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Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable
Δ𝐺. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and
conformations, can exhibit favorable Δ𝐺 because of their higher entropy. Diffuse binding may be biologically important for
multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding Δ𝐺
arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC)
approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to
multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand
binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities.
Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding
contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying
situations where “nonspecific” interactions contribute to biological function.

1. Introduction

Ligand interactions with proteins may be specific or non-
specific. Many ligands bind to proteins via tight, cooperative
interactions, that is, “lock and key” mechanisms. However,
other, looser interactions also occur and may have phys-
iological significance (e.g., in multidrug resistance). These
interactions can be modeled by molecular dynamics (MD)
[1], but the timescales involved in modeling multiple on and
off diffusion, especially in and out of solvent, may strain the
current limits of the technology. Pure Monte Carlo methods
can estimate binding to loose protein cavities but can be
inefficient, given the rugged energy profiles of binding and
the large binding space occupied by clashing between ligand
and receptor.

The MCMC approach has been widely used in physics
and statistics to determine the probability distribution of
multidimensional processes. For example, the distribution of
molecular interactions with DNA has been modeled using
MCMC [2]. Modeling uncertainty and low probability states

in protein structure prediction also benefits fromMCMCand
related approaches [3]. A common theme in many structural
analyses is the tradeoff between entropic and enthalpic
contributions to free energy [4].

In the MCMC process, the probability of a state being
occupied (number of steps occupying the state/number of
total steps) is proportional to the stationary probability
distribution of the process. Onemajor advantage ofMCMC is
that high probability regions of the distribution are sampled
more than low probability regions (importance sampling),
increasing efficiency for study of distributions that have
extensive regions of low probability. Another advantage
is that extensive theoretical and practical applications of
MCMC methods show that they are extremely robust and
flexible approaches to model probability distributions [5].

For a MCMC method to be applicable, a distribution
must exhibit certain traits. In particular, the distributionmust
satisfy regularity criteria. The process must be ergodic, that
is, be capable of returning to any given state. For ligand-
receptor interaction, this requires that solvent regions be
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finite. The process must be irreducible; that is, all states must
be reachable by a random walk. In practice, this means that
either ligands must access a solvent region that permits all
conformations or the process must be allowed to jump to
all allowed states. For instance, a ligand unable to rotate in
a given site must be given a statistically valid path to rotate,
either in solvent or through jump diffusion. In some cases,
diffusion of small molecules will not require extra techniques
to achieve irreducibility in large-volume sites.

Ligand binding pockets in proteins are diverse in shape,
depth, and size [6]. Though many binding sites exhibit speci-
ficity required for their biological function, other molecules
require less specificity to fulfill their purpose. The bacterial
drug efflux pumps, including RND transporters such as
AcrB, serve to export multiple toxic substrates from the
cell [7]. Some of these substrates make fairly well-defined
contacts with the binding cavity of the pump [8] while
others may not. Computational studies have contributed
to our understanding of the basis of drug pumping [1, 9].
AcrB preferentially pumps hydrophobic molecules and the
pump chamber is lined with phenylalanine residues. Another
example ofmolecules binding diverse substrates is the several
families of sterol binding proteins, which also bind other
lipids.The human serum albumin protein binds an extremely
diverse set of ligands through two pockets and some crevice
regions. Pocket 2, which is shallow and solvent accessible,
binds the sedative diazepam and the anesthetic halothane
amongst many substrates. Drugs may compete with each
other for binding to albumin, which suggests some specificity
of binding, but could be due to nonspecific occlusion of a
hydrophobic patch available for contact [10].

Here, we treat a ligand molecule as a MCMC process
diffusing within pose space in a receptor site, with its proba-
bility density distribution determined by the𝐾𝑑 of interaction
with the receptor given its positional and rotational state
for relatively rigid molecules. We show, using the MCMC
method, that, for large sites, such as those of the AcrB
bacterial drug transporter, multiple states or binding poses
contribute to binding efficiency. This approach may have
application to modeling other macromolecular interactions
such as DNA-protein and protein-domain interactions. This
method is also relevant to a number of pharmacological
analyses.

