific 
demethylase (LSD1) that regulates NSC proliferation in adult 
hippocampal dentate gyrus through modulation of histone 
methylation.42 Moreover, LSD1 repressed the expression of 
HEYL through demethylation of H3K4me3 to promote neu-
ronal differentiation of human fetal NSC.43 NADPH is 
important to manage oxidative stress and ROS by maintaining 
reduced glutathione levels.44 Increase in NAD+, the oxidized 
form of NADH, to NADH ratio activates SIRT1, a NAD+-
dependent deacetylase which has been shown to inhibit adult 
hippocampal NSC self-renewal and promote embryonic NSC 
neuronal differentiation.45,46 However, activation of SIRT1 by 
resveratrol to mimic early neural developmental stress triggered 
OCT6 deacetylation and increased neural tube defects in 
mouse embryos.47 Thus, tight regulation of NAD+/NADH 
ratio is essential for neurogenesis. Finally, fumarate and succi-
nate which are TCA intermediates have been shown to inhibit 
α-KG-dependent histone and DNA demethylases.48 Several 
TCA intermediates are exported out of the mitochondria and 
contribute to epigenetic regulation of transcription (eg, α-KG, 
NADH, FADH2); however, the role of glycolysis as a whole in 
regulating embryonic gene expression is not well studied.

Glucose-6-phosphate (G-6-P), a glycolytic intermediate, is 
used either for glycolysis or the pentose phosphate pathway 
(PPP). PPP is divided into 2 branches, oxidative PPP and non-
oxidative PPP. The oxidative PPP uses the G-6-P to produce 
the reducing agent NADH. In the non-oxidative PPP branch, 
ribose-5-phosphate and/or xylulose-5-phosphate are pro-
duced, which function as signaling molecules that regulate 
transcription.49 In vitro studies have shown the reliance of 
NSC on the PPP which is stimulated during neuronal differ-
entiation.50 Furthermore, PPP dysfunction contributes to 
impaired adult hippocampal neurogenesis.51 Whether PPP is 
linked to embryonic neurogenesis and NSC epigenetic remod-
eling remains to be elucidated.

Concluding Remarks
While human brain maturation continues throughout life, the 
first 1000 days is a unique period where the foundation of 
optimum growth and neurodevelopment are established.52 
Maternal malnutrition or placenta insufficiency leads to intra-
uterine growth restriction (IGUR) as the fetus fails to reach 
its genetic potential size. In IGUR, blood is redirected pref-
erentially toward brain at the expense of other vital organs 
highlighting the importance of brain nutrition during the 

early developmental stages. While “brain-sparing” refers to the 
relative protection of the brain, it does not guarantee its nor-
mal development as recent studies have shown child behavio-
ral problems and altered neurotransmitters’ profiles.53,54 Thus, 
understanding how nutrition and metabolites affect NSC pro-
liferation and differentiation during embryonic neurogenesis 
has profound impacts not only in understanding basic pro-
cesses of brain development but also in the field of neurologi-
cal disorders.

Work in the past decade has uncovered the complexity of the 
connections between metabolism and chromatin dynamics and 
how that influences neurogenesis, mostly in the adult. 
Metabolites are now considered as signaling molecules that 
provide a link between the cellular environment and nuclear 
transcription. While systems biology approaches are helping to 
understand this complexity at an unprecedented pace, techno-
logical challenges are present that must be overcome to unravel 
the mystery at the next level. Most studies have focused on 
expression levels of each metabolic enzyme inside cells, but 
these may not completely reflect the actual level of enzymatic 
activity. To move forward, it is crucially important to under-
stand how metabolic profiles shift within NSC during embry-
onic neurogenesis. We have highlighted in this review the recent 
discoveries as well as the gaps in our understanding of the pro-
cess of metabolic reprogramming in embryonic neurogenesis. 
Future studies investigating the epigenetic landscape of NSC 
should include analyses of intracellular metabolites as a deeper 
understanding of this connection may help shed light on how 
NSC adapt to their environment to coordinate brain construc-
tion as well as the etiology of a variety of complex diseases.
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