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Abstract

Antibiotic resistance is prevalent among the bacterial pathogens causing urinary tract infections. 

However, antimicrobial treatment is often prescribed “empirically”, in the absence of antibiotic 

susceptibility testing, risking mismatched and therefore ineffective treatment. Here, linking a 10-

year longitudinal dataset of over 700,000 community-acquired UTIs with over 5,000,000 

individually-resolved records of antibiotic purchases, we identify strong associations of antibiotic 

resistance with the demographics, records of past urine cultures and history of drug purchases of 

the patients. When combined together, these associations allow for machine learning-based 

personalized drug-specific predictions of antibiotic resistance, thereby enabling drug-prescribing 

algorithms that match antibiotic treatment recommendation to the expected resistance of each 

sample. Applying these algorithms retrospectively, over a one-year test period, we find that they 

much reduce the risk of mismatched treatment compared to the current standard-of-care. The 

clinical application of such algorithms may help improve the effectiveness of antimicrobial 

treatments.
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Introduction

The resistance of bacterial pathogens to commonly used antibiotics is a growing public 

health concern, threatening the efficacy of antibiotic drugs1,2. The use of antibiotics benefits 

resistant strains, exacerbating the problem over time3–7. At the single patient level, the 

efficacy of antimicrobial treatment is critically dependent on correctly matching antibiotic 

choice to the specific susceptibilities of the pathogen8–10. Ideally, correct prescription should 

be based on direct measurement of the antibiotic susceptibilities of the infecting pathogen. 

In practice, though, to provide rapid clinical intervention, drugs are often prescribed 

empirically in the absence of culture susceptibility measurements, risking incorrect and 

therefore, ineffective treatment.

This problem is of particular importance in Urinary Tract Infections (UTIs), one of the most 

frequent community-acquired infections worldwide, for which the common practice of 

empirical treatment is jeopardized by substantial frequency of resistant infections. UTIs are 

among the most common bacterial infections, with over 150 million annual cases globally11. 

One of three women will have at least one symptomatic UTI by age 24, and more than one-

half will be affected during their lifetime12. Treatment of these infections accounts for about 

8% of non-hospital usage of antibiotics, often as part of empirical prescription13–15. The 

common etiological agents of UTIs are diverse, including Escherichia coli, Klebsiella 
pneumoniae and Proteus mirabilis, as well as gram-positive bacteria such as Enterococcus 
faecalis16–21. These pathogens are often resistant to several antibiotics, with resistance rates 

of infections exceeding 20% for commonly used drugs17,20,22, emphasizing the challenge of 

empirically prescribing the specific antibiotics to which the infecting pathogen is 

susceptible23.

The risk of an infection being resistant to different antibiotics is associated with patient 

demographics and comorbidities. Known demographic factors associated with resistance 

include older age24, gender25, ethnicity26–29, residence in a retirement home25 and travel to 

developing countries28. Known comorbidities associated with resistance include presence of 

a urinary catheter21,25,30, immunodeficiency25 and diabetes25. Notably, most of these 

associations were identified based on small patient cohorts, typically with high frequencies 

of antibiotic resistant infections, such as retirement homes, rehabilitation centers, or 

hospitals.

Beyond the patient’s demographics and comorbidities, antibiotic resistance has also been 

associated with the patient’s past clinical history, including recurrent UTIs, hospitalizations 

and resistance of previous infections. Risk of resistance to specific drugs have been shown to 

increase for patients with recurrent UTIs25,29,31 and past hospitalizations25,32. Studies have 

further shown that resistance of previous infections can be used to predict resistance in 

future infections33,34. However, the time extent of these associations is not well resolved and 

it is also unclear whether and how these associations vary across resistances to different 

antibiotics.

Availability of antibiotic purchase data reveals patterns of antibiotic use15,35 and shows that 

risk of resistance increases with short-term prior use of antibiotics5,24,25,32,36–38. Recent 
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large-scale studies showed that, across geography, resistance levels can be correlated with 

past drug consumption20,39. Resistance to fluoroquinolones was correlated with past 

consumption volumes of these same drugs20, while resistance to trimethoprim-sulfa was 

correlated with the volume of consumption of the same drug (cognate) as well as of other 

drugs of different pharmaceutical classes (noncognate)20. Such associations of usage of a 

given antibiotic with future resistance to other antibiotics can appear indirectly through co-

occurrence among resistance mechanisms (for example, if resistance to drug X and 

resistance to drug Y are correlated, then direct selection by drug X to X-resistance may 

result in association of drug X with resistance to drug Y). Resolving direct and indirect 

selection for resistance has been challenging in absence of resistance co-occurrence data. 

Negative associations, where drug use is anti-correlated with resistance, have also been 

observed, but it has been difficult to discern the direction of causality20,40. Finally, the time 

extent of these positive and negative associations of resistance with prior antibiotic usage is 

not well resolved.

Here, we present an analysis of a large population of UTI patients to unravel predictive 

features of antibiotic resistance and test how these features can be combined to recommend 

optimal drugs for empirical treatment. We analyze a patient-level longitudinal dataset of 

community and retirement-home acquired UTI cultures collected by Maccabi Healthcare 

Services (MHS), Israel’s second largest Health Maintenance Organizations, serving a 

diverse population of ~2 million patients. Analyzing demographic factors, we find strong 

drug-specific associations with resistance. Then, comparing resistance data of multiple 

infections from the same patient, we unravel a decaying long-term memory-like correlation 

of resistance over time. We also combine these culture records with patient-linked records of 

antibiotic use to quantify the extent and time of direct and indirect correlations of antibiotic 

use with resistance at the single-patient level. Finally, combining these demographic and 

historical factors for personalized predictions of resistance, we develop machine learning 

models which we demonstrate can substantially improve upon physician prescribed 

empirical antibiotic treatment.

Results

We retrieved data of all positive urine cultures of MHS patients for the ten-year period 

between 01-July-2007 and 30-June-2017, as well as patient demographics and record of 

antibiotic purchases for these patients (Online Methods). Among all ~2 million MHS 

patients, there were 711,099 recorded positive urine samples from 315,047 patients total. For 

each positive sample, one or more bacterial species were isolated and characterized. The 

dataset included species-level identification of these isolates as well as resistance profiles 

measured by VITEK2, reinterpreted in accordance with CLSI guidelines (Sensitive, 

Intermediate, and Resistant). As a multi-species infection can be treated by a given drug 

only if none of the isolates is resistant to it, we define for each antibiotic and each sample 

the “sample resistance”: the maximal resistance across all isolates from the same sample 

(96.4% of samples were identified as single species and their resistance profile is simply 

defined as the resistance profile of their single isolates). All of MHS’s country-wide clinical 

tests are performed centrally (Online Methods), allowing reliable comparison across patients 

and time. In our analysis, we focus on resistance to the 6 drugs that were most commonly 
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prescribed as part of empirical treatment of these infections (identified as the drugs 

commonly given on the same day samples were sent for culture; Table 1 and Supplementary 

Table 1; Online Methods). Resistance measurements for these antibiotics were carried out 

routinely over the entire ten-year period (except for cephalexin for which measurements are 

available only since 2014, Extended Data Fig. 1).

Three species, E. coli, K. pneumoniae and P. mirabilis, account for 85% of isolates (70%, 

10%, 5%, respectively; Fig. 1a). These pathogens varied in their resistance profiles (Fig. 1b). 

Notably, for all 6 antibiotics, the chance of resistant infection is significant, indicating that 

antibiotic treatment efficacy could often be undermined. These population-level frequencies 

of resistance were fairly static over time (e.g. trimethoprim-sulfa or nitrofurantoin) with only 

mild changes observed in certain antibiotics and specific species (Fig. 1c and Extended Data 

Fig. 2). The diversity of pathogens and resistance patterns underscores that antibiotic 

prescriptions must be tailored to match the resistance profile of the infection41, motivating 

the development of methods to better predict resistance23.

