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Abstract
In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in 
effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate 
the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, 
chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. 
Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic 
resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the 
potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment 
with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for 
the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from 
semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, 
vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy 
of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced 
and a future perspective is provided.

Keywords  Wound infection · Bacterial biofilm · Drug delivery systems · Antimicrobial resistance · In vitro wound models · 
Wound dressings

Introduction

In recent years, the incidence of chronic wounds and severe 
wound infections has steadily increased. While normal 
acute wounds heal without therapeutic intervention, chronic 
wounds are characterized by necrotic tissue, an increased 
pH value, and a high concentration of metalloproteases, 
impeding the course of physiological healing cascades 
[1, 2]. Such wounds provide a favorable environment for 
invasion and proliferation of pathogens, and therefore, 
wound infections often occur. The prevalence for all chronic 
wounds was assumed to be 1 to 2% of the population in 
2018, with healthcare spending up to $96.8 billion in the 

USA [3]. Apart from the economic impact, chronic wounds 
inflict a significant decrease in the patients’ quality of life. 
One cause for the impaired healing of infected wounds is 
biofilm formation, a local manifestation of wound infection 
[4], with an overall prevalence of 75% (Fig. 1) [5]. Risk 
factors, such as patient age, malnutrition, obesity, diabetes, 
as well as smoking promote wound infection (Fig. 1) [6, 7]. 
Due to the demographic change towards an elderly society 
with patients with multi-morbidities, there is an increasing 
health-economic burden and a growing humanitarian interest 
in effective treatment of wound infections.

While microbes can be found in every open wound [8, 
9], their presence does not necessarily manifest in a wound 
infection. A wound infection provokes an immunological host 
response and is characterized by e.g., local inflammation, 
swelling, erythema, or pain. The wound microbiome 
consists of bacterial pathogens as well as of fungi, which 
either interact with the bacteria and may increase antibiotic 
resistance or which are even primary pathogens themselves. 
The most frequently found bacterial strains in infected wounds 
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are Staphylococcus aureus and Pseudomonas aeruginosa 
[10–12], while the most common fungi genus is Candida 
spp. [13]. The course of infection in a wound can range 
from colonization of the wound without affecting healing, 
to a systemic infection with sepsis and organ dysfunction 
at worst [8, 14]. This progression, characterized as the 
wound infection continuum, is divided into contamination 
and colonization as well as local and spreading infection, 
eventually culminating in systemic infection (Fig. 1). Local, 
spreading and systemic infection require either topical and/
or systemic therapeutic intervention [8, 9, 15]. According to 
the wound infection continuum defined by the International 
Wound Infection Institute, bacteria organize themselves 
in biofilms initiated in the stage of local infection [15]. In 
contrast to free-floating (planktonic) bacterial cells, biofilms 
are structured, in nature often polymicrobial populations 
that usually adhere to the wound and are surrounded by 
extracellular polymeric substances (EPS) [16].

The presence of biofilms poses a particular challenge in 
the treatment of infected wounds [17]. On the one hand, 
biofilm bacteria are less susceptible to the human immune 
defense system due to the mechanical EPS barrier and 
antiphagocytic properties of the biofilm matrix. On the 
other hand, biofilms exhibit several mechanisms to develop 
antibiotic resistance. Firstly, the EPS acts as a mechanical 
barrier to the permeation and action of antimicrobial 
agents. Secondly, the biofilm environment enables bacterial 
communication and thus promotes phenotype changes [8, 
18]. A tight growth pattern and slow metabolic rates lead 
to the formation of a heterogeneous population of cells 
in different growth states, additionally contributing to the 
increased tolerance against antimicrobial therapy [17]. As 
a result, biofilms can persist over a long period of time and 
boost chronification of a wound, as well as cause other 
local or remote invasive infections by dispersing biofilm 
fragments, planktonic bacteria, and microcolonies of mature 
biofilms [8, 14, 18]. Bacteria within biofilms are up to 1000 
times more resistant to conventional antimicrobial agents 
than those in a planktonic state [8, 9, 18]. Due to these 
resistances and tolerances towards antibiotics and biocides, 
biofilms impede appropriate treatment and, consequently, 
prolong the wound healing period [19].

Therapy of infected wounds

Providing and maintaining a clean and moist wound environment 
supporting the physiological wound healing process as well as 
preventing wound infections is considered the primary goal in 
general wound management. In case of wound infections, first 
priority is to achieve a reduction in microorganism quantity or 
virulence in the wound by debridement, therapeutic cleansing, 
and administration of antimicrobials.

Debridement

The presence of necrotic tissue and foreign material in wounds 
provides a medium for infection; hence, its removal through 
debridement is a major and widely used method to prevent or 
reduce bacterial growth. The remaining viable tissue is thereby 
enabled to undergo the normal wound healing phases [20]. 
Next to the surgical and the conservative sharp debridement, 
a variety of alternative techniques exists nowadays including 
mechanical, autolytic, enzymatic, chemical, and biosurgical 
wound debridement [15, 21].

