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Abstract: Background: The pathogenesis of ankylosing spondylitis (AS) remains undetermined. Fer-
roptosis is a newly discovered form of regulated cell death involved in multiple autoimmune diseases.
Currently, there are no reports on the connection between ferroptosis and AS. Methods: AS samples
from the Gene Expression Omnibus were divided into two subgroups using consensus clustering
of ferroptosis-related genes (FRGs). Weighted gene co-expression network analysis (WGCNA) of
the intergroup differentially expressed genes (DEGs) and protein–protein interaction (PPI) analysis
of the key module were used to screen out hub genes. A multifactor regulatory network was then
constructed based on hub genes. Results: The 52 AS patients in dataset GSE73754 were divided into
cluster 1 (n = 24) and cluster 2 (n = 28). DEGs were mainly enriched in pathways related to mito-
chondria, ubiquitin, and neurodegeneration. Candidate hub genes, screened by PPI and WGCNA,
were intersected. Subsequently, 12 overlapping genes were identified as definitive hub genes. A
multifactor interaction network with 45 nodes and 150 edges was generated, comprising the 12 hub
genes and 32 non-coding RNAs. Conclusions: AS can be divided into two subtypes according to
FRG expression. Ferroptosis might play a regulatory role in AS. Tailoring treatment according to the
ferroptosis status of AS patients can be a promising direction.

Keywords: ankylosing spondylitis; ferroptosis; consensus clustering; weighted gene co-expression
network analysis; hub genes; regulatory networks

1. Introduction

Ankylosing spondylitis (AS) is a radiographic form of axial spondyloarthritis, which
also belongs to the broader category of seronegative spondyloarthropathy [1,2]. The
approximate prevalence of AS varies from 0.1 to 0.3% between continents and occurs
predominantly in men (with male/female ratios ranging from 2.3:1 to 3.8:1) [3]. The clinical
manifestations of AS are back pain, enthesitis with syndesmophytes, loss of spinal mobility,
and spinal deformity [4,5].

AS is a chronic inflammatory disorder, and its etiopathogenesis and natural course are
closely related to the functional status of the immune system [6,7]. Immune activation, in-
flammatory response, and new bone formation may be involved in spondyloarthritis [8–10].
However, the molecular regulatory network linking inflammation and bone metabolism
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remains unclear. Therefore, uncovering the pathogenesis of AS is vital in the prevention of
radiographic progression and secondary structural damage to the axial skeleton [5,11].

Ferroptosis, a newly discovered form of regulated cell death (RCD) characterized
by iron-dependent lipid peroxidation [12], is regarded as a pervasive, disease-relevant
metabolic RCD pathway [13]. Recent studies have increasingly reported on complex as-
sociations between ferroptosis and the immune system [14]. The regulatory activity of
ferroptosis in immune function and inflammation is multifaceted and involves innate, ac-
quired, and autoimmunity [15–17]. Therefore, it can be logically inferred that an etiological
link may exist between ferroptosis and AS.

Although there are no reports on ferroptosis in AS pathogenesis, some indirect ev-
idence supports this connection. Abnormal iron homeostasis occurs in rheumatic dis-
ease [18]. More specifically, iron overload, anemia, and altered ferritin levels are observed
in AS [18–20]. Decreased levels of plasma thiol and antioxidant vitamins [21,22], increased
lipid peroxidation, and protein oxidation [22–25] in AS patients have been described. These
findings correspond to the three pillars of ferroptosis, which are iron, thiols, and lipid
peroxidation, collectively suggesting that ferroptosis participates in AS pathogenesis [26].

To investigate the etiological role of ferroptosis in AS and explore the underlying
molecular regulatory network, we analyzed AS microarray data obtained from the Gene
Expression Omnibus (GEO) database. AS samples were clustered into two subgroups
according to the expression patterns of ferroptosis-related genes. We then analyzed dif-
ferential gene expression profiles between the two groups to identify critical pathways,
co-expression networks, and hub genes. Based on the hub genes, we constructed a mul-
tifactor regulatory network comprising micro RNAs (miRNAs), long non-coding RNAs
(lncRNAs), and transcription factors (TFs), thereby providing new insights into the molecu-
lar pathogenesis of AS.