Strong antibiotic-specific correlations of resistance with demographic factors

Consistent with previous studies, UTIs were much more common for females than males 

(~88% females)11,26 and had qualitatively different age distributions (Fig. 2a)11,18,26,42,43. 

For each antibiotic, we performed multivariate logistic regression for the odds of resistance 

η =PResistance/(PSensitive + PIntermediate) as a function of age, gender, retirement home 

residence, pregnancy, date of sampling (time since July 2007) and season of sampling 

(Online Methods: Logistic regression “Demographics” model; Intermediate levels of 

resistance were classified as sensitive since they do not exclude prescription of an antibiotic, 

especially given the higher efficacy of antibiotics in urine infections44). We also calculated, 

for each of the 6 antibiotics, the frequencies of resistance of the urine samples across age, 

separated by gender, pregnancy and retirement home residence (Fig. 2c and Extended Data 

Fig. 3a).

Age, gender, pregnancy and residence in retirement home had strong, yet differential, 

association with resistances to the 6 antibiotics. For all 6 antibiotics, risk of resistance 

strongly increased with age and with retirement-home residence and decreased for females 

and pregnancy (Fig. 2b,c; see Supplementary Table 2 for regression coefficients and 95% 

Confidence Intervals, CI). The odds ratio (OR) for age (the ratio between the adjusted odds 

of resistance in the oldest and youngest age groups; Online Methods) differed widely among 

the 6 measured antibiotics, ranging from 2 in trimethoprim-sulfa and amoxicillin-CA to 

more than 8 in ciprofloxacin (Fig. 2b and Supplementary Table 2). For some antibiotics, the 

risk of an infection being resistant were non-monotonic with age, having an additional peak 

of higher risk at infancy or childhood (e.g., nitrofurantoin; Fig. 2c). For all antibiotics, 

females had lower odds of resistance, yet the odds ratios varied substantially among the 

different antibiotics (from OR=0.95, 95% CI: 0.93–0.97 for trimethoprim-sulfa to OR=0.38, 

95% CI: 0.38–0.39 for cefuroxime axetil). These lower odds of resistance for females were 

often lowered even further with pregnancy (as much as OR=0.48, 95% CI: 0.45–0.50 for 

ciprofloxacin; Supplementary Table 2). We also identified an interaction between gender and 

age leading to heterogeneous patterns for males and females (e.g. trimethoprim-sulfa, 
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nitrofurantoin) and even to opposing interactions of gender with specific ages groups (e.g. 

ciprofloxacin; Fig. 2c). While, across all antibiotics, resistance was higher for residents of 

retirement homes, the correlation with age within this group was reversed: the frequencies of 

resistance for retirement home residence did not increase, and even slightly decreased, with 

age (Fig. 2c and Extended Data Fig. 3a; possibly representing differential survivorship). The 

date of sample had some association with resistance to specific antibiotics, most notably 

cefuroxime axetil, while season had a relatively weak correlation with resistance for any of 

the drugs (Fig. 2b). Comparing the frequencies of resistance across the different antibiotics, 

we found that relative resistance rates changed between age groups (Extended Data Fig. 3b). 

We concluded that among the different demographic factors associated with risk of 

resistance, age, gender and residence in retirement homes are the strongest, with resistances 

to different antibiotics differentially correlated with these factors and the interactions among 

them.

Long-term correlations of resistance among same-patient urine samples

Moving from demographics to clinical history, we analyzed correlations of resistance across 

same-patient infections, revealing “memory-like” long-term auto-correlations and a timeless 

patient-specific tendency for resistance. Analyzing all same-patient pairs of samples, we 

calculated for each antibiotic the risk ratio for resistance of the second sample given the 

resistance of the first sample (ζpairs = [NR→R/(NR→R + NR→S)]/[NS→R/(NS→R+NS→S)], 

where the N’s are number of same-patient sample pairs with the specified resistance 

phenotypes; for example, NR→S is the number of sample pairs in which the first sample is 

resistant to the antibiotic and the second sensitive; Online Methods). Calculating ζpairs as a 

function of the time difference t = t1 − t2 between the two samples in each pair, we find that, 

for all antibiotics, these risk ratios are highest for short time differences and decay as the 

time difference increases (Fig. 3; Supplementary Fig. 1). Sample pairs less than a week apart 

showed substantially higher risk ratios, which we interpreted as repeated measurements of 

the same-infection (Supplementary Fig. 1). Considering only correlations between sample 

pairs more than a week apart, we found that the risk ratios decay and finally converge, at 

long time differences, to an asymptotic constant larger than 1 (the risk ratios are well fitted 

by the sum of an exponent and a constant, ζpairs ≃ Cme
t /τm + C∞; Fig. 3a,b and 

Supplementary Fig. 1). The memory-like decay time τm of correlations among samples was 

longer than six months for most antibiotics and even exceeded a year for ciprofloxacin 

resistance, which is consistent with and even longer than previously observed (Fig. 3c)34. 

The maximal risk ratios considering previous resistance reached about 8 for short time 

differences for some antibiotics and typically remained larger than 3 even for samples taken 

half a year apart (Fig 3a,b and Supplementary Fig. 1). At much longer times, the risk ratio 

decayed, and ζpairs converged to a constant, but interestingly it did not fully diminish, but 

rather converged to values larger than 1 (Fig. 3a,b,d, green), representing timeless patient 

specific tendencies for resistance. These decaying memory-like and timeless correlations 

could stem from repeated same-strain infections or from correlations with other patient-

specific factors. In either case, these strong memory-like and timeless correlations can 

potentiate predictions of resistance.
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Direct and indirect selection for resistance following past antibiotic purchase

Next, we linked the infection dataset with patient-resolved antibiotic purchase data. For each 

patient with recorded UTI samples, we retrieved all records of antibiotic purchase made 

during the twenty year period from 1-Jan-1998 to 30-Jun-2017. For analysis, we used the 11 

most purchased drugs (Supplementary Table 1). Antibiotics identical or highly similar to the 

ones used for resistance measurement were assigned as cognate antibiotics of these 

resistance measurements (Online Methods; Supplementary Table 1). For each UTI sample, 

we counted the number of purchases made by the same patient of each of the 11 drugs at 

distinct time intervals prior to the sample (Online Methods). Then, we applied multivariate 

logistic regression to correlate resistance to each of the 6 antibiotics with these drug 

purchase counts (Online Methods: Logistic regression “Purchase history”; Fig. 4a, Extended 

Data Fig. 4a).

We identified strong long-term patient-level associations of resistance with past purchase of 

both cognate and noncognate antibiotics. These purchase-resistance associations peaked at 

time differences of one to two weeks between purchase and sample, and often lasted for 

months and even longer than a year (Fig. 4a, Extended Data Fig. 4a). For example, the 

associations between purchase of ciprofloxacin and its cognate resistance had an odds ratio 

of 1.5 after half a year and remained as large as 1.2 even two years past purchase (Fig. 4a). 

Some weak negative associations were also identified (e.g., ciprofloxacin resistance was 

negatively correlated with past use of amoxicillin and cefalexin, Fig. 4a). Yet, the magnitude 

of these negative correlations decreased after adjusting for demographics, suggesting that 

they stemmed indirectly from correlations of purchases and resistance with demographics 

(Online Methods: Logistic regression, “Purchase history adjusted for demographics”; 

Extended Data Fig. 4c). Notably, drug purchases were associated not only with their 

expected cognate resistances. Indeed, use of some first-line antibiotics, such as ciprofloxacin 

and ofloxacin, increased the risk of a future resistance to a wide range of mechanistically 

diverse antibiotics. These abundant long-term positive associations between resistances and 

past purchase of noncognate drugs did not stem from correlations of purchases and 

resistance with patient demographics; they remained strong even when adjusting for 

demographics (Extended Data Fig. 4c). Together, these results support strong and long-

lasting patient-level associations of antibiotic resistance with past use of both cognate and 

noncognate antibiotics.