Regardless of the type of debridement, it is extremely 
difficult to remove the entire bacterial bioburden, especially 
in case of biofilms. This is due to the fact that biofilms are 
strongly adherent to the surrounding tissue and that its 
formation is not only limited to the wound surface but also 
appears in deeper layers of the wound bed [22]. Additionally, 
depending on the present pathogens, mature biofilms can 
regrow within just 72 h after debridement, and thus, repetitive 
debridement is recommended [23]. Even so, debridement 
alone cannot remove all microorganisms from the wound 
[24], but the resulting biofilm disruption is associated with 
a higher susceptibility to outer factors, such as antiseptics 
or antibiotics [25]. Consequently, debriding the wound in 
combination with therapeutic cleansing and the application 
of topical antimicrobial therapeutics is reasonable.

Therapeutic cleansing

Therapeutic wound cleansing aims to remove problematic 
excessive or obviously infected exudate, contaminations by 

Fig. 1   a Schematic illustration 
of the wound infection con-
tinuum consisting of 5 stages, 
from the stage of local infection 
bacteria organize themselves 
in biofilms. b Biofilms show a 
prevalence of 75% in chronic 
wounds. c Risk factors promot-
ing wound infection
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foreign body, dirt or bacteria, as well as slough or necrotic 
tissue [26]. According to Leaper et al., the application of 
therapeutic wound cleansing solutions even has the potential 
to disrupt biofilms and kill planktonic bacteria as well as 
other microorganisms while exhibiting low cytotoxic 
potential [14]. Commonly used cleansing solutions range 
from potable tap water and sterile normal saline to solutions 
containing surfactants with or without antimicrobials [14, 
27]. Agents such as sterile normal saline are not considered 
to be effective in removing debris and disrupting biofilms 
[26, 28], therefore, the use of wound cleansing solutions 
containing surfactants, e.g., undecylenamidopropyl 
betaine or phenoxyethanol, gained popularity. Due to their 
amphiphilic structures, surfactants are able to lower the 
surface tension between the wound bed and the cleansing 
liquid. The resulting close contact between the liquid and the 
wound bed facilitates the separation of nonviable tissue and 
microbial particles from the viable wound bed. In solution, 
surfactants additionally capture wound debris in micellar 
structures [27].

Antimicrobial active ingredients

Antimicrobials include antiseptics and antibiotics, both 
having the capability to inhibit microbial growth or to 
kill microorganisms. While antiseptics are nonselective 
agents showing a wide antimicrobial spectrum, including 
bacteria, fungi, and viruses, antibiotics have a narrower 
spectrum of activity. Antibiotics usually target specific sites 
within bacterial cells and are therefore relatively nontoxic, 
since they have no influence on human cells. The adverse 
consequence is their increased susceptibility to a loss of 
efficacy caused by bacterial resistance. Antiseptics often 
have multiple sites of antimicrobial action on target cells; 
thus, the development of bacterial resistance to antiseptics is 
uncommon [15, 29]. However, it must not be neglected that 
antiseptic agents often have a toxic effect to human cells, 
e.g., on fibroblasts and keratinocytes [30].

Antiseptics

Antiseptic approaches range from physical treatments 
to application of synthetic as well as natural substances. 
Physical treatment methods reduce bacterial burden by 
directly killing bacteria, including cold plasma and low-level 
laser therapy [31–35], while synthetic and natural substances 
decrease the bacterial load by either directly killing bacteria 
or by inhibiting further bacterial growth.

Elemental silver is relatively inert and has no antimicrobial 
effect. However, an antimicrobial activity develops after 
highly reactive positively charged silver ions are released, 
disrupting bacterial cell walls and inhibiting bacterial 
enzymes. Since they are also binding DNA, they additionally 

interfere with cell division and replication [36]. Due to a 
rapid inactivation of silver ions in the extracellular wound 
fluid, sustained delivery formulations are required [37].

Iodophors include polyvinylpyrrolidone iodine (PVP-I) 
and the water-soluble modified starch polymer cadexomer 
iodine. Free iodine as bactericidal component is gradually 
liberated from the polymers. Compared to aqueous or 
alcoholic iodine solutions, these carrier systems lead 
to lower iodine absorption, reduced cytotoxicity and 
sensitization, and thus to better toleration [38]. Nevertheless, 
free iodine still exhibits a relatively high cytotoxicity [30] 
and the additional risk of thyroid dysfunction after systemic 
absorption renders the use of iodophores controversial.

The antimicrobial effect of octenidine dihydrochloride 
(ODC) is based on the interaction of the cationic ODC with the 
negative charges of cell wall and cell membrane components, 
resulting in destabilization of microorganism membranes [39]. 
The comparison of its efficacy and cytotoxicity with other 
disinfectants like PVP-I showed that ODC exhibits a low 
cytotoxicity and a high microbicidal effect [40].

Polyhexamethylene biguanide (PHMB), also known 
as polihexanide, is a strong base and interacts with acidic 
phospholipids in the membrane of microorganisms, resulting 
in disruption of the membrane and death of the organisms. 
Since PHMB is further transferred to the cytoplasm, it 
additionally disrupts the bacterial metabolism [41]. The 
advantages of PHMB include a broad antimicrobial spectrum 
with low toxicity and high tissue compatibility [42, 43].