2. Methods

2.1.Model Systems. Systems for ligand/protein binding analy-
sis were selected based on the potential for loose, nonspecific
interactions. Each of these proteins had large binding regions
which offered ample room for the ligand to bind in multiple
conformations and atmultiple sites within the binding region
of the protein. The AcrB multidrug transporter of E. coli
undergoes cyclic changes that first open a large ligand-
binding cavity and then expel the contents outside the cell.
The cavity is large enough that all known ligands can, in prin-
ciple, adoptmany conformations within the cavity.The pump
is very nonselective, suggesting that efflux does not require
interactionwith a specific evolutionarily selected binding site.

Human serum albumin is an abundant protein in blood that
plays many roles, including the transport of fatty acids. It
also plays important roles in pharmacology by absorbing
diverse drugs and reducing their free concentration in the
bloodstream. Human serum albumin has at least two large
pocket domains on its surface. Steroid transporters, also in
the bloodstream, can bind many hydrophobic compounds
including diverse steroids. The steroid transporters have
pockets larger than what would be required to bind a simple
steroid. These model systems were studied using the known
sites of drug interaction.

The open binding chamber of AcrB (PDB ID: 3AOD,
chain A) was studied with four ligands. Toluene is a solvent
pumped by the exporter [11]; skatole is a toxic hydrophobic
molecule ubiquitous in the natural environment of E. coli;
acridine orange is the dye first used to characterize the
exporter; and minocycline is an exported antibiotic crystal-
ized with AcrB in the PDB ID: 3AOD structure. Two sterol
binding proteins were studied as well (PDB IDs: 1ZHY and
2A1B). The human serum albumin (HSA) protein has two
canonical ligand binding pockets. Pocket 2, reported to bind
diazepam and halothane, was studied (PDB ID: 1E7B, chain
A) [10, 12].

2.2. The MCMC Process. To study ligand binding in multiple
conformations, it was necessary to estimate the proportion
of ligand binding in each position. A MCMC process was
designed such that the stationary probability in pose space
would equal the predicted distribution of ligands in a binding
site. To ensure ergodicity the process was constrained to
a sphere centered on the initial ligand binding pose. Trial
MCMCprocesseswere studied to determine the effect of win-
dowing and various parameters on performance. The spatial
scoring window was set, conservatively, at 2 angstroms, since
that is a commonly accepted RMSD for significantly similar
poses for ligands and synchronized with the poxel definition
used (see below). Depending on the number of steps and
alpha, the step distance was analyzed. In general, the time
to equilibration for an MCMC process is best determined
by experimentation. A step size, 𝛼, for translation of 0.9
angstroms and an 𝛼 for rotation of 0.6 radians were used.
An important consideration for importance sampling of a
rugged distribution is the tradeoff between the density of
sampling and number of steps. For most systems studied, less
than 200,000 steps were required to populate the majority of
poxels. Stochastic jump diffusion to a probable poxel every
1000 steps was used to ensure sampling of all poses.

2.3. Scoring Affinity. A soft Lennard-Jones scoring parameter
was employed as is common in successful empirical scoring
functions [13–15]. The Δ𝐺 of atomic interaction was set
at 1 kcal/mol at the VDW distance for the atoms involved
[16, 17]. The 𝐾𝑑 for interaction was calculated as 𝐾𝑑 =
𝑒
Δ𝐺/𝑅𝑇 with the MCMCMetropolis transition determined by
1/𝐾𝑑. Δ𝐺 for molecules in solvent was set at 0. For some
experiments AutoDock Vina scoring [18] was used as an
alternative method with similar results. This MCMCmethod
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is compatible with any scoring function for ligand/protein
interaction.

2.4. Definition of Pose Space. Rigid ligands can be posi-
tioned in 6-dimensional translational/rotational conforma-
tional pose space. Pose space was divided into “poxels”
by analogy with 3-dimensional voxels. Poxels were placed
3 angstroms apart in 𝑥, 𝑦, and 𝑧 dimensions and 51.4∘
apart in rotational dimensions. No torsional dimensions were
included for the rigid molecules studied here. These poxels
were large enough that a single poxel could accommodate
most of the motions of known tight-binding ligand/receptor
complexes such as those found in PDB ID: 2rnh and 4gid.
Note that molecules in adjacent poxels occlude the space
of each other but are conformationally distinct and make
different contacts with the receptor.