Exposing direct drug-to-resistance associations by disentangling correlations among 

resistances, we found that drug usage specifically selects for its cognate resistance at the 

single-patient level. Across the sample dataset, resistances to different antibiotics within 

class and even resistances to antibiotics of different classes were highly correlated (cross 

resistance; Extended Data Fig. 5). These inherent correlations among resistances suggest 

that observed associations between resistance to a given drug A and past purchase of a 

different non-cognate drug B may arise indirectly through selection for resistance B and 

association between resistance to B and resistance to A. Mathematically discerning these 

direct from indirect effects is only possible when multiple resistances are considered20,45. As 

our dataset contained measurements of multiple resistances for each sample, we were able to 

disentangle direct from indirect associations by adjusting the logistic regression for other 
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measured resistances (Online Methods: Logistic regression “Purchase history adjusted for 

cross-resistance”). In this cross-resistance adjusted analysis of purchase-resistance 

associations, the noncognate associations between drug purchases and resistance 

substantially diminished and even disappeared while the associations between cognate drug-

to-resistance pairs persisted (Fig. 4b, Extended Data Fig. 4b). For example, considering the 

associations between purchases of trimethoprim-sulfa and ciprofloxacin to their cognate 

resistances, we observed that the unadjusted and cross-resistance adjusted associations were 

of similar magnitude for cognate drugs (Fig 4c,d, thick solid vs. thick dashed lines), while 

the total association of drugs with their noncognate resistance decreased considerably once 

the indirect effect was removed (Fig 4c,d, thin solid vs. thin dashed lines). Our analysis 

therefore identifies both direct and indirect selection for resistance at the single-patient level 

lasting months and even a year following drug use.

Predicting antibiotic resistance at the single-patient single-infection level

As resistance is strongly associated with demographics, sample history and purchase history, 

we wanted to determine the predictive power of these factors individually and when 

combined together and identify potential interactions among them. Models of Logistic 

Regression and Gradient Boosting Decision Trees (GBDT) were trained and tested on 

temporally separate periods: training period of 9 years from 1-July-2007 to 30-June-2016 

and testing period of the following year, from 1-July-2016 to 30-June-2017 (for cephalexin, 

training period was modified to avoid a time period during which resistance to this drug was 

not routinely measured, Extended Data Fig. 1). This temporal separation between training 

and testing data emulates forecasting resistance, as would be the case in real-life 

implementation of such a method. Area Under the Curve (AUC) of Receiver Operating 

Characteristic was used as a standard measure for predictive power46.

Logistic regression and GBDT models provided personalized drug-specific prediction of 

resistance. Individually considering demographics, sample history and purchase history, we 

find that each of these sets of features had significant predictive power, with their relative 

prominence varying across the different antibiotics (Extended Data Fig. 6). Combining all 

these feature sets in a complete logistic regression model (Online Methods: Logistic 

regression “Complete”), much increased predictability of resistance (AUC ranged from 0.7 

for amoxicillin-CA to 0.83 for ciprofloxacin; Extended Data Fig. 6). Predictability of 

resistance was slightly increased by the GBDT models (Online Methods). For each given 

antibiotic k, considering the model-assigned resistance probabilities Pk
m of each sample m, 

we can define threshold values Pk
threshold that allow substantial reduction in risk of resistance 

while allowing treatment of the vast majority of the infections (Fig. 5a). Setting this 

threshold to allow treatment of 75% of samples by each of the 6 drugs, the vast majority of 

infections can be treated with at least one of the drugs (92%, Extended Data Fig. 7). Finally, 

we found that these model-assigned probabilities of resistance can markedly differentiate 

samples resistant to one drug and sensitive to another (Fig. 5b, odds ratio of 3.9 for 

nitrofurantoin versus cefuroxime axetil, P<10–100, Fisher exact; See Supplementary Fig. 3 

for all other drug pairs). In total, these results demonstrate that machine learning models can 

provide high and specific predictability of antibiotic resistance at the single-patient and 
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single-infection levels, motivating the development of algorithmic drug recommendations 

and comparison of their performance with current standard of care.

Algorithmic drug recommendations substantially reduce mismatched treatments

Analyzing prescriptions given by physicians as part of current standard of care, we found 

that these prescriptions significantly, yet not strongly, reduce the rate of mismatched 

treatments, compared to null random expectations. We identified all cases of “same-day 

empirical treatments” (SDETs), where a patient purchased an antibiotic on the same day 

they had a UTI sample sent for culture (11,952 cases within the one year test period; as 

culture tests take 2–4 days, these prescriptions were necessarily given empirically). 

Retrospectively contrasting these empirically prescribed drugs with the measured resistance 

of their corresponding samples, we found an overall 8.5% [95% CI: 8.03–9.05] rate of 

mismatched treatments (the sample was resistant to the prescribed antibiotic). This rate was 

significantly, yet not strongly, lower than expected by chance in two different null models. 

First, randomly choosing for each of these SDET cases one of the 6 drugs with equal 

probabilities, we found an expected null mismatched treatment rate of 10.2% [95% CI: 

9.88–10.52], which is 20% higher than observed in physician’s prescriptions (P<10–10, 

Bootstrapping, Online Methods; “Dice” model, Online Methods, Fig. 5c). Second, randomly 

permuting among the SDET cases the same pool of drugs prescribed by the physicians, we 

found an expected null mismatched rate of 9.4% [95% CI=9.00–9.71], namely 10% higher 

than observed (P=2.3×10−5, Bootstrapping, Online Methods; “Random permutation” model, 

Online Methods, Fig. 5c). Together, these results indicate statistically significant, but mild, 

patient-specific optimization of treatment in standard clinical practice.

Developing algorithmic drug recommendations based on the machine-learning predictions 

of resistance, we found that they can greatly improve upon these standard-of-care rates of 

mismatched empirical treatments. To computationally recommend drugs based on the 

machine-learning assigned probabilities of resistance Pk
m, we considered two algorithms, 

unconstrained and constrained (cost-adjusted; Extended Data Fig. 8). In the unconstrained 

model, we simply chose for each of the SDET cases the antibiotic for which the model 

predicted risk of resistance is lowest (minimal Pk
m, “Unconstrained algorithm for drug 

choice”, Online Methods). Comparing these recommendations to the measured antibiotic 

susceptibility of the sample, we found a mismatched rate as low as 5.1% [95% CI: 4.69–

5.48] namely 42% lower than observed in the physician prescribed treatment of these exact 

same cases (P<10–10, Bootstrapping, Online Methods; Fig. 5c). The chance of mismatched 

treatment was lower than expected not only in total, but across each of the prescribed drugs 

(Fig. 5d, top). Importantly though, the distribution of drugs recommended by this 

unconstrained algorithm was very different than the distribution of drugs prescribed by 

physicians (Fig. 5d, bottom). In particular, the algorithm almost entirely refrained from 

prescribing trimethoprim and cefalexin, for which population-level rates of resistance were 

high. Optimal unconstrained algorithmic recommendations can thus dramatically reduce the 

chance of mismatched treatments, yet do so by drastically changing the overall distribution 

of prescribed drugs.
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A model constrained to prescribe each drug at the exact same frequency it was used by 

physicians can still greatly reduce the rate of mismatched treatments. The overall rate of 

prescription of each drug could reflect considerations other than minimizing mismatched 

treatment (for example, ease of use, side effects, and tendency to avoid drugs for which 

population level resistance rates are low). To address these considerations, here referred to as 

costs, we developed a constrained, cost-adjusted, algorithm (“Constrained (cost-adjusted) 

algorithm for drug choice”, Online Methods). To recommend drugs that best minimize the 

population rate of mismatched treatments while maintaining a given population-level 

frequency of use of each drug, the algorithm assigns an effective cost for each drug and 

adjusts their values to match the required distribution of drug use (Online Methods). 