Acetic acid (AA) is a physiologically active substance 
that kills bacteria in its nondissociated form [44]. Bjarnsholt 
et  al. showed that AA in physiologically tolerable 
concentrations is capable to completely eradicate bacteria 
in mature biofilms in vitro [44].

Hypochlorous acid (HOCl) represents another naturally 
occurring acid that is physiologically produced by 
neutrophils to destroy pathogens. HOCL irreversibly binds 
to sulfur- and heme-containing membrane enzymes as well 
as to structural proteins, resulting in respiratory loss in 
bacterial cell membrane leading to cell death [45].

A contemporary antimicrobial approach is the application 
of naturally occurring enzyme systems that produce 
antimicrobial products. One example is the oxidase-
peroxidase system comprised of glucose oxidase and 
lactoperoxidase stabilized by the aromatic oil guaiacol 
(GLG-system) that produces free radicals via the release of 
hydrogen peroxide, thiocyanate, and hypoiodite. These free 
radicals mediate cell damage in order to kill microorganisms 
by oxidizing membranes and enzymes, DNA damage and 
mutations, and the inhibition of membrane transport [46, 47].

Honey and essential oils are prominent examples for 
naturally derived substances in wound care. Honey, a 
viscous carbohydrate-rich syrup, enhances wound healing 
due to a number of factors such as providing a moist 
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environment and acting as a mechanical barrier for microbes 
while simultaneously showing analgesic and antimicrobial 
effects [48]. Essential oils like lavender oil, tea tree oil, and 
chamomile oil are defined as volatile mixtures of organic and 
phytochemical components [49]. Observed antimicrobial, 
antioxidant, and anti-inflammatory properties are explained 
by the effect of volatile secondary plant metabolites 
particularly including mono- and sesquiterpenes. Those 
constituents probably provoke a loss of cellular membrane 
integrity of bacterial cells which is further related to the 
observed antimicrobial effects against a wide range of 
wound pathogens [50]. However, notable disadvantages 
remain. Honey and essential oils as well as natural extracts 
consist of a mixture of components, whose composition 
highly depends on various outer factors such as the plant 
origin, the geographical location, season variations, as 
well as processing and storage conditions [51, 52], while 
many constituents remain unknown [53]. This leads to 
difficulties in guaranteeing reproducible composition, 
quality, and quantity of medical products [54]. Additionally, 
components of such extracts might provoke irritant, allergic, 
and cytotoxic adverse effects [55–57].

Antibiotics

Antibiotic therapy of infected wounds includes topical as 
well as systemic administration. Antibiotics available for 
topical therapy include aminoglycosides, sulfonamides, 
and polypeptide antibiotics, as well as metronidazole, 
fusidic acid, mupirocin, and retapamulin. Aminoglycosides, 
e.g., neomycin and gentamicin, are effective against most 
gram-negative and some gram-positive bacteria species 
like Staphylococcus aureus; however, neomycin shows 
no antibacterial activity against Pseudomonas aeruginosa 
[58]. Like fusidic acid, mupirocin, and retapamulin, 
aminoglycosides develop their antibacterial effect by 
inhibiting ribosomal protein synthesis [58]. Fusidic acid 
penetrates not only intact and damaged skin but also slough 
and cellular debris and is active against Staphylococcus 
aureus and some other pathogens [29]. Mupirocin as 
well shows high activity against Staphylococcus aureus, 
including some resistant strains, while being ineffective 
against most gram-negative bacteria [59]. Retapamulin is 
bacteriostatic against Staphylococcus aureus. By inhibiting 
the synthesis of folic acid, sulfonamides, e.g., mafenide 
acetate, silver sulfadiazine, and sulfacetamide sodium, 
develop a bacteriostatic effect against gram-positive as well 
as gram-negative bacteria [58]. Polypeptide antibiotics, 
e.g., polymyxin B, bacitracin, and tyrothricin, disrupt the 
bacterial cell membrane. While polymyxin b is active against 
gram-negative bacteria including Pseudomonas species, 
bacitracin can only be used against gram-positive pathogens. 
The bactericidal activity of tyrothricin includes a broad 

spectrum of gram-positive bacteria. It has additionally been 
shown that the polypeptide antibiotic is effective against 
methicillin-resistant Staphylococcus aureus with a reduced 
susceptibility to mupirocin [60]. Metronidazole causes DNA 
damage in pathogens and acts against anaerobic bacteria as 
well as some protozoa [58].

A different perspective is posed by antimicrobial peptides 
(AMP), host-defence-molecules of multicellular organisms, 
which aim to control microbial proliferation. Due to the 
prevalence of basic residues, the majority of AMP is 
cationic in character and presents an amphipathic structure 
in membrane-like environments [61]. The mechanism 
of antimicrobial action is mainly based on electrostatic 
interaction with the anionic phospholipids of the microbial 
cell membrane [62], which leads to their disintegration and 
therefore to cell death [63, 64]. Due to this rather unspecific 
mechanism of action, the appearance of resistance is less 
likely compared to conventional antibiotics [65].