2. Materials and Methods
2.1. Data Collection

First, we searched the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 11 June 2021) [27] using the following terms: “ankylosing spondylitis”, “axial spondy-
loarthritis”, and “seronegative spondyloarthropathies”. Among the 14 retrieved results,
6 datasets that included analysis of peripheral blood samples obtained from AS patients
were evaluated in detail. After excluding datasets with insufficient sample sizes and
those lacking demographic information, the microarray dataset GSE73754 [28] was used
for further analysis. All of the AS cases in this dataset had radiographic sacroiliitis as
defined by the modified New York criteria for AS, and were evaluated using the Bath
Ankylosing Spondylitis Disease Activity Index [28]. Gene expression profiles, shown as
log2-transformed quantile-normalized signal intensities, were downloaded and prepro-
cessed as follows: (1) all of the probes were mapped to genes; (2) probes that showed no
signal were removed; and (3) when multiple probes corresponded to the same gene, the
final expression level of a gene was determined using the arithmetic median of multiple
probes. The present study was conducted in accordance with the ethical standards of the
Institutional Review Board of our hospital.

2.2. Ferroptosis-Related Genes

Ferroptosis-related genes (FRGs) were compiled from an online database and pub-
lished articles. FerrDb (http://www.zhounan.org/ferrdb, accessed on 11 June 2021) [29], a
database for regulators and markers of ferroptosis, summarizes annotations on 259 FRGs
from previous reports. Through a literature review, an additional 41 FRGs were curated
after removing duplication [30–32]. Finally, a total of 300 FRGs (Supplementary Table S1)
were utilized for subsequent bioinformatic analysis (Figure 1).

https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb
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Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, 
fold change. 
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visualized using the “ConsensusClusterPlus” package [34] in R 4.1.0 according to the ex-
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robustness of the clustering results. 
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The normalized gene-expression profiles with standard annotation were uploaded 
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2021). CIBERSORT is a deconvolution algorithm for characterizing the cellular composi-
tion of complex tissues [36]. The algorithm was run using the “LM22” signature matrix of 
547 genes at 1000 permutations to estimate the relative fractions of 22 immune cell types. 
All of the samples had a CIBERSORT output of p < 0.05, indicating sufficient accuracy of 
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the evaluated immune-cell fractions was normalized to one. Fractions were illustrated us-
ing patient clusters in stacked bar plots and box plots constructed using the “ggpubr” 
package. 

Figure 1. (A) Workflow of data processing and bioinformatics analysis, comprising three main
modules, i.e. consensus clustering, weighted gene co-expression network analysis, and obtaining of
hub genes and regulatory network. (B,C) Heatmaps of 276 ferroptosis-related genes plotted by AS
status and sex, respectively. Red indicates high expression and blue indicates low expression. GEO,
Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
FC, fold change.

2.3. Consensus Clustering

Consensus clustering (CC), a data mining technique for the detection of unknown
subgroups in a dataset, is widely used in functional genomic studies [33]. Unsupervised
cluster discovery was used to analyze data on the 52 AS patients, and the results were
visualized using the “ConsensusClusterPlus” package [34] in R 4.1.0 according to the
expression levels of the above-described FRGs. The clustering algorithm was also applied
to an RNA sequencing dataset GSE141646 [35] that contained 22 AS patients to verify the
robustness of the clustering results.

2.4. Estimation of Immune Cell Type Fractions

The normalized gene-expression profiles with standard annotation were uploaded
to the CIBERSORT online platform (http://cibersort.stanford.edu/, accessed on 30 July
2021). CIBERSORT is a deconvolution algorithm for characterizing the cellular composition
of complex tissues [36]. The algorithm was run using the “LM22” signature matrix of
547 genes at 1000 permutations to estimate the relative fractions of 22 immune cell types.
All of the samples had a CIBERSORT output of p < 0.05, indicating sufficient accuracy of
the inferred fractions of immune cell populations. For each AS sample, the sum of all of the
evaluated immune-cell fractions was normalized to one. Fractions were illustrated using
patient clusters in stacked bar plots and box plots constructed using the “ggpubr” package.

http://cibersort.stanford.edu/
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2.5. Screening for Differentially Expressed Genes

Inter-cluster statistical comparisons of gene-expression levels were performed using
in-built functions of R. Student’s t-test and Wilcoxon–Mann–Whitney test were used to
analyze normally and non-normally distributed data, respectively [37]. To control for
false discovery rate (FDR), p-values were adjusted for multiple comparisons using the
Benjamini–Hochberg method [38]. An adjusted p value < 0.05 was defined as the threshold
for screening differentially expressed genes (DEGs). DEGs were visualized using volcano
plots, heatmap, and principal component analysis (PCA) in the R packages “ggpubr”,
“pheatmap”, and “factoextra”, respectively.