Applying this model to the SDET cases while adjusting the drug-specific costs such that the 

overall distribution of recommended drugs precisely matches the distribution of the drugs 

prescribed by physicians, this model gave a mismatched treatment rate of 5.9% [95% CI: 

5.47–6.33], slightly above the unconstrained model but still 30% lower than the physician’s 

rate (P<10–10, Bootstrapping, Online Methods). The improvements in mismatch rate were 

general across the population and robust to the clinical definition of resistance (Extended 

Data Fig. 9). These results show that algorithmically suggested drug prescriptions can 

substantially reduce the risk of mismatched treatments even when allowed to barely permute 

the same pool of drugs among patients.

Discussion

Analyzing a large longitudinal medical dataset, we demonstrate high predictability of 

antibiotic resistance in UTIs, which can guide culture-free recommendation of treatment to 

lower the chance of mismatched empirical treatment. The best predictive power of resistance 

comes from combining patient-specific data of demographics, antibiotic resistance profile of 

past UTIs and purchase history of antibiotic drugs. Considering demographics, we found 

that - age, gender, pregnancy, and residence in a retirement home were strongly associated 

with resistance, showing complex and non-monotonic patterns specific to each of the 

different antibiotics. Utilizing repeated same-patient cultures in our database, we identified 

and characterized a personal component of memory-like correlations of resistance, lasting 

for many months and even over a year. These long-term correlations can represent recurrent 

infections with the same strain, or correlations with other patient-specific factors. Either 

way, we show that they further contribute to predictability of resistance.

Long-term associations were also observed between resistance and past drug purchases. 

Resistance to a given drug had long-lasting associations not only with past usage of this 

same drug, but also with other, even mechanistically unrelated, drugs. Yet, adjusting for 

correlations among resistances exposed direct selection where drug use led specifically to its 

own cognate resistance at the single patient level. These results are consistent with drug use 

directly selecting, at the single-patient level, for strains resistant to it and thereby selecting 

indirectly, likely through frequent co-occurrence, to resistance to other antibiotics.

Combining these demographic, sample history and drug history data can guide algorithmic 

recommendations for empirical treatment which substantially improve upon current standard 

of care. Comparing empirical prescriptions given by physicians to random prescriptions, we 
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found that physicians personalize drug prescriptions in ways that significantly reduce the 

chance of mismatched treatment. However, machine-learning models could still substantially 

improve upon these already reduced rates. Indeed, the rates of mismatched treatment would 

have been reduced by over 40% were the drugs with lowest machine-learning predicted 

chance of resistance chosen. These machine-learning recommendations are inherently biased 

towards recommending drugs with overall low levels of resistance, for example 

ciprofloxacin, which is often intentionally avoided in standard clinical practice precisely to 

hinder the spread of resistance. We therefore also developed a model that assigns a cost for 

each drug, thereby constraining the rate of recommendation of each drug to the rate at which 

it was prescribed by physicians. Importantly, even when constrained to merely permute 

among the patients the exact same pool of drugs prescribed by physicians, the model can 

still reduce the rate of unmatched treatment by over 30% compared to standard care.

Some aspects of the data may complicate the interpretation of our results. As purchase of a 

drug does not fully guarantee its concurrent use, later usage of a purchased drug may bias 

our results towards higher odds ratio for purchases made long before infection. Conversely, 

we can not exclude that some patients have used antibiotics they did not purchase through 

MHS, which will bias our results towards lower odds ratio for drug purchases. Additionally, 

past antibiotic purchase and treatment might be associated with different clinical conditions, 

not considered in this study, such as comorbidities, hospitalizations and catheter use. While 

these factors are less likely to directly affect resistance rates, they are likely associated with 

risk of infections. Also, although culture data is routine for suspected UTIs, sending urine 

for a culture test is not obligatory. As a result, we assume some UTIs would be empirically 

treated without any culture record, and there is likely higher propensity towards culture 

testing of infections suspected of being resistant. This would generate bias towards 

measurement of more resistant samples, resulting in overestimation of the total frequency of 

resistance, especially for first-line treatment and potentially in overestimation of the general 

rate of mismatched treatment. Another bias due to elective culture testing would be for 

cultures taken following treatment failure. Such bias can again generate bias towards 

measurements of more resistant samples, and it can further contribute to the strong short-

term association of drug purchases with resistance, especially for first-line antibiotics. 

Lastly, the extent of this bias towards culture testing specifically following treatment failure 

could itself depend on demographics, which can bias correlations of demographics with 

resistance. While we cannot exclude these biases, our analysis demonstrates that, with all of 

these potential biases, resistance of urine infections can be well predicted based on the 

specific demographics and clinical history of the patient, and that algorithmic drug 

recommendations can substantially reduce the chance of prescribing an antibiotic to which 

the infection is resistant.

The substantial reduction in the rate of mismatched treatment enabled by machine learning 

recommendations based on the patient’s record and clinical history lays the basis for a future 

paradigm where clinicians will routinely consult such algorithms for prescription of patient-

tailored antibiotic treatment. We expect that algorithmic approaches similar to the one 

described here will be implemented, either centralized or locally, in healthcare systems 

where vast longitudinal electronic health records are available. While the key factors 

identified here can serve as the basis of such approach, the specific model, the exact 
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coefficients and relative weights of predictors, will have to be adjusted for each country or 

region. Indeed, these algorithms can also be dynamically and adaptively updated in real time 

as new data is acquired. We expect that inclusion of additional patient specific factors, such 

as comorbidities and hospitalizations, as well as of real-time information on infections, 

resistance and drug usage in other patients in a range of geographical proximities39, can 

further increase resistance predictability. These models could also be used to adjust for 

patient-specific drug “costs”, thereby accounting for allergies and other patient specific drug 

restrictions. In the longer term, these clinical-record and epidemiological data based 

approaches could be integrated with genomics of the patient as well as of the pathogen47–53. 

Implemented in the clinic, machine-learning guided personalized empirical prescription can 

reduce treatment failure as well as lower the overall use of antibiotics thereby assisting in the 

global effort of impeding the antibiotic resistance epidemic.

Online Methods

Data.

Anonymized clinical records of urine culture tests (“culture reports”) and records of 

antibiotic purchases (“purchase reports”) were obtained from Maccabi Health Services 

(MHS) for the time period from July 2007 to June 2017. Randomly generated patient 

identifiers were used to link culture reports and antibiotic purchase reports.

Culture reports: Antibiotic resistance profiling of bacterial pathogens isolated from urine 

cultures was carried out centrally (in two locations until 2010, and in one central lab since). 

We retrieved 711,099 culture reports of positive samples from 315,047 patients total 

(positive samples indicate bacteriuria, and as samples are most often sent for patients 

presenting symptoms, we consider these samples as representing UTIs). Each report 

included: (1) Unique patient code; (2) Date of sample; (3) List of isolates cultured with 

species identification (typically one isolate per sample; 3.6% of samples had more than one 

isolate); (4) Resistance profile of the isolates from processed results of a VITEK 2 system 

given as Sensitive, Intermediate and Resistant for each drug tested. We focused on resistance 

to the 6 antibiotics most commonly prescribed in empirical treatment of these UTIs, with 

empiric prescription defined as prescription on the same day the sample was taken, 

excluding any chance of the measurements being available. (NResistances = 6, Supplementary 

Table 1, Table 1, Ofloxacin resistance was excluded as measurements were not available as 

of 2013). Resistance to these antibiotics was routinely measured across the 10 year period, 

except for cephalexin that was only measured as of 2014 (Extended Data Fig. 1). (5) 

Demographics: age, gender, pregnancy of the patient, as well as identifier of patients 

residing in retirement homes.