Drug delivery strategies for infected wounds

The use of both antiseptics and topical antibiotics is still 
often controversially discussed [29, 66]. For successful 
elimination of infective microorganisms, antimicrobials 
must reach the anatomical site of infection in adequate 
concentrations. This is often impeded by potential 
instability, rapid degradation in the wound environment, or 
by bacterial enzymes, as well as due to poor penetration 
into biofilms. Additionally, poor blood circulation in the 
majority of chronic wounds poses a particular challenge 
for systemic antibiotic therapy. Inadequate dosing accuracy 
of systemic antibiotics at the site of infection may further 
increase antimicrobial resistance and possibly expose 
patients to unnecessary risk of adverse side effects. Aside 
the development of resistance, administration of topical 
antibiotics entails further disadvantages, such as delayed 
hypersensitivity reactions, superinfections, and contact 
dermatitis. In the case of antiseptics, inadequate dosing 
accuracy can further increase cytotoxicity [10] as well as 
substance-specific adverse effects. However, suitable drug 
delivery systems overcome the addressed limitations. An 
optimal formulation of antimicrobials enables the efficient 
delivery of active ingredients to the site of infection, at the 
same time supporting the physiological wound healing 
process.

State‑of‑the‑art delivery systems

Semi‑solid and liquid formulations

Traditionally, antiseptic and antibiotic agents have been 
formulated as semi-solids (ointments, creams, and gels) or 
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liquids (solutions, suspensions, and emulsions) for topical 
application. Compared to liquid dosage forms, semi-
solid preparations for the treatment of bacterial infections 
remain longer on the wound surface [67]. Ointments are 
more occlusive and show greater spreading when compared 
to creams, and therefore, they are used for dry lesions; 
conversely, creams are more likely to be used for moist 
lesions [29]. Semi-solid preparations are poorly suited for 
heavily exuding wounds. While creams quickly absorb fluid, 
changing their rheological properties and causing leach out 
of the wound bed, wound exudate impedes close contact 
of ointments. Solutions are mainly used for therapeutic 
cleansing of wounds, since they only have short residence 
time on the wound site, which is further reduced by an 
excessive excretion of wound fluid [67].

Wound dressings

Traditional dry dressings include gauzes, cotton wool, and 
natural or synthetic bandages. Dry dressings can be used as 
primary or secondary dressings or as part of a combination 
of different dressings, with individual functions like 
absorbing exudate or protecting the wound from external 
influences. With improved understanding of optimized 
wound care, the focus shifted towards the development of 
wound dressings establishing of a moist wound healing 
environment [67]. Modern wound dressings are additionally 
capable of enhancing epidermal migration, promoting 
angiogenesis, providing gas exchange and protecting against 
pathogens [68].

As there are multiple different types of wounds, a wide 
range of wound dressings has been developed. Based on 
wound characteristics and patient condition, a suitable 
wound dressing must be chosen. Modern dressings are 
made out of both, natural and synthetic materials, in 
various physical forms such as films, foams, hydrocolloids, 
hydrogels, or hydrofibers [67]. Film dressings, historically 
made out of polyurethane, are extremely flexible, adherent, 
and transparent. While a certain water vapor transmission 
rate allows small amounts of exudate to escape through 
the film, higher amounts of liquid cannot be absorbed and 
leakage may occur [69]. Polyurethane or silicone foam 
dressings can absorb large amounts of exudate, but require 
a secondary dressing for adhesion [70].

Hydrocolloid dressings are made out of gel forming 
agents such as gelatine, pectin or carboxymethylcellulose, 
which take up wound exudate, often combined with 
elastomers and adhesives. They are nonadherent and easy 
to remove, but their suspected cytotoxic potential limits their 
application [67, 71].

Hydrogel dressings are crosslinked polymers with 
hydrophilic structure, such as poly(methacrylates) and 
polyvinylpyrrolidine. They are capable of establishing a 

moist wound environment due to their high water content 
(70–90  %) and also promote autolytic debridement. 
Nevertheless, their use is restricted by low mechanical 
strength and low exudate absorption properties [67].

Wound dressings can additionally serve as delivery 
systems. Commercially available antiseptic dressings 
include iodine or PHMB containing dressings as well as 
dressings impregnated with silver. Modern dressings used 
for the delivery of various antibiotics include collagen 
sponges and highly absorbing cotton wool dressings [67, 
72], however, regulatory approval of such products and the 
respective access on the international market is quite limited 
and dependent on the individual regulations of each country.

Advanced delivery systems

Unfortunately, all delivery systems currently available 
on the market show certain drawbacks. In case of semi-
solid and liquid formulations, the short application period 
and rapid diffusion processes limit the concentration of 
antimicrobials at the site of action for the therapeutically 
intended time interval. Wound dressings impregnated with 
those formulations can be used to increase the application 
time; nevertheless, they do neither control the release nor 
increase the biofilm penetration ability of antimicrobials. In 
order to meet the requirements mentioned above to a greater 
extent, a large number of advanced delivery systems has 
been developed in recent years.