2.5. Analysis of Diffuse Binding. TheMCMCmethod for DBF
calculation was programmed in a Perl script. The MCMC
process was typically run for 100,000 steps which typically
populated the average poxel with more than 20 process
visits. The most visited pose (modal) was recorded and
entropy enhancement (EE) was calculated as total MCMC
steps/modalMCMC steps. In essence, EE is the proportion of
the steps a ligand spent at sites other than themodal pose.The
less time spent at themodal pose, themore time spent in other
poses. EE can be used to calculate the overall𝐾𝑑 (adjusted for
multiple poses) as

Overall 𝐾𝑑 =
Modal 𝐾𝑑

EE
. (1)

EE can be useful for converting the 𝐾𝑑 predicted for binding
to the single best binding site into the overall binding,
allowing for pose flexibility. For typical high-affinity ligand-
receptor pairs, the number of poses in the site was 1 or 2
and the MCMC steps for the modal pose equaled or nearly
equaled the total number of steps, producing an EE value of
∼1 and an overall𝐾𝑑 ⋍ modal 𝐾𝑑.

The effective number of poses for each site (DBF)was also
calculated.DBF factors thatmanyposes have a probability>0,
nonetheless, are enthalpically unfavorable and hence poorly
populated. For equally populated poses, the total poses equal
DBF. For amore typical Poisson distribution, where themean
number of visits equals the standard deviation of the number
of visits, DBF is 0.5x number of poses. DBF is defined as

DBF = NP
((VarMV) /MV2) + 1

, (2)

where NP is the number of 𝑃 > 0 poses, MV is mean visits to
a poxel, and VarMV is the variance of MV. DBF is equal to the
number of permissible poses if all sites bind equally. However,
DBF is equal to ∼1.0 if only a single pose has substantial
probability, even if many poses with a probability >0 exist.
If binding affinity is distributed amongst sites with a Poisson
distribution, DBF ⋍ 0.5 ∗ NP. DBF is dependent on both
the number of possible poses and the distribution of the
probability of those poses. A high DBF indicates that diffuse
binding plays an important role in overall affinity of a protein
for a ligand.

Table 1: Relative contributions of multiple poses to predicted
affinity.

Complex Poses DBF EE
Spatial fit scoring
AcrB/minocycline 36 5 ± 2 2.5 ± 0.8
AcrB/acridine orange 68 14 ± 4 6.9 ± 1.2
AcrB/skatole 1494 57 ± 31 9.7 ± 5.7
AcrB/toluene 2429 661 ± 139 53.7 ± 10.1
OSBP/cholesterol 10 1.3 ± 0.3 1.1 ± 0.2
Cinnamomin/ergosterol 7 2.2 ± 1.1 1.7 ± 0.4
HSA/diazepam 5050 2298 ± 1703 435 ± 333
HSA/halothane 6897 4319 ± 1626 1630 ± 695
BAR/carazolol 3 1.8 ± 0.9 1.5 ± 0.4
Empirical scoring
AcrB/minocycline 52 8.5 ± 2.0 4.1 ± 1.7
AcrB/acridine orange 81 5.7 ± 3.1 3.3 ± 2.3
AcrB/toluene 1965 726 ± 67 107 ± 10
AcrB/skatole 1637 526 ± 58 76 ± 9
Abreviations: OSBP, oxysterol binding protein; HSA, human serum albumin;
BAR, beta-adrenergic receptor.
“Poses”, refers to number of possible (𝑃 > 0) poses in binding region
analyzed.
Analyses performed in triplicate with runs of 100,000MCMC steps.
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Figure 1: Number of poses in binding site for various ligands.
(1) Beta-adrenergic receptor/carazolol (PDB ID: 2rhn A), a typical
tight-binding receptor/ligand complex; (2) AcrB/minocycline (28
heavy atoms); (3) AcrB/acridine orange (20 heavy atoms); and (4)
AcrB/toluene (7 heavy atoms).

3. Results and Discussion

3.1. Binding to a Loose Site. The AcrB binding site is approx-
imately 2600 angstroms3 which is about twice the volume
of the typical antibiotics that it pumps and about 12 times
the volume of toluene. Analysis of binding of acridine
orange (originally used to discover the AcrB gene) and other
ligands showed that they could bind in several conformations
(Figure 1 and Table 1).