Antibiotic purchase reports: All drug purchases by prescription are routinely recorded 

in MHS databases. We identified and retrieved all purchases made by patients with culture 

reports by converting internal MHS drug codes to ATC classifications of antibiotics 

(Supplementary Table 1). Each purchase record included: (1) Unique patient code to be 

linked to the code of the culture record; (2) Internal MHS product code, which was 

translated to an ATC drug code, (3) Date of purchase.
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Choice of drugs for analysis: We focused on the 11 antibiotic compounds (NATC =11), 

most purchased in the dataset (Supplementary Table 1).

Feature definition.

For each urine sample m, we define the following parameters used for the logistic regression 

and the gradient boosting decision trees:

Sample resistance profile: For each urine sample m, we define Yk
m as 0 for sensitive and 

intermediate and 1 for resistant to antibiotic k (1 ≤ k ≤ NResistances). If the sample had 

multiple isolates, Yk
m was assigned 1 if at least one isolate was resistant. Missing resistance 

measurements are defined as N/A, and for each antibiotic k only samples which have 

defined resistance to it are used when training or testing its Logistic Regression or Gradient 

Boosting Decision Trees (GBDT).

Demographics: Xm
Gender: 0/1 for males/females; Xm

Pregnancy: 0/1 indicating pregnancy; 

Xm
Ret.Home: 0/1 indicating residence in retirement homes; Xm,   j

Age : 0/1 indicating patient age at 

time of UTI sampling in group j = 1,2,…,10 standing for 0–10,11–20,…,91–100 years; 

Xm
Date: date of sample in units of annual quarters starting 2007; Xm,   j

Season: 0/1 indicating the 

quarter of the sample within the calendar year, with j = 1,2,3,4.

Sample history: For a given sample, we consider all earlier samples of the same patient 

(if any). We bin the time difference between any such earlier sample and the current sample, 

t = tPast sample − tSample (t is negative, designating past events), into one of 16 time bins (i = 

1,2,…,16). A bin i is defined by ti ≤ t < ti−1, with {t0,…,t16} = −{1,2,4,8,16,24,32,…,112} 

weeks. Boundary choice in integer number of weeks is important to avoid effects of 

weekends and of patient preference for a specific week day. Previous samples within one 

week of the current sample were not included as they likely represent data on the same 

infection which might not have been available yet to the physician at the time of the second 

sample). We then calculated Xm, i, k
Previous Resist and Xm, i, k

Previous Sensitive as the number of prior 

cultures within time bin i, whose resistance Yk
m equals to 1 or 0 (Resistant or Sensitive), 

respectively.

Drug purchase history: For each urine sample, we consider all earlier drug purchases 

made by the same patient. We bin the time difference between the urine sample date and a 

given past purchase, = tPurchase − tSample, into 8 logarithmically spaced time bins (i = 1,2,…,

8, a bin i is defined by ti ≤ t < ti−1, where the boundaries of these time bins are {t0,…,t8} = 

−{1,2,4,8,…,128} weeks (the logarithmic binning was chosen to increase statistical power at 

large time differences where purchase density is lower). For each sample, we then calculate 

Xm, i, j
ATC  as the number of purchases of a given drug j (1 ≤ j ≤ NATC, Supplementary Table 1) 

made by the patient during time bin i. For distribution of purchases per these logarithmically 

spaced bins, see Supplementary Fig. 5.
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Cross-resistance: To resolve direct versus indirect associations of drug purchase and 

resistance, we adjusted the logistic regression of resistance to a given antibiotic k as a 

function of past drug purchases by the resistances to all other drugs j which are non-

analogous to k. We define Ak,j as a binary variable equals 0 and 1 for analogous versus non-

analogous drug pairs, respectively. “Analogous” pairs are defined as antibiotics which have 

exceptionally high cross-resistance (Ak,j = 0 for corr Yk
m, Yk

m > Athreshold; we use Athreshold = 

0.7 which corresponds to drug pairs of the same class; see pairs labeled with ‘x’ in Extended 

Data Fig. 5). We then add as features for each sample m in the regression analysis of a given 

antibiotic k the resistance measurements Yk
m to all antibiotics j for which Ak,j = 1. Note: 

These cross-resistance features provide information from the focal sample and were used 

only in the analysis of direct/indirect effect of purchases (Fig. 4b) and not for evaluation of 

resistance predictability.

Logistic regression.

Logistic regression of resistance for each antibiotic was performed via the Matlab glmfit 

function. For each of the resistances k = 1,2,…,6, the probability of resistance Pk was fit to 

the sample resistance Ym,k for all urine samples which had measurement of resistance to k 
either across the entire 10 year dataset (for Figs. 2,4), or across the “training period” (for the 

analysis of predictive power of Fig. 5; see Extended Data Fig. 1 for definition of the training 

period for each of the 6 antibiotics). The different logistic models included combinations of 

the following 10 terms:

ln
Pk

m

1 − Pk
m = Ck

Const + Term #

Ck
GenderXm

Gender + #1

Ck
PregnancyXm

Pregnancy + #2

Ck
Ret . HomeXm

Ret . Home + #3

∑ j = 2
10 Ck, j

AgeXm,   j
Age + #4

Ck
Date1 Xm

Date

4 + Ck
Date2 Xm

Date

4

2

+ #5

∑ j = 1
3 Ck, j

SeasonXm,   j
Season + #6
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∑i = 1
16 Ck, i

Previous ResistXm, k, i
Previous Resist + Ck, i

Previous SensitiveXm, k, i
Previous Sensitive + #7

∑i = 1
8 ∑ j = 1

NATC Ck, i, j
ATCXm, i, j

ATC + #8

∑ j = 8
10 Ck, j

Age * Ret . HomeXm,   j
Age Xm,   j

Ret.Home + #9

∑ j = 1
NResistances Ak, jCk, j

Cross ResistY j
m #10

Different combination of the above terms were used in the different regression models as 

follows (each row in the Table represents a logistic model that was applied to each of the 6 

antibiotics):

Display item Model name Regression terms Fit data

Fig. 2b
Sup. Table 2

Demographics #1–#6 All data

Sup. Table 2 Gender, unadjusted #1 All data

Sup. Table 2 Pregnancy, adjusted for gender #2 and #1 All data

Sup. Table 2 Ret.Home, unadjusted #3 All data

Sup. Table 2 Age, unadjusted #4 All data

Sup. Table 2 Date, unadjusted #5 All data

Sup. Table 2 Season, unadjusted #6 All data

Fig. 4a,c,d
Ext. Data Fig. 4a

Purchase history #8 All data

Ext. Data Fig. 4c Purchase history, adjusted for demographics #8 and #1–#6 All data

Fig. 4b,c,d
Ext. Data Fig. 4b

Purchase history, adjusted for cross-resistance #8 and #10 All data

Ext. Data Fig. 6 Demographics #1–#6 Training range*

Ext. Data Fig. 6 Sample history #7 Training range*

Ext. Data Fig. 6 Purchase history #8 Training range*

Ext. Data Fig. 6
Fig. 5
Ext. Data Fig. 9

Complete #1–#9 Training range*

*
See Extended Data Fig. 1 for training range of each of the 6 resistances.

Calculating odds ratios from logistic regression.

For each antibiotic k, odds ratios were calculated from the coefficients of above logistic 

regressions.
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Binary variables: For the binary variables Gender, Pregnancy and Retirement Home, odds 

ratio were defined as: ORk
Gender = exp Ck

Gender  female versus male, 

ORk
Pregnancy = exp Ck

Pregnancy  pregnant versus non-pregnant, ORk
Ret . Home = exp Ck

Ret . Home

retirement home residence versus patients not residing in retirement homes.