Particulate carriers

The potential to penetrate into microbial cells and through 
the EPS of biofilms has led to an increasing interest in 
nano-sized particles. While nanoparticles (NP) can directly 
be applied in form of suspensions, their incorporation in 
secondary formulations (e.g., hydrogels, sponges, and fibers) 
eases their application. Table 1 provides an overview of 
recently developed antimicrobial nanoparticles.

Metal or metal oxide nanoparticles are typically used 
due to their intrinsic antimicrobial activity. The most 
commonly investigated materials are silver, gold, iron, 
copper, titanium dioxide, zinc oxide, and cerium oxide [73]. 
The release of reactive metal ions from the particle surface 
as well as a generation of reactive oxygen species leading 
to a membrane disruption of the pathogens are discussed as 
main mechanisms of their antimicrobial activity [74]. An 
enhanced efficacy of metal NP instead of materials with 
greater sizes is attributed to the combined effect of surface 
attachment and internalization of the NP into microbial cells 
[75]. Thus, besides the properties of the used material, the 
particle size as well as shape and surface charge appear to 
be key factors for determining the predominant mechanism 
of action [75].
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Table 1   Summary of recently developed antimicrobial nanoparticles for the treatment of infected wounds

Design of NP Material Loading of actives Secondary formulation Test model
Tested bacteria

Ref.

Metal NP Silver - Wound dressing In vitro: noncell-based, 
anti-biofilm assay

In vivo: rats
Tested bacteria: e.g., S. 

aureus, MRSA, P. aerugi-
nosa, E. coli

[87–92]

Silver - Suspension In vitro: noncell-based
In vivo: rats, mice
Tested bacteria: e.g., S. 

aureus, MRSA, P. aerugi-
nosa, E. coli

[81, 93]

Gold 6-Amino-penicillanic acid Wound dressing In vitro: noncell-based
In vivo: mice
Tested bacteria: S. aureus, 

E. coli

[94, 95]

Gold Ampicillin, LL37 Suspension In vitro: noncell-based, 
anti-biofilm assay

In vivo: rats, mice
Tested bacteria: e.g., E. 

coli, K. pneumoniae, 
MRSA

[96–98]

Palladium - Wound dressing In vitro: noncell-based
Tested bacteria: E. coli

[99]

Copper - Suspension In vitro: noncell-based
Tested bacteria: e.g., S. 

aureus, P. aeruginosa, 
E. coli

[100]

Metal oxide NP Zinc oxide - Wound dressing In vitro: noncell-based
Tested bacteria: S. aureus, 

MRSA, E. coli

[101, 102]

Titanium dioxide - Wound dressing In vitro: noncell-based
Tested bacteria: S. aurues, 

P. aeruginosa, E. coli, 
B.s ubtilis

[103]

Cerium oxide L-arginin (NO release) Suspension In vitro: noncell-based
Tested bacteria: S. aureus, 

E. coli

[104]

Copper oxide - Suspension In vitro: noncell-based, 
anti-biofilm assay

Tested bacteria: S. aureus, 
P. mirabilis

[105]

Iron oxide - Suspension In vitro: noncell-based
In vivo: mice
Tested bacteria: MRSA

[106]

Other inorganic NP Silica Gentamicin sulfate Wound dressing In vitro: noncell-based
Tested bacteria: S. aureus

[107]

Silica Ampicillin, NO-releasing 
small molecules

Suspension In vitro: noncell-based, 
anti-biofilm assay

In vivo: mice
Tested bacteria: e.g., S. 

aureus, S. epidermidis, 
E. coli

[83, 108]

Selenium - Wound dressing In vitro: noncell-based
Tested bacteria: S. aureus, 

S. epidermidis, E. coli

[109]
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Silver NP, as the most investigated metal NP, have been 
tested against a broad spectrum of wound pathogens. For 
instance, Kalishwaralal et al. reported an effect against 
bacterial biofilms. They assumed that silver NP diffuse 
through water channels into deeper regions of the biofilm 
and therefore provide an inhibition of bacterial growth 
while simultaneously inhibiting the production of EPS 
[76]. It was further proposed that an interruption of bacterial 
communication pathways occurs which may lead to a 
reduced biofilm formation [77].

Antimicrobial effects have also been reported for 
several other metal and metal oxide NP. To enhance the 
antimicrobial activity or adjust release kinetics, different 
metal materials are combined in various ways as shown in 
Fig. 2 [78]. In addition to single metal NP, different metal 
materials were combined by producing blend NP or NP 
comprising a core-shell structure with the aim of further 
enhancing the antimicrobial activity or adjusting release 
kinetics. Another modification method is doping NP with 
metal ions to gain an increased potency (Fig. 2) [78].

PLGA Poly(lactic-co-glycolic acid), PCL polycaprolactone

Table 1   (continued)

Design of NP Material Loading of actives Secondary formulation Test model
Tested bacteria

Ref.