2.6. Gene Ontology and Pathway Enrichment Analysis

Enrichment analysis of Gene Ontology (GO) categories and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways associated with the DEGs examined in our present
study was performed using the “clusterProfiler” package in R [39]. The top 10 most
significantly enriched GO terms and KEGG pathways were visualized using the “ggplot2”
R package.

2.7. Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) is an algorithm that assesses
the relationships between measured transcripts, identifies clinically relevant co-expressed
gene modules, and explores key genes in disease pathways from the perspective of systems
biology [40]. The WGCNA R software package was used to construct AS-associated
modules from the DEGs described above. To achieve a scale-free network, optimal soft
thresholding power β for increasing expression similarity and calculating adjacency was
determined using a “pickSoftThreshold” function within the package. Next, the gene
correlation matrix was transformed into an adjacency matrix, which was further converted
into an unsigned topological overlap matrix (TOM). According to TOM, average-linkage
hierarchical clustering was used to obtain DEG clusters and construct dendrograms. Using
a minimum module size of 30 genes, the dynamic tree cut algorithm (deepSplit = 2) was
used to determine gene modules; DEGs having similar expression patterns were designated
into the same modules. Module eigengenes (MEs) were calculated as the first principal
component of expression profiles in each module. Modules were then clustered and merged
according to ME dissimilarities (mergeCutHeight = 0.25). Correlations between MEs and
clinical traits of AS patients were calculated using Pearson’s correlation coefficient. Then,
the module having the highest coefficient (key module) was targeted, and intra-modular
genes were extracted for further analyses.

2.8. Identification of Hub Genes in AS

Intra-modular connectivity of each gene in the key WGCNA module was expressed
as a measure of module membership (MM), and the AS-related biological correlation
was evaluated using gene significance (GS) [40]. MM ≥ 0.7 and GS ≥ 0.5 were defined
as thresholds for screening intra-modular hub genes. In addition, all of the genes in
the key module were uploaded into the STRING online database (version 11.5, https:
//string-db.org/, accessed on 30 July 2021) for the prediction of protein–protein interactions
(PPI) [41]. Interactions having a confidence score > 0.9 were imported into Cytoscape
(version 3.8.2) to construct and visualize the PPI network [42]. In this PPI network, nodes
having increased connectivity were regarded as hub genes, which were identified using
MCODE and CytoHubba plug-ins in Cytoscape. Hub genes identified using WGCNA and
PPI were intersected to obtain the AS-related final hub genes, which were then represented
using a Venn diagram in the “VennDiagram” package in R.

2.9. Construction of Regulatory Network Based on Hub Genes

Differences in hub gene expression levels between clusters were validated using the
“ggpubr” in the R package. Pairwise expression correlations between hub genes were

https://string-db.org/
https://string-db.org/
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analyzed using “corrplot” in the R package. Then, manually curated human transcrip-
tional regulatory networks between TFs and target genes (TF–mRNA) were downloaded
from the TRRUST database (version 2, https://www.grnpedia.org/trrust/, accessed on
30 July 2021). The current version of TRRUST contains 8444 and 6552 TF–target reg-
ulatory relationships of 800 human TFs and 828 mouse TFs, respectively. They have
been derived from 11,237 Pubmed articles, which describe small-scale experimental stud-
ies of transcriptional regulations [43]. Interactome data, including mRNA–lncRNA and
mRNA–miRNA interaction pairs, were accessed using the RNAInter database (version 4.0,
http://www.rnainter.org/, accessed on 30 July 2021). RNAInter integrates experimentally
validated and computationally predicted RNA interactome data from the literature and
databases. It is featured with a redefined confidence scoring system and an update of entries
to over 29 million interactions in Homo sapiens [44]. After data integration, a multifactor
regulatory network involving non-coding RNAs, TFs, and mRNAs of AS-involved hub
genes was constructed and visualized using Cytoscape to explore the molecular regulatory
mechanism of AS in the context of ferroptosis.