Categorical variables: For the categorical variables Age and Season, odds ratios for each 

category relative to the reference (age group of of 0–10 years, 4th quarter, respectively) is 

given by ORk, j
Age = exp Ck, j

Age  and ORk, j
Season = exp Ck, j

Season , where Ck, j
Age and Ck, j

Season are 

reported in Supplementary Table 2. In Fig. 2, we report for Age ORk
Age max = exp Ck, jmax

Age , 

with jmax = 10 standing for the 91–100 year group; and for Season, 

ORk
Season max = exp Ck, jmax

Season , with jmax = 2 standing for the 2nd quarter (most contrast to the 

reference, which is the 4th quarter).

Quadratic variables: For Date, which is fitted quadratically, the individual regression 

coefficients and their CIs are reported in Supplementary Table 2. In Fig. 2b, we also report, 

for each antibiotic k, effective odds ratios defined as the ratios between the maximal and 

minimal expected odds taken across the relevant date range of (0 ≤ XDate ≤ 10 · 4):

ORk
Date = exp max0 ≤ x ≤ 1 Ck

Date1 x + Ck
Date2 x2 − min0 ≤ x ≤ 1 Ck

Date1 x + Ck
Date2 x2

Note that when these quadratic dependencies are monotonic within the relevant range (0 ≤ x 

≤ 1), the above formula becomes simply: ORk
Date = exp Ck

Date1 + Ck
Date2 .

Analysis of “memory” across sample pairs.

To analyze “memory” of resistance across samples, we considered all pairs of samples from 

the same patient (across all patients with 2–10 samples) and binned them according to their 

time difference t = t1 − t2 (where t1and t2 are the sample dates of the early and late sample; t 
is always negative, indicating information on current sample from past samples) into time 

bins as indicated by the bars in Fig. 3. In each time bin and for each antibiotic, we counted 

NR→R, NR→S, NS→R, and NS→S as the number of urine sample pairs where the early and 

late samples are Resistant, or Sensitive (for example NR→S is the number of same-patient 

sample pairs, within the time difference bin, where first sample is Resistant and the second 

Sensitive to the given focal antibiotic. For each antibiotic, only samples for which resistance 

was measured were considered). We then calculated for each time difference bin the risk 

ratio ζpairs = [NR→R/(NR→R + NR→S)]/[NS→R/(NS→R+NS→S)].

Gradient Boosting Decision Trees (GBDT).

GBDT is an ensemble method combining regression trees with weak individual predictive 

performances, into a single high-performance model. This is done by iteratively fitting 

decision trees, each iteration targeting the prediction residuals of the preceding tree. The 
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final model is built by combining weighted individual tree contributions, with weights 

proportional to their performances. For each of the 6 antibiotics, a boosted decision tree 

ensemble was fitted using all features as defined above (demographics, sample history and 

drug purchase history) on the training set as defined by the training time period (Extended 

Data Fig. 1, green bars). This training dataset was sampled to balance resistant/sensitive 

label frequency. For parameter tuning, a validation dataset was sampled from the training set 

to be used for model selection (20%). For the estimator of the ith iteration, a decreasing 

learning rate ηi was used such that ηi = η0αi, with an annealing rate α = 0.99 and an initial 

learning rate η0 = 0.1. To further promote a diverse ensemble of individual estimators, a 0.9 

feature-sampling and observation-sampling rates were used. Fitting of interaction effects is 

controlled by varying the size of the individual regression trees, with tree estimator of depth 

k producing models with up to k-way interactions. The model was tuned to match data 

complexity by iteratively increasing tree depth limit of all ensemble estimators while 

evaluating performance on the validation set, selecting the best depth for each antibiotic.

Unconstrained algorithm for drug choice.

Given the complete-model machine-learning assigned probabilities of resistance Pk
m of each 

same-day empirically treated infection m = 1,2,…,Nsamples to each of the antibiotics k = 1,

…,NResistances, the unconstrained model simply recommends for each infection, the 

antibiotic Krec
m  for which the model predicted probability of resistance is lowest. Namely, 

Krec
m  is defined by P

Krec
m

m = mink Pk
m .

Constrained (cost-adjusted) algorithm for drug choice.

The constrained, cost-adjusted, algorithm for drug choice takes as input the complete-model 

machine-learning assigned probabilities of resistance Pk
m of each same-day empirically 

treated infection m = 1,2,…,Nsamples to each of the antibiotics = 1,…,NResistances, as well as 

the target total number of uses of each drug nk
target (with ∑k = 1

NResistancesnk
target = Nsamples). The 

algorithm needs to return as output the optimal recommended drug treatments Krec
m  for each 

infection m such that the overall expected rate of mismatched treatment ∑m = 1
NsamplesP

Krec
m

m  is 

minimized while the overall usage of each drug nk ≡ ∑m = 1
Nsamplesδ k,  Krec

m  (where δ(i, j) = 1 

for i = j and 0 otherwise) satisfies nk = nk
target for all the antibiotics k. This constrained 

optimization problem can be solved exactly. First, we adjust the machine-learning model 

probabilities of resistance to each antibiotic by an additive drug-specific value Ck accounting 

for an assigned “cost” of using this drug: Qk
m = Pk

m + Ck. Then, given a set of cost values for 

all the antibiotics {Ck}, the recommended antibiotic Krec
m  for each infection m is defined by 

Q
Krec

m
m = mink Qk

m  and given these drug choice Krec
m  for all the infections, we then calculate 
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the overall drug distribution nk = ∑m = 1
Nsamplesδ k,  Krec

m . These drug distribution counts are 

therefore a function of the cost values nk = nk({Ck}). We then numerically solve for the set 

of cost values Ck
target  for which the drug distribution satisfies nk Ck

target = nk
target. For 

NResistances = 6, this amounts to numerically solving 6 equations with the 6 Ck’s as variables 

(The degeneracy due to ∑k = 1
NResistancesnk

target = Nsamples is offset by an added normalization 

Σk Ck = 0). Once we solved for the cost values Ck
target , the specific drug recommendations 

Krec
m  for each infection are defined by Q

Krec
m

m = mink Qk
m  with Qk

m = Pk
m + Ck

target.

It is easy to prove mathematically that this solution optimally minimizes risk of resistance 

given the constraints of total usage of each drug. Let’s assume that there exists an alternative 

solution Kalt
m  which has the same distribution of drug usage but with lower predicted chance 

of resistance ∑m = 1
NsamplesP

Kalt
m

m < ∑m = 1
NsamplesP

Krec
m

m . As the two solutions have the same overall 

number of uses of each drug, there must exist a set of pairwise swapping steps that 

transforms the “rec” solution to the “alt” solution, where each step consists of taking two 

infections m1 and m2 and swapping their recommended prescriptions Krec
m1 and Krec

m2 (an 

operation that maintains the same overall use of the drugs). But, given that the recommended 

prescriptions Krec
m1 and Krec

m2 are defined by Q
Krec

m1

m1 = mink Qk
m1  and Q

Krec
m2

m2 = mink Qk
m2 , 

swapping them necessarily leads to equal or higher overall probability of mismatched 

treatment:

P
Krec

m2

m1 + P
Krec

m1

m2 = Q
Krec

m2

m1 − C
Krec

m2
target + Q

Krec
m1

m2 − C
Krec

m1
target ≥ Q

Krec
m1

m1 − C
Krec

m2
target + Q

Krec
m2

m2 − C
Krec

m1
target = P

Krec
m1

m1

+ P
Krec

m2

m2

Therefore, any swap among the set of infections of the drugs recommended by the algorithm 

leads to increased predicted rate of mismatched treatment. The solution we provide is 

therefore optimal.

Finally, we note that an important added value of this approach is that it also provides the 

cost values Ck
target  for each of the antibiotics. Namely, given the distribution of antibiotics 

prescribed by physicians, we can deduce effective cost values that effectively account for the 

different global considerations physicians take such as ease of use, and tendency to avoid 

drugs of last resort. Once these cost values are determined, such as based on the one-year 

test period, they can be used for future algorithmic recommendations of drug prescriptions. 