Polymeric NP Chitosan Erythromycin, cefadroxil, 
silver Sulfadiazine

Wound dressing In vitro: noncell-based
In vivo: rats
Tested bacteria: e.g., E. 

coli, S. aureus, P. aerugi-
nos, B. subtilis

[110–112]

Chitosan Mg2+ / (−)epigallocate-
chin-3-gallate complex

Suspension In vitro: noncell-based
In vivo: rats
Tested bacteria: S. aureus, 

E. coli

[113]

PLGA Gentamicin sulfate Wound dressing In vitro: noncell-based, 
cell-based

Tested bacteria: S. aureus, 
P. aeruginosa

[114]

PLGA NO-releasing small 
molecules, levofloxacin, 
LL37

Suspension In vitro: noncell-based, 
anti-biofilm assay

In vivo: mice
Tested bacteria: MRSA, 

E. coli

[85, 86, 115]

PCL / pluronic F127 Chloramphenicol Suspension In vitro: noncell-based
In vivo: mice
Tested bacteria: MRSA

[116]

Gelatin Selenium (Ru-complex-
modified)

Suspension In vitro: noncell-based
In vivo: mice
Tested bacteria: MRSA, 

E. coli, S. aureus, S. epi-
dermidis, P. aeruginosa

[117]

Polydopamine Ciprofloxacin Wound dressing In vitro: noncell-based
In vivo: mice
Tested bacteria: S. aureus, 

E. coli, M. luteus, P. 
vulgaris

[118]

Other organic NP Fullerene - Suspension In vitro: noncell-based
In vivo: rats
Tested bacteria: S. aureus, 

E. coli

[119]

Graphitized carbon black Vancomycin Wound dressing In vitro: noncell-based
Tested bacteria: S. aureus, 

MRSA

[120]
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The inherent properties of NP such as small size and 
high surface area also provoke disadvantages. Next to 
the penetration into bacterial cells, NP are also capable 
of penetrating into human cells, causing cytotoxic effects 
against human skin cells [79, 80]. However, the cytotoxic 
activity of metal NP strongly depends on the present 
concentration and material. To further decrease systemic 
toxicity, NP were coated with surface stabilizers such as 
chitosan, leading to an enhanced biocompatibility and a 
reduced absorption of NP into the blood stream (Fig. 2) [81].

Other inorganic NP serve as drug delivery systems. 
In the context of the therapy of infected wounds, special 
attention has been paid to silica NP, due to the fact that 
their surface chemistry is well known. Their ratio of inert 
and active functional groups provides a minimal particle 
aggregation, while still allowing for surface modification and 
functionalization [82]. Furthermore, NO-delivering silica 
NP were developed, for which an antimicrobial effect against 
planktonic and biofilm bacteria could be shown. However, 
a cytotoxic effect comparable to standard antiseptic therapy 
was reported [83].

Additionally, organic polymeric NP, which are typically 
formed from chitosan or poly-(lactic-co-glycolic acid) 
(PLGA) and loaded with drugs in different ways (Fig. 2), 
may be promising drug delivery systems. PLGA is 
characterized through its biocompatibility, biodegradability, 
and possibilities of controlling the release kinetic [84]. 
For investigating the influence of the latter on antibiofilm 
efficacy, Cheow et al. prepared levofloxacin-loaded PCL and 
PLGA NP exhibiting different antibiotic release profiles and 
tested their biofilm susceptibility. They concluded that an 
observed biphasic release profile provides optimal conditions 
for antimicrobial activity against bacterial biofilms, with an 
initial burst release to kill bacteria followed by a sustained 
release over longer time inhibiting biofilm growth and 
minimalizing exacerbation [85]. PLGA NP have also been 
loaded with antimicrobial peptides such as LL37. Cherredy 
et al. produced such NP and reported an accelerated wound 
closure in comparison to pure LL37 in vivo which was 
again attributed to a biphasic release profile. Furthermore, 
antimicrobial activity against Escherichia coli in vitro, and 
no effect to the metabolism and proliferation of keratinocytes 
was reported [86].

Vesicular carriers

A prominent example for vesicular carriers are liposomes, 
which are formed out of one or more phospholipid double 
layers and an aqueous core. The amphiphilicity of their 
membrane offers the opportunity to incorporate both 
hydrophilic and lipophilic drugs, while providing high 
biocompatibility and versatility (Fig. 2). The potential of 
liposomes to fuse with biological membranes or induce 
their destabilization leads to an enhanced intracellular drug 
delivery potency [121]. Various active agents have been 
incorporated into liposomes (Table 2), of which some are 
discussed in the following.

As mentioned before, free iodine exhibits a relatively 
high cytotoxicity [30] with an additional risk of thyroid 
dysfunction in case of systemic absorption. To circumvent 
these problems, Reimer et  al. proposed a PVP-I 
liposome hydrogel for antiseptic treatment of wounds. 

Fig. 2   Drug incorporation strategies for particulate and vesicular car-
riers. a Particulate carriers consisting of different materials such as 
metals or polymers can be modified and loaded with drugs in differ-
ent ways. b Liposomes can incorporate drugs either in the lipophilic 
membrane or the hydrophilic core
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In cytotoxicity tests, they were able to demonstrate 
a significantly higher tolerance of PVP-I liposome 
complexes compared to aqueous PVP-I preparations with 
identical iodine concentrations. In vitro antimicrobial 
efficacy tests resulted in a superior antibacterial efficacy 
of the 3% PVP-I liposome hydrogel compared to a 10% 
PVP-I ointment. The lower PVP-I content minimizes 
the potential of systemic absorption, and thus the risk 
of thyroid dysfunction. The authors conclude that the 
combination of liposome hydrogel with PVP-I leads to a 

product that is able to prevent infection, while promoting 
the wound healing process in form of epithelization due 
to a moist environment [122].