DBF values for various ligands binding to the cavity of
theAcrBmultidrug pump varied greatly. Not surprisingly, the
smaller ligands had higher DBF values than the larger ones
(Table 1) indicating that diffuse binding contributes more to
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(a) (b)

(c) (d)

Figure 2: Toluene binding sites in AcrB. The centroids of the sites are shown. Rotationally equivalent poses may occupy a single site. (a) All
pose sites are shown. (b) Sites contributing 52% of total binding are shown. (c) Poses contributing 15% of binding are shown. (d) A single pose
contributing 10% of binding is shown. Though a relatively high-affinity site exists, low-affinity sites make up the bulk of binding probability.

their overall affinity. Minocycline, which has been crystalized
with AcrB in a single pose, had effectively 1-2 poses in this
analysis as well, though a number of unfavorable poses had
a probability >0. The absolute DBF value may be slightly
inflated since the poxel dimensions were conservatively
defined and even a relatively tight-binding molecule often
has some freedom to move within its site. DBF comparisons
between ligands may be more useful for some purposes.
Toluene, a substrate that has been shown to be pumped by
this transporter had a very high DBF, approximately 100
times that of minocycline. As discussed below, a mixture
of many low-affinity sites and one higher affinity site seems
to contribute to AcrB affinity for toluene. Acridine orange,
the substrate originally used to characterize AcrB, had a low
DBF, but more than one pose seemed to contribute to its
binding. Skatole, a molecule toxic to E. coli but ubiquitous in
its environment, was intermediate between acridine orange
and toluene. Using empirical scoring, skatole had aDBFmore
similar to toluene, suggesting that for some ligands the choice
of scoring function might be significant. The difference was
due to the presence of a single high-affinity AcrB/skatole
poxel in the atomistic analysis that was absent in the empirical
analysis. However, both scoring methods predicted that most
of skatole affinity involved diffuse binding. The other tested
ligands had similar DBFs with both scoring methods. For
the small ligands, substantial enthalpy-entropy compensation
was possible, suggesting that the potential to bind with many
poses contributed to efficiency of pumping these molecules.
Similar effects may influence patterns of multidrug resistance
in other systems [19]. It should be noted that the increased
affinity predicted for small molecules such as toluene and
skatole is not purely an entropic effect. The molecules have
more freedom tomove but are also able tomake enthalpically
favorable (though weak) contacts with the pump in these
alternative poses. These loose configurations may resemble
other examples of ligands binding in sites larger thanwhat the

molecules require. For example, in virtual screening, decoy
molecules may appear to be able to bind sites that do not fit
well [19].

3.2. Visualization of Relative Poxel Probability. Populated
poxels (𝑃 > 0) were visualized for toluene (Figure 2). Poxels
with some probability of being populated were not clustered,
indicating that several sites in the large cavity contribute
to affinity. The distribution of MCMC visits to poxels was
determined. The distribution of poxels contributing about
50% of total affinity was also dispersed (Figure 2). However,
one pose alone contributed about 10% of the total probability
and could be considered a relatively high-affinity site. If
crystallization of AcrB with toluene was successful onemight
predict that this site would appear as the site of toluene inter-
action. However, the analysis here suggests that most of the
experimentally determined affinity would be due to diffuse,
low-affinity interactions. The poxels of minocycline/acridine
orange clustered at the region of the minocycline site in
the crystal structure PDB ID 3AOD. Skatole poxels were
scattered, in a Poisson-like distribution similar to that of
toluene.