3. Results

The dataset GSE73754 obtained from GEO contained 72 samples collected from 52 AS
patients and 20 healthy controls. Microarray expression profiling was performed using
whole-blood RNA analysis performed on an Illumina HumanHT-12 V4.0 expression bead-
chip. We annotated the probes with gene symbols and tried to locate the 300 manually
compiled FRGs in GSE73754. After a thorough search, 276 out of the 300 FRGs were
identified in this dataset. The other 24 FRGs were not contained by the present microarray.
The age, sex, and HLA-B27 status of each participant were provided for each sample.
The expression profiles of the 276 FRGs were plotted using heatmaps. No robust pattern
of FRG differential expression was identified when analyzed by age, sex, or AS status
(Figures 1 and S1).

3.1. Consensus Clustering Based on FRGs

Based on expression-level similarity, high intra- and low inter-class correlation, and
clinical interpretability of the 276 FRGs, the optimal number of clusters (k value) in our
consensus matrix was defined as 2, with the area under empirical cumulative distribution
function increasing and delta area decreasing from k = 2 to 6 (Figure 2A,B) [33]. The
consensus clustering algorithm categorized samples with similar expression patterns of the
276 FRGs into the same cluster. Therefore, the 52 AS patients were divided into cluster 1
(n = 24) and cluster 2 (n = 28), after which the clinical characteristics of the patients were
compared between the two clusters (Figures 2C,D and S2). There was no inter-cluster
statistical difference in age, sex, or HLA-B27 status of the patients. The same clustering
trend (k = 2) was identified in the external validation dataset GSE141646 [35] (Figure S3).

https://www.grnpedia.org/trrust/
http://www.rnainter.org/
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Figure 2. Visualization of consensus clustering. (A,B) Empirical consensus CDF plots and delta area
score plots for k = 2 to 6, indicating that k = 2 or 3 is acceptable. (C) Consensus score matrix for
the 52 AS samples obtained from GSE73754 when k = 2. Given our sample size and interpretability,
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3.2. Composition of Immune Cells

Leukocyte deconvolution was successfully performed for all of the AS samples us-
ing the CIBERSORT computational approach (Supplementary Table S2). Among the
22 hematopoietic cell phenotypes, neutrophils, CD8+ T cells, monocytes, and resting natu-
ral killer (NK) cells were the four most commonly occurring cell types, which was consistent
with the composition of human peripheral blood. Immune cell fractions are illustrated
in a stacked bar plot shown in Figure 3A and a box plot shown in Figure 3B. Wilcoxon
signed-rank test indicated that, in terms of innate immunity, cluster 2 contained signifi-
cantly higher proportions of neutrophils, activated dendritic cells, and resting mast cells
compared with those of cluster 1; in terms of the adaptive immune system, cluster 1 con-
tained a significantly higher proportion of CD8+ T cells compared with that of cluster 2
(p < 0.05).



Genes 2022, 13, 1373 7 of 20
Genes 2022, 13, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 3. Immune cell type deconvolution. (A) Stacked bar plots showing proportions of immune 
cells in peripheral blood, separated by the two clusters. Each type of immune cell is represented by 
a different color. (B) Box plots illustrating differences in proportions of 22 immune cells between 
the two clusters. The asterisks indicate that the differences are statistically significant. * p < 0.05, ** p 
< 0.01, **** p < 0.0001. ns, not significant. 

3.3. Identification of DEGs between the Two Clusters 
After the two clusters were obtained by consensus clustering algorithm based on the 

276 FRGs, our scope of analysis shifted to the entire microarray. The expression levels of 
all genes in the microarray were compared between cluster 1 and cluster 2, and a total of 

Figure 3. Immune cell type deconvolution. (A) Stacked bar plots showing proportions of immune
cells in peripheral blood, separated by the two clusters. Each type of immune cell is represented by
a different color. (B) Box plots illustrating differences in proportions of 22 immune cells between
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3.3. Identification of DEGs between the Two Clusters

After the two clusters were obtained by consensus clustering algorithm based on
the 276 FRGs, our scope of analysis shifted to the entire microarray. The expression
levels of all genes in the microarray were compared between cluster 1 and cluster 2,
and a total of 3663 DEGs were screened out. These DEGs included 2428 upregulated
and 1235 downregulated genes (Figure 4A,B). When plotted using the first two principal
components, no statistical difference was found between the two clusters in the rect-
angular coordinate system (Figure 4C), which necessitated further systematic analysis,
namely the WGCNA below. Among the 3663 DEGs, 86 genes belonged to the above-
mentioned 276 FRGs and included 46 drivers, 25 suppressors, and 31 markers (Figure 4D
and Supplementary Table S3), confirming the efficiency of the CC algorithm.
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expression and blue indicates low expression. (C) Scatter plot of the principal component analysis
(PCA). The x-axis and y-axis refer to the first and second principal components, respectively. (D) Venn
diagram of the 86 differentially expressed ferroptosis-related genes between the two clusters, with
annotations from the FerrDb database.
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3.4. Functional Annotation of DEGs