Namely, for a given new case with machine-learning probability of resistance Pk for each of 
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the antibiotics k, the algorithm will simply recommend the antibiotic Krec for which 

QKrec
= mink Qk , where Qk = Pk + Ck

target.

Analysis of “Same-Day Empirical Treatments” (SDET).

We identified all cases across the one-year test period where patients purchased one (and 

only one) of the 6 antibiotics on the same day they had a sample sent for culture and for 

which resistances to all 6 antibiotics were measured (Same-Day Empirical Treatments, 

SDET). We then retrospectively annotated each SDET prescription as “matched”, or 

“unmatched” according to whether the sample was sensitive or resistant to the prescribed 

antibiotic, respectively. The rate of mismatched treatment was then defined across all of 

these SDET cases (Fig. 5c), as well as separately across all of the cases treated with a given 

drug (Fig. 5d, top). A similar analysis was done for the drugs recommended by either the 

unconstrained or the constrained (cost-adjusted) models (Fig. 5c,d). Mismatch rates were 

also compared with two models of null expectations. In the “Dice” model, we randomly 

chose, for each SDET case, one of the 6 drugs with equal probability. In the “Random 

permutation” model, we randomly permuted across the SDET cases the same overall pool of 

drugs prescribed by the physicians (thereby maintaining the exact same frequency of use of 

each of the 6 drugs). For each of these models, we repeated 1000 random simulations and 

calculated the average mismatched treatment rate (Fig. 5c, horizontal lines).

Statistical significance of mismatched treatment rates.

We performed 10,000 bootstrapping simulations in which we randomly sampled, with 

replacement, 11,952 cases from the 11,952 SDET cases and calculated for each of these 

10,000 simulations the mismatch rate for the prescriptions given by Physicians, the 

Constrained Machine Learning model (CML), the Unconstrained Machine Learning model 

(UCML), the Random Permutation model (RP) and the Random Dice model (RD). For each 

of these 5 models, we report the 95% Confidence Interval of the mismatched treatment rate 

based on the 2.5th and 97.5th percentile values of the mismatched treatment rate of the 

specified model across the 10,000 bootstrapping simulations. When comparing two models, 

we consider the difference between the mismatched treatment rates of the two models for 

each of the 10,000 simulations. For all reported model comparisons (Physicians-RD, 

Physicians-RP, UCML-Physicians, and CML-Physicians), the mismatch rate in the first 

model was lower than the mismatched rate in the second model in virtually all 10,000 

bootstrapping simulations (representing P-values lower than 10−4). As an estimate for the P-

value, we report the error function based on the average and standard deviation of the 

difference of mismatch rate between the two models across the 10,000 bootstrapping 

simulations.

Data availability.

The data that support the findings of this study are available from Maccabi Healthcare 

Services but restrictions apply to the availability of these data, which were used under 

license for the current study, and so are not publicly available. Access to the data is however 

available upon reasonable request and signing an MTA agreement with Maccabi Healthcare 

Services.
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Code Availability.

Code used for data analysis is available upon request.

Ethical approval.

The study protocol was approved by the ethics committee of Assuta Medical Center, Tel-

Aviv, Israel.

Extended Data
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Extended Data Figure 1: Availability of resistance measurements over time.
For each of the 6 antibiotics, the fraction of urine samples for which resistance was 

measured, overall (black) and for each of the three most common species (colors), is plotted 

across the 10-year sampling period. Also indicated are the time ranges used for model 

Training (green horizontal bars) and Testing (red bars). Time periods during which 

measurements of resistance to cephalexin were scarce were removed from analysis (gray 

bar).
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Extended Data Figure 2: Frequency of resistance over time.
Frequencies of resistance for each of the three common species (colored lines) and the 

overall sample (black lines) over the 10 year dataset. Empty time intervals correspond to 

periods during which resistance was not frequently measured (matching the gray horizontal 

bar of Extended Data Fig. 1).
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Extended Data Figure 3: Odds of resistance as a function of age for different demographic 
groups.
Frequency of resistance to each of the 6 antibiotics, in each of 10 age bins (0,10,…,100 

years). (a) Frequencies of resistance for five non-overlapping demographic groups: men not 

residing in retirement homes (blue), men residing in retirement homes (dotted blue), women 

not pregnant and not residing in retirement homes (magenta), women in retirement homes 

(magenta dotted), and pregnant women (red). (b) Comparing the overall frequency of 

resistance to the 6 drugs for women and men across age.
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Extended Data Figure 4: Odds ratios of resistance to each of the antibiotics for past purchases of 
different drugs across a range of purchase-to-sample time intervals: adjustments for 
demographics and cross-resistance.
(a) Multivariate logistic regression models for the association of each antibiotic resistance 

with past purchases of the indicated drugs not accounting for cross-resistance (Online 

Methods: Logistic regression “Purchase history”. Same graphical scheme as in Fig. 4a,b). 

(b) Logistic regression model as in (a) adjusted for cross-resistance (Online Methods: 

Logistic regression “Purchase history adjusted for cross resistance”). (c) Logistic regression 

model as in (a) adjusted for demographics (Online Methods: Logistic regression “Purchase 

history adjusted for demographics”. Gray asterisks indicate statistical significance and non-

significant values, with Bonferroni corrected P>0.05, are blanked.
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Extended Data Figure 5: Correlations among resistances to different antibiotics.
Correlation among resistance measurements for each pair of antibiotics across all samples 

for which both resistances were measured. Cephalexin and cefuroxime axetil, which have a 

particularly high correlation (marked with ‘x’), are treated as “analogous” in the analysis of 

indirect effects of purchases on resistance (Online Methods: Logistic regression “Purchase 

history adjusted for cross-resistance”).
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Extended Data Figure 6: Model performance on test and training data. Area Under Curve 
(AUC) for Receiver Operator Characteristic for prediction of resistance based on demographics, 
sample history and purchase history, individually and in a complete model combining all feature 
sets.
Each feature set was modelled using Logistic Regression (LR), and the complete model was 

modelled by both LR and Gradient Boosting Decision Trees (GBDT). To identify 

overfitting, model performance on the testing dataset (grey) was contrasted with model 

performance on the training dataset (black; Supplementary Fig. 2 for definition of training 
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and test time periods). Mild level of overfitting is seen for all drugs except trimethoprim 

which showed no over fitting.
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Extended Data Figure 7: The fraction of samples that can be treated by at least one drug given 
set thresholds on the single-drug resistance probability scores.

Given the complete-model assigned probabilities of resistance Pk
m of each sample m to each 

antibiotic k, we calculated the fraction of samples, within the one-year test period, that have 

at least one drug with resistance score below a threshold. This fraction is calculated 

assuming that the threshold used to determine resistance of single drugs is either: (a) the 

same probability threshold Pthreshold for all drugs (counting all samples for which 

Pk
m < Pthreshold for at least one antibiotics k), or (b) the same rank threshold rthreshold for all 

drugs, counting all samples for which Pk
m < Pk

threshold rthreshold  for at least one antibiotics k, 

where Pk
threshold rthreshold  is the probability threshold of drug k that include a fraction 

rthreshold of the samples.

Yelin et al. Page 27

Nat Med. Author manuscript; available in PMC 2020 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 8: Schematic diagram of ML-trained prescription models.
A set of samples with features of demographics, sample resistance history and antibiotic 

purchase history labelled for resistance to each antibiotic k (‘Train set’) is used to train an 

antibiotic resistance prediction model (Online Methods: Logistic regression, terms #1–#9). 