Overall, the probability distribution of toluene in AcrB
resembles a Poisson distribution of site occupancy (Figure 3)
with themean number of poxels occupied increasing as affin-
ity decreases. Skatole, which chemically resembles toluene,
had a nearly identical distribution to toluene, though its
DBF was lower because of a single pose with higher affinity
than the highest affinity site of toluene. Significantly, despite
the existence of higher affinity sites, most of the binding
of toluene and skatole is still derived from interaction with
multiple low-affinity sites. In contrast, the affinity of both
acridine orange and minocycline is dominated by one or a
few poses, with only smaller, less significant, contributions
from alternative sites (Figure 3 and Table 1). The DBF
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Figure 3: Specific versus nonspecific binding. The number of steps
per pose is plotted versus the number of poseswith a specific number
of steps. A high value on the vertical axis indicates many low-
affinity poses. A high value on the horizontal axis indicates a few
high-affinity poses. Triangles, AcrB/toluene; squares, AcrB/acridine
orange; diamonds, AcrB/minocycline. The graph for skatole was
nearly identical to the line for toluene except for a single higher
affinity site and is omitted for clarity. See text for details.

values for toluene were roughly 100-fold higher than those
for minocycline, indicating a much greater role for diffuse
binding in toluene binding than for minocycline binding.
Thus small ligands binding to the AcrB site derive an affinity
benefit from the ability to bind weakly in many conforma-
tions, while larger ligands benefit by binding in only a few
conformations, but making more receptor/ligand contacts in
each conformation. Acridine orange and minocycline also
have fewer poxels that do not clash with the AcrB pump
chamber than toluene or skatole.

3.3. Other Nonspecific Complexes. As a comparison with
AcrB, two sterol binding proteins were analyzed. These
molecules, oxysterol carrier protein and cinnamomin, both
bind to a number of sterols with little specificity. They have
no sequence or structural similarity. Both bound sterol with
only a single pose showing high probability, though other
poses did have a probability >0 (Table 1). This result suggests
that the flexibility and looseness of their respective binding
pockets serve mostly in accommodating ligand diversity and
not increasing ligand affinity for the molecules studied.

Human serum albumin (HSA) has been extensively
studied for its ability to bind naturally occurring hydrophobic
molecules such as fatty acids and also drugs. Competition
studies and X-ray crystallographic studies suggest that two
large pockets are involved in at least some of the binding
[10]. When binding of halothane and diazepam, which bind
pocket 2, was studied by the MCMC method considerable
pose diversity appeared to be present within the known
binding pocket (Table 1). These molecules, both by visual
inspection and docking studies with AutoDock Vina, did not
have binding sites with the characteristics of known high-
specificity sites. They appeared to bind in many poses to the
hydrophobic pocket region 2 of HSA and occlude the site,
competing in that way with other substrates. As with toluene
binding to AcrB, a few higher affinity sites were present,

but the overall predicted affinity was dominated by a large
number of low-affinity interactions. In contrast, binding of
carazolol to the beta-adrenergic receptor (a classic “lock and
key” tight interaction) yielded a DBF of only 1.8.

4. Conclusions

The MCMC method provides an approach to conceptualize
and study diffuse binding interactions that have heretofore
been relegated to the area of “nonspecific” interactions.
These types of interactions are likely to play important roles
in some ligand binding, DNA-protein interactions and in
domain interactions in proteins, especially the interactions of
intrinsically disordered domains. In some cases this analysis
has shown that nonspecific interactionsmight also contribute
to overall affinity of ligands. In other cases, apparently
loose fitting ligands actually bind with a single effective
pose. MCMC methods complement molecular dynamic
approaches and allow modeling of interactions that occur
over relatively long time periods. The MCMC approach is
reasonably fast and statistically rigorous and thus provides a
link between physics-based methods that attempt to model
actual molecular behavior and algorithmicmethods that seek
to efficiently provide a single best binding conformation.
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[16] Z. Simon, M. Vigh-Smeller, Á. Peragovics et al., “Relating the
shape of protein binding sites to binding affinity profiles: is there
an association?”BMC Structural Biology, vol. 10, article 32, 2010.

[17] T. J. A. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz,
“DOCK 4.0: search strategies for automated molecular docking
of flexible molecule databases,” Journal of Computer-Aided
Molecular Design, vol. 15, no. 5, pp. 411–428, 2001.

[18] O. Trott and A. J. Olson, “Software news and update AutoDock
Vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading,”
Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461,
2010.

[19] N. M. King, M. Prabu-Jeyabalan, R. M. Bandaranayake et al.,
“Extreme entropy-enthalpy compensation in a drug-resistant
variant of HIV-1 protease,” ACS Chemical Biology, vol. 7, no. 9,
pp. 1536–1546, 2012.