Our GO analysis indicated that the top three enriched biological processes for DEGs
were ribonucleoprotein complex biogenesis, ncRNA metabolic process, and ncRNA pro-
cessing. The significantly enriched cellular component terms included mitochondrial inner
membrane, mitochondrial matrix, and ribosome. The three most enriched molecular func-
tions were structural components of the ribosome, catalytic activity acting on RNA, and
ubiquitin-like protein ligase binding (Figure 5A). The results of the KEGG analysis indi-
cated that DEGs were mainly enriched in pathways involving neurodegeneration-multiple
diseases, amyotrophic lateral sclerosis, and ribosome (Figure 5B).
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3.5. WGCNA and the Key Module

WGCNA was used to analyze DEGs between the two FRG-based clusters in the
52 AS samples. The power of soft thresholding was 16 and the scale-free fit index (signed
R2) was 0.87 (Figure 6A,B). A total of five co-expression modules were constructed ac-
cording to our DEG hierarchical clustering dendrogram (Figure 6C). The heatmap anal-
ysis of the correlations between module eigengenes and clinical traits indicated that the
turquoise module was most significantly correlated with AS, and was thereby defined as
the key module containing 1911 DEGs (52.17% of all DEGs, 1911/3663) (Figure 6D and
Supplementary Table S4).
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3.6. Identification of Hub Genes

According to our screening criteria of MM ≥ 0.7 and GS ≥ 0.5, a total of 34 intramodu-
lar hub genes were extracted from the WGCNA turquoise module (Figure 7A). In the PPI
network constructed using STRING, 317 of the 1911 DEGs were identified as candidate
hub genes. A hub gene-based PPI subnetwork was then excavated, and only the edges
representing the highest confidence (interaction score > 0.9) were drawn (Figure 7B). The
candidate hub genes screened using PPI and WGCNA were intersected. Subsequently,
12 overlapping genes were identified as definitive hub genes (Figure 7C). None of these
12 hub genes belonged to the above-mentioned 276 FRGs. Pairwise expression correlation
analysis indicated consistently positive correlations between any 2 of the 12 hub genes
(Figure 7D). In addition, the expression levels of the 12 hub genes were significantly higher
in cluster 1 than those in cluster 2 (Figure 8).



Genes 2022, 13, 1373 11 of 20Genes 2022, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 7. Identification of hub genes. (A) Scatter plot of module membership and gene significance 
in the turquoise module in weighted gene co-expression network analysis (WGCNA). The 34 genes 
in the upper right area are candidate hub genes. (B) Protein–protein interaction (PPI) network of the 
317 candidate hub genes identified using Cytoscape. Yellow nodes represent the 12 selected AS-
related hub genes. (C) Venn diagram shows the intersection between candidate hub genes in 
WGCNA (blue circle) and PPI (purple circle). (D) Pairwise correlation analysis of the 12 hub genes 
shows significant positive correlations between each gene. 

Figure 7. Identification of hub genes. (A) Scatter plot of module membership and gene significance
in the turquoise module in weighted gene co-expression network analysis (WGCNA). The 34 genes
in the upper right area are candidate hub genes. (B) Protein–protein interaction (PPI) network of
the 317 candidate hub genes identified using Cytoscape. Yellow nodes represent the 12 selected
AS-related hub genes. (C) Venn diagram shows the intersection between candidate hub genes in
WGCNA (blue circle) and PPI (purple circle). (D) Pairwise correlation analysis of the 12 hub genes
shows significant positive correlations between each gene.
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2. The asterisks indicate that the differences are statistically significant. ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.7. Multifactor Regulatory Network in AS