ODC is another antiseptic for which a liposomal formulation 
was developed. Not only cleansing solutions but also other 
ODC agents often contain a surfactant like 2-phenoxyethanol 
(PE) for the same reasons as discussed before. Since PE has 
irritating effects, there is need for a new formulation. Szostak 
et al. introduced a liposomal formulation of ODC, relying on the 
same positive aspects of liposomes as mentioned above [39].

Table 2   Overview of antimicrobial liposomal formulations for the treatment of infected wounds

PC phosphatidylcholine, DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine, DPPC dipalmitoylphosphatidylcholine, DSPC 1,2-dis-
tearoylsn-glycero-3-phosphocholine, PE phosphatidylethanolamine, DSPE-PEG-Mal 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[maleimide(polyethylene glycol)-2000], PE-Rh L-a-phosphatidylethanol-amine-N-(lissamine rhodamine B sulfonyl), MSPC 1-stearoyl-2-hydroxyl-
sn-glycero-3-phosphocholine, PVP-I poly(vinyl pyrrolidone)-iodine

Material Loading of actives Secondary formulation Test model
Tested bacteria

Ref.

Soybean PC, cholesterol, cyanur-
PE (lysostaphin conjugated)

Vancomycin Suspension In vitro: noncell-based
In vivo: mice
Tested bacteria: S.aureus, MRSA

[127]

DMPC or DPPC or DSPC, cho-
lesterol

Gentamicin Suspension In vitro: noncell-based
Tested bacteria: P. aeruginosa

[124]

DPPC, Cholesterol (+DSPE-PEG-
Mal and PE-Rh)

Gentamicin Chitosan nanofiber mesh In vitro: noncell-based
Tested bacteria: S. aureus, E. coli, 

P. aeruginosa

[128]

PC Mupirocin Chitosan hydrogel In vitro: noncell-based
Tested bacteria:  e.g., S. epider-

midis, S. aureus, B. subtilis

[129]

PC, oleic acid, cholesterol 
(pegylated, pyochelin conjugated)

Cefepime, imipenem or ceftazi-
dime

Suspension In vitro: noncell-based
Tested bacteria: P. aeruginosa

[130]

DPPC, MSPC, DSPE-PEG-Mal Ciprofloxacin Suspension In vitro: noncell-based, anti-bio-
film assay

Tested bacteria: S.aureus

[131]

PC, cholesterol, tween 80, stear-
ylamine

Bacteriophage cocktail Suspension In vivo: mice
Tested bacteria: S. aureus

[132]

PC PVP-I Polyacrylic acid hydrogel In vitro: noncell-based
Clinical study
Tested bacteria: S. aureus

[122]

Soybean PC Octenidine dihydrochloride Suspension In vitro: noncell-based
Tested bacteria: E.coli

[39]

DPPC, DSPC, DSPE-PEG-Mal, 
cholesterol

Trichloroiso-cyanuric acid and 
cyanuric acid (HClO generating)

Suspension In vitro: cell-based
In vivo: mice
Tested bacteria: S. aureus

[133]

Soybean PC, polysorbate 20 
(neutral) or add. stearylamine 
(cationic) or soybean PC, sodium 
deoxycholate (anionic)

Curcumin Suspension In vitro: noncell-based
Tested bacteria: S. aureus, S. 

pyogenes

[134]

Egg lecithin, cholesterol Epigallocatechin gallate Suspension In vitro: noncell-based
In vivo: mice
Tested bacteria: MRSA

[135]

PC, cholesterol Propolis Suspension In vitro: noncell-based
Tested bacteria: e.g., S. aureus, 

E. coli, P. aeruginosa

[136]
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Next to antiseptic agents, liposomes have also been 
loaded with a variety of antibiotics. In this context, the 
possibility of protecting liposome-delivered drugs from 
enzymatic deactivation was reported. Nacucchio et al. 
prevented the hydrolysis of the betalactam antibiotic 
piperacillin by liposomal encapsulation [123]. Mugabe 
et  al. verified this observation, as they reported an 
enhanced antibacterial effect against gentamicin-resistant 
Pseudomonas aeruginosa from gentamicin-loaded 
liposomes, proposing that a protection from bacterial 
enzymes was achieved [124].

However, liposomal formulations struggle with 
instability issues which can result in drug leakage [84]. 
The development of polymersomes, another vesicular 
carrier system, could remedy the instability. By the use of 
amphiphilic block or graft copolymers with significantly 
higher molecular weight than lipids, polymersomes form 
a thicker and therefore much more stable membrane [125]. 
Polymer nanocapsules have successfully been used to 
stimulate corneal wound healing and could offer another 
alternative to liposomal formulations with additional 
benefits [126].