The model is applied to an SDET set of cases from the test period to calculate probabilities 

of resistance to each antibiotic. In an unconstrained model the antibiotic with minimal 

probability for resistance is suggested. The calculated probabilities of resistance together 

with the respective prescriptions of the SDET set of cases are used to add a “cost” term. In a 

constrained drug prescription model, the antibiotic with the minimal cost-adjusted 

probability is suggested.
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Extended Data Figure 9: Robustness of ML-trained prescription models across age and gender 
and with respect to the clinical definition of resistance.
(a) Frequency of mismatched treatment across all SDET cases, comparing physician’s 

prescriptions (dark bar) to algorithmic recommendations by the constrained and 

unconstrained models (cyan and magenta hatched, respectively) for females (top) and males 

(bottom) separated into 3 major age groups. (b) Frequency of mismatched treatment across 

all SDET cases (Online Methods), when classifying “Intermediate” level of resistance as 

“Resistant”. Comparing mismatch frequencies of physicians’ prescriptions (dark bar) to 

algorithmic recommendations (light bars), either unconstrained (magenta hatched) or 

constrained for recommending drugs at the same ratio as physicians (cyan hatched). Also 

presented are the null expectations for randomly prescribing drugs with equal probabilities 

(Random “Dice”, magenta dashed) or for random drug permutations (Random permutations, 

cyan dashed).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Frequency of bacterial species and antibiotic resistance in urinary tract infections.
(a) Species abundance across the entire UTI dataset (July 2007-June 2017, 711099 samples). 

(b) The frequency of resistance and intermediate resistance to the 6 focal antibiotic drugs for 

the three most common bacterial species and for the urine sample as a whole (“sample”, 

defined as the highest resistance measured for each isolate in the sample). Dark to light 

shades represent resistant, intermediate and sensitive, respectively. (c) Frequencies of 

resistance for each of the three common species (colored lines) and the sample resistance 

(black lines) over the 10 year sampling time, for two representative antibiotics: 
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trimethoprim-sulfa (top) and ciprofloxacin (bottom; see Extended Data Fig. 2 for all 

antibiotics). Data points represent quarterly averages.
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Figure 2: Antibiotic-specific associations of resistance with demographic factors.
(a) Distribution of urine cultures across major demographic factors: age, gender (top, 

females; bottom, males), pregnancy (red) and retirement home residence (dark). (b) 

Adjusted odds ratios of resistance for each demographic variable (see Logistic regression – 

demographics in the Online Methods, and see Supplementary Table 2 for all adjusted and 

unadjusted regression coefficients). Asterisks indicate statistical significance and non-

significant odds ratios (P>0.01) are shown as blank. (c) Frequency of resistance as a function 

of age showing qualitatively distinct patterns for three representative antibiotics. UTI 

samples are separated into five non-overlapping categories: men not residing in retirement 

homes (blue), men residing in retirement homes (dotted blue), women not pregnant and not 

residing in retirement homes (magenta), women in retirement homes (magenta dotted), and 

pregnant women (red). See Extended Data Fig. 3 for all antibiotics.
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Figure 3: Long term “memory” of resistance across same-patient samples.
(a,b) Risk ratio of the resistance of a urine sample given a record of a resistant versus 

sensitive earlier sample from the same patient, as a function of the time difference between 

the two samples, for trimethoprim-sulfa (a) and ciprofloxacin (b, See Online Methods and 

Supplementary Fig. 1 for all antibiotics). Risk ratios are well fitted with 

ζpairs ≃ Cme
t /τm + C∞, representing a time-decaying correlation (“memory”, yellow) and a 

time-independent correlation (“patient propensity”, green) among sample pairs. The 

magnitudes of these terms are shown as stacked bars on the right and the memory time (τm) 

is indicated across the time axis (yellow arrow). Gray triangle and diamond represent 

trimethoprim-sulfa and ciprofloxacin respectively, linking between the different panels. (c) 

Time scale of the memory of resistance τm for the 6 different antibiotics (correlated with the 

yellow arrows in panels (a) and (b). (d) The magnitude of long-term and timeless memory 

for the different antibiotics (yellow, green bars, respectively).
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Figure 4: Direct association of past purchase with its cognate resistance leads, through 
association among resistances, to indirect association of purchases with noncognate resistances.
(a) Multivariate logistic regression models for the association of resistance to trimethoprim-

sulfa (left) and ciprofloxacin (right) with past purchases of the indicated drugs at the 

indicated time intervals prior to infection (“Total”, See Extended Data Fig. 4a for all 

antibiotics; Logistic regression - purchase history in Online Methods). Values represent the 

odds ratios for a single purchase of a specific drug at a specific time interval (color map, 

stars for statistical significance as indicated, non-significant values, with Bonferroni 

corrected P>0.05, are blanked). A long term association is observed between resistance and 

past purchase of its matching (cognate, arrows) as well as with non-cognate antibiotics. (b) 

Logistic regression model as in (a) adjusted for cross-resistance. This adjusted model 
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diminishes or even completely removes noncognate drug-to-resistance associations while 

fully preserving the cognate associations (“Direct”, See Extended Data Fig. 4b for all 

antibiotics; arrows; cyan, trimethoprim-sulfa; magenta, ciprofloxacin). (c,d) Association of 

resistance to trimethoprim-sulfa (c) and ciprofloxacin (d) with purchases of these two drug 

(cyan and magenta, respectively). Note differences between total (dashed lines) and direct 

(solid lines) effects for cognate (thick lines) versus noncognate (thin lines) drugs.
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Figure 5: Algorithmically suggesting antibiotic prescription for empirical treatments can much 
improve upon the current standard-of-care.
(a) For each of the 6 antibiotics, we calculated the fraction (top) of resistant (red) and 

sensitive (green) samples, as well as the risk of resistance (bottom), for all samples within 

the one-year test period whose complete-model machine-learning assigned probabilities of 

resistance Pk
m were below a set threshold Pthreshold (x-axis, see Supplementary Fig. 2 for all 

antibiotics and more formal definitions). At Pthreshold = 1 the risk of sample resistance equals 

the population-wide risk of resistance (dotted red line). Setting Pthreshold=0.12 would permit 

treatment of 75% of these infections with much reduced risk of resistance compared to 

population-wide risk (48% reduction, down-pointing arrow). (b) Differentiation between 

samples resistant to cefuroxime axetil and sensitive to nitrofurantoin (red) and vice versa 

(blue) by their model-assigned resistance probabilities (odds ratio of 3.9 for red points below 

the diagonal and blue points above it; P<10−100, Fisher exact; see Supplementary Fig. 3 for 
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all pairs of antibiotics). (c) Physician’s frequency of mismatched prescriptions across all 

SDET cases (dark bar) was slightly better than null expectation for randomly prescribing 

drugs with equal probabilities (Random “dice”, magenta dashed, P<10−10) or for randomly 

permuting the physicians’ prescriptions (Random permutations, cyan dashed, P=2.5×10−5). 

These mismatch treatment rates were substantially reduced by the machine-learning (ML) 

based recommendations (light bars,), either unconstrained (magenta hatched, P<10−10) or 

constrained to recommend drugs at the exact same frequencies prescribed by the physicians 

(cyan hatched, P<10−10). (d) Top, distribution of the drugs prescribed by the physicians 

(dark bar), by the constrained algorithm (cyan-hashed light bar, constrained to be equal to 

the Physician’s) and by the unconstrained algorithm (magenta-hashed light bar). Bottom, for 

each of these prescription models, the frequency of mismatched treatment for each of the 

drugs is indicated, normalized by the expected mismatch frequency for random drug 

prescription (the average rate of resistance to the drug across the SDET population).
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Table 1:

List of antibiotic resistances analyzed in the study

Antibiotics Class

Trimethoprim-Sulfa DHFR inhibitor

Ciprofloxacin Fluoroquinolones

Nitrofurantoin Nitrofuran

Amoxicillin-CA Penicillin-β-lactamase inhibitor

Cefuroxime axetil Cephalosporin

Cephalexin Cephalosporin
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