First, 8444 human TF–target regulatory relationships were obtained from the TRRUST
v2 database, and then complete RNA–RNA interactions with confidence scoring were
downloaded from the RNAInter v4.0 database. TFs, miRNAs, and lncRNAs showing
interaction with the 12 hub genes were screened, and then lncRNAs communicating with
these miRNAs were selected. The number of regulatory pairs was trimmed for layout
optimization, and an interaction score >0.2 was set as the threshold for edges between RNA
nodes [44]. Finally, a multifactor regulatory network containing 45 nodes and 150 edges was
generated (Figure 9A). The top six most connected regulatory factors (degree > 6) included
four lncRNAs (SNHG16, TUG1, MIR17HG, and GAS5) and two miRNAs (hsa-miR-106a-5p
and hsa-miR-18a-5p) (Supplementary Table S5). Furthermore, a competing endogenous
RNA (ceRNA) subnetwork that included only nodes with connectivity >5 was extracted;
this subnetwork may serve as a molecular regulatory bridge between AS and ferroptosis
(Figure 9B).
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extracted from the whole regulatory network. Only nodes with high connectivity (degree > 5)
were included.

4. Discussion

AS, a refractory autoimmune disease that affects axial bones and joints, is highly
teratogenic and disabling in patients, posing a formidable challenge to clinicians and
researchers [45,46]. Uncovering the mechanisms driving AS pathogenesis is critical in
the development of novel therapeutics for this patient population. Although numerous
etiological studies on AS have been performed, the osteoimmunological pathogenesis
of AS and relevant therapeutic targets remain undetermined [10,47]. Previous studies
have shown that ferroptosis is closely related to bone metabolism and the immune sys-
tem [14,16,17,48,49]. However, the role of ferroptosis in the development and progression
of AS has not been previously documented. To the best of our knowledge, this study is the
first to show a potential connection between ferroptosis and AS via bioinformatics analysis.
Our primary findings involved two aspects: characterization of two FRG-related subtypes
of AS patients, and construction of an AS regulatory network based on the 12 hub genes
identified in our present study.

The role of ferroptosis in musculoskeletal diseases has been well documented [50].
Ferroptosis in chondrocytes leads to progression of osteoarthritis, which can be alleviated
by inhibiting chondrocyte ferroptosis [51,52]. Studies using nucleus pulposus cells from
both human and animal models have shown that ferroptosis is involved in intervertebral
disc degeneration [53–55]. Ding et al. [56] and Huang et al. [57] suggested that targeting
ferroptosis might be used in the treatment of patients with sarcopenia. Ferroptosis also reg-
ulates the balance between osteoblasts and osteoclasts, and participates in the development
of osteoporosis [48,49,58]. Musculoskeletal manifestations, including inflammatory bone
destruction and heterotopic ossification, are hallmarks of AS. Therefore, these previous
findings on ferroptosis-associated musculoskeletal disorders have led us to hypothesize
that ferroptosis may also play a vital role in the development and progression of AS.
Previous bioinformatics studies have provided data supporting our hypothesis. Zhang
et al. compared gene expression profiles between male AS patients (n = 27) and matched
healthy controls (n = 10) in GSE73754, and identified that key genes in AS pathogenesis
also regulated immune-cell functions [59]. That study also showed that the ferroptosis
pathway is a significantly enriched term through a gene set enrichment analysis of KEGG
pathways. Meng et al. performed a comparative bioinformatics analysis in 16 AS patients
and 16 matched controls using the dataset GSE25101, and found that ferroptosis is one of
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the significantly enriched terms in the KEGG analysis of upregulated DEGs [60]. Based
on this evidence, we used computational methods to further investigate the molecular
mechanisms connecting ferroptosis and AS in order to provide a basis for future etiological
studies on AS, and aid in the development of new therapeutic targets for AS patients.

Positivity for human leukocyte antigen class I molecule B27 (HLA-B27) has long been
associated with AS [61]. The underlying pathogenic mechanisms include the presentation of
arthritogenic peptides, the unfolded protein response and the endoplasmic reticulum stress
response, and the proinflammatory effects of cell surface HLA-B27 free heavy chain [61].
Because variants within the HLA-B27 region can lead to the presentation of arthritogenic
peptides to CD8+ cytotoxic T cells, CD8+ T cells are traditionally thought to be implicated
in AS pathogenesis [7,62,63]. Several studies have suggested that activation of CD8+ T
cells is regulated by ferroptosis, and may enhance ferroptosis-specific lipid peroxidation in
surrounding tumor cells during immunotherapy [16,64,65]. In our present study, we used
CIBERSORT analysis to identify a significant difference in the proportions of CD8+ T cells
between the two FRG-related clusters, which agreed with the findings obtained in previous
studies. Neutrophils, another type of immune cells, also showed an inter-cluster difference
in fractions, echoing recent findings showing that innate immunity is also important in
mediating AS and ferroptosis [14,66]. Patients with AS show a high degree of infiltration by
IL-17+ neutrophils in facet joints and an elevated neutrophil–lymphocyte ratio in peripheral
blood [67,68]. The presence of neutrophil extracellular traps (NETs) in AS is associated with
differentiation of mesenchymal stem cells (MSCs) toward bone-forming cells [69]. In terms
of ferroptosis, current evidence indicates that lipid peroxidation serves as an upstream
signal of NET-induced ferroptosis [70], that neutrophils participate in ferroptotic tissue
damage [71], and that neutrophil ferroptosis can induce systemic autoimmunity [17]. In
summary, our findings and those obtained in previous studies synergistically support the
pivotal role of ferroptosis in the pathogenesis of AS in the context of the immune system.