Fibers

Fibers with diameters in the nano- to micrometer range have 
gained increasing interest for wound healing applications. 
Their fibrous structure closely mimics the human 
extracellular matrix (Fig. 3), thus favoring cell adhesion, 
while simultaneously allowing gas exchange, inhibiting 
microbial infiltration, maintaining a moist environment, and 
providing high mechanic stability [137].

These fibers are mostly produced by electrospinning, 
processing a wide range of both natural and synthetic 
polymers. Of particular interest for the therapy of infected 
wounds are polymers with inherent antimicrobial activity. 
In this context, chitosan represents a prominent example. 
Chitosan is a cationic polysaccharide consisting of a 
copolymer of glucosamine and N-acetyglucosamine units 
[138]. Its inherent antimicrobial effect is most likely 
associated with its cationic nature resulting in interactions 
with anionic components of bacterial cell membranes, thus 
inducing an increase of membrane permeability followed 
by cell leakage and death [139, 140]. Wound dressings 
consisting of chitosan showed a reduced number of adherent 
bacteria [141]. Wang et al. further concluded a minimized 
risk of biofilm formation.

Fibers have been loaded with different antimicrobial agents 
including classical antiseptics, antibiotics, natural substances, 
and metal NP (Table 3). Different drug loading methods exist, 
such as attaching active substances to the surface or embedding 
them into fibers, as shown in Fig. 3. Attachment of antimicrobial 
agents to the surface of fibers is achieved by physical or 

chemical immobilization. This is especially interesting for 
nanoparticles such as metal NP [142] and liposomes [128]. 
Monteiro et al. functionalized electrospun chitosan fibers with 
thiol groups. Thus, a covalent binding of gentamicin-loaded 
liposomes is enabled. In this way, advantages of electrospun 
mats as wound dressings are combined with controlled release 
properties of liposomes [128]. Incorporation of active agents 
into fibers can be implemented by various methods, such as 

Fig. 3   Drug incorporation strategies into fibers. a Blend electrospin-
ning, a mixture of drugs, polymers and solvents is directly spun. b 
Co-axial electrospinning, where two solutions are separately spun 
through a nozzle with two concentric openings. c Emulsion electro-
spinning, where drug solutions are emulsified. d Attachment of drugs 
to the surface by physical or chemical immobilization post-electro-
spinning. e SEM image of electrospun fibers
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blend electrospinning, emulsion electrospinning, or co-axial 
electrospinning. Blend electrospinning is defined by directly 
spinning a mixture of polymers, actives, and solvents. Spinning 
of an emulsion in case of emulsion electrospinning can lead to 
the formation of either a preserved emulsion structure restricted 
to the inner phase or a core-shell structure through coalescing 
[137, 143]. Co-axial electrospinning is a direct method to 
produce fibers with a core-shell structure. In this approach a 
nozzle with two concentric openings is needed, which inhibits 
the contact between both solutions until they exit the syringe 
(Fig. 3) [144].

The release kinetic of antimicrobials can highly impact their 
efficacy against bacterial biofilms. To evaluate the influence 
of drug loading methods on the release kinetic of antibiotics, 
Torres-Giner et al. encapsulated gentamicin in pure polylactide 
fibers (PLA), in a blend of PLA and collagen as well as in 
coaxial fibers consisting of a PLA shell and a collagen core. 
The desired biphasic sustained release profile could be achieved 
with core-shell structured fibers. Incorporating the hydrophilic 
drug gentamicin into pure hydrophobic PLA resulted in a slow 
release, as a portion of gentamicin was retained inside the 
hydrophobic structure. The fastest release is observed using a 

Table 3   Electrospun fibers tested for therapy of infected wounds

PVP polyvinylpyrrolidone, ADA alginate dialdehyde, PLA polylactic acid, PCL polycaprolactone, PU polyurethane, PVA poly(vinyl alcohol), 
γ-PGA poly(γ-glutamic acid), PHMB polyhexamethylene biguanide, PVP-I poly(vinyl pyrrolidone)-iodine

Design of Fibers Material Loading of actives Test model
Tested bacteria

Ref.

Blend electrospinning PVP Ciprofloxacin In vitro: noncell-based
Ex vivo: human skin
Tested bacteria: P. aeruginosa

[147]

Blend electrospinning Gelatin, ADA Gentamicin sulfate and ciprofloxa-
cin

In vitro: noncell-based
In vivo: rats
Tested bacteria: P. aeruginosa, S. 

epidermidis

[148]

Blend electrospinning Zein Gentamicin In vitro: noncell-based
Tested bacteria: S. aureus, E. coli

[149]

Blend electrospinning
Coaxial electrospinning

PLA, PLA–collagen or PLA 
(shell), collagen(core)

Gentamicin In vitro: noncell-based
Tested bacteria: S. epidermis, P. 

aeruginosa, E. coli

[145]

Blend electrospinning Gelatin (dopamine crosslinked) Various polyhydroxy-antibiotics 
(e.g., daptomycin, vancomycin)

In vitro: noncell-based
Tested bacteria: e.g., S. aureus, 

MRSA, P. aeruginosa, K. pneu-
moniae, E. coli

[150]

Coaxial electrospinning Pluronic F127 (core), PCL (shell) Cathelicidin peptide 17BIPHE2 
(core)

In vitro: noncell-