The keywords obtained using enrichment analysis mainly centered on the follow-
ing concepts: structure and function of mitochondria and ribosomes, ubiquitin, RNA
metabolism, and neurodegeneration. Ribosomes and RNA are fundamental to nearly all
biological processes and are not linked to certain clinical traits; thus, they are beyond the
scope of this discussion. Mitochondria are a major source of intracellular reactive oxygen
species (ROS) and lipid peroxides, which play a crucial role in regulating multiple types of
RCD [72]. Although it seems somewhat paradoxical, recent studies have suggested that
mitochondria have both pro-and anti-ferroptosis functions owing to the diversity of their
ferroptosis-related metabolic activities [73–75]. Imbalanced redox and altered glutamine
metabolism, which are observed in patients with AS, are closely related to mitochondrial
dysfunction [22–25,76]. In addition, Ye et al. reported that serum with increased lev-
els of oxidative stress markers obtained from AS patients promotes senescence in MSCs
by mediating mitochondrial dysfunction and excessive ROS production [77]. Therefore,
mitochondrial pathways may be the common mechanism shared by AS and ferroptosis;
however, this notion warrants further studies to better elucidate the etiological role of
ferroptosis in AS. Although the role of ferroptosis in neurodegeneration has been exten-
sively investigated, data on the connection between AS and neurodegenerative diseases
remain limited. Epidemiological studies have reported hazard ratios ranging from 1.75 to
1.82 (p < 0.001) for the development of Parkinson’s disease (PD) and parkinsonism in AS
population [78,79]. Mitochondrial dysfunctions, particularly abnormal oxidative phospho-
rylation, and epithelial barrier disruption in the gut may be the mechanisms underlying
the clinical association between AS and PD [59,80,81]. In addition, complex interactions
between the ubiquitin-proteasome system and cellular degradation, which participate in
autophagy-dependent ferroptosis and progression of AS, may be another possible link
between ferroptosis and AS [82–85].

In general, data obtained using microarray expression profiling are more complex,
unlike a simple list of screened-out DEGs. Hence, to fully exploit the interrelationships
between the expression levels of all profiled genes, we further analyzed the GSE73754
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dataset using CC and WGCNA [34,40]. Instead of comparing AS patients with healthy
controls, we isolated two clusters within the AS group; these two clusters showed distinct
FRG expression patterns. Comparative analyses of the two FRG-related subtypes of AS
provided preliminary support for our hypothesis stating that ferroptosis participates in AS
pathogenesis. Based on 3663 inter-cluster DEGs, we constructed five co-expression modules,
with each module containing a group of biologically related genes. After calculating the
eigengene significance, the turquoise module showed the highest correlation with AS
and was defined as the key module. Among the 1911 genes in this key module, 12 hub
genes were finally obtained by intersecting the results of WGCNA analysis with those
of PPI. A regulatory network containing these hub genes, miRNAs, and lncRNAs was
then constructed. Within these hub genes, SUMO2 had the greatest number of related
references. SUMO2 encodes small ubiquitin-like modifier 2 protein, which participates in
post-translational protein modification; functions in a ubiquitin-like manner; and regulates
multiple biological processes including bone metabolism, oxidative stress, autophagy, and
immune homeostasis [86–89]. These findings suggest that SUMO2 plays an important
role in the regulation of AS-related ferroptosis. The hub gene NDUFS4 was described in
two previous bioinformatics AS studies that analyzed a GEO dataset GSE25101, serving
as external validation [80,90]. NDUFS4 encodes an accessory subunit of mitochondrial
complex I, a major component in the mitochondrial respiratory chain; this accessory subunit
of mitochondrial complex I is also crucial in the reconciliation between innate immunity
and skeletal homeostasis [91]. The role of NDUFS4 in ferroptosis, however, requires
further investigation. The functions of the other 10 hub genes were consistently related
to transcriptional regulation or mitochondrial function [92], but whether they are pivotal
regulators of the associations between ferroptosis and AS remains to be determined.

Numerous non-coding RNAs are involved in AS pathogenesis [93]. In our present
study, the ceRNA subnetwork analysis indicated that two miRNAs showed higher degrees
of centrality compared with those of other miRNAs. miR-18a-5p and miR-106a-5p, which
have not been described in existing studies on AS, are jointly associated with acute heart
failure [94]. miR-18a-5p plays a crucial role in apoptosis and ROS production mediated
by ischemia-reperfusion injury [95]. Together with lncRNA GAS5 and FENDRR, miR-
18a-5p also participates in the regulation of mitochondrial ROS generation and energy
metabolism [96,97]. Zhang et al. reported that the ceRNA axis circRHOT1/mir-106a-
5p/STAT3 regulates ferroptosis in breast cancer [98]. Moreover, miR-106a-5p is involved in
the progression of rheumatoid arthritis [99] and pathogenesis of adolescent idiopathic scol-
iosis [100], and regulates the differentiation of human osteoclasts via ceRNA networks [101].
Among lncRNAs in the subnetwork examined in our present study, TUG1 shows down-
regulated expression in AS [102]. SNHG16 is related to MAPK1, which is one of the key
genes in ferroptosis; SNHG16 is also involved in intracerebral hemorrhage [103]. GAS5 has
been described in both an AS cross-sectional study and a ferroptosis-related bioinformatics
study [104,105]. Because these non-coding RNAs are simultaneously associated with redox
homeostasis and musculoskeletal disorders, they may be bridging molecules between
ferroptosis and AS, and may, therefore, be possible therapeutic targets and tools in future
research. Further in-depth studies are needed to clarify the complex regulatory roles of
ferroptosis in the development and progression of AS.

The primary limitation of our present study was the lack of experimental validation.
Although the bioinformatics algorithms used in our analyses provided essential biological
significance to the computational results, the molecular mechanisms of the 12 hub genes
need to be further examined in well-designed future studies. Second, our present study
employed limited data sources, and only one eligible dataset was enrolled, resulting in
a relatively limited sample size. Thirdly, gene expression levels were influenced by AS
status and a variety of confounding factors, hence the basal clinical and demographic data
derived from the analyzed dataset were relatively insufficient. Comprehensive integration
of clinical characteristics and omics data is recommended in future studies. Additionally,
the lack of investigation into the IL-17 pathway was also a limitation of this study.
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5. Conclusions

In conclusion, patients with AS can be divided into two subtypes using FRG-based
consensus clustering analysis. The two subgroups showed distinct FRG expression patterns,
different proportions of immune cell types, and DEGs enriched in mitochondria- and
ubiquitin-related pathways. Using WGCNA analysis of intergroup DEGs, 12 hub genes
were identified and a multifactor regulatory network was constructed. According to the
existing literature, the highly connected nodes in the network were closely related to both
redox homeostasis and the musculoskeletal system. The results obtained in our present
study indicate that ferroptosis may play a significant role in the pathogenesis and molecular
regulation of AS. Tailoring therapeutic protocols according to the ferroptosis status of each
AS patient may present a feasible strategy in the treatment of AS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13081373/s1, Supplementary Figure S1, Heatmap of 276
ferroptosis-related genes plotted by age groups. Red indicates high expression, and blue indicates
low expression; Supplementary Figure S2, Box plot shows the distribution of patient age in the
two clusters determined by ferroptosis-related genes; Supplementary Figure S3, External validation
of consensus clustering. (A) Consensus score matrix for the 22 AS samples obtained from dataset
GSE141646 when k = 2. (B) Empirical consensus cumulative distribution function plots for k = 2 to 6,
indicating that k = 2 or 3 is acceptable. Provided the sample size and interpretability, the optimal
k value was also 2; Supplementary Table S1, The detailed information about the compilation of
ferroptosis-related genes from the FerrDb database and PubMed articles; Supplementary Table S2,
Results of leukocyte deconvolution for all the AS samples using the CIBERSORT computational ap-
proach; Supplementary Table S3, The detailed information about the 86 ferroptosis-related genes that
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multifactor regulatory network.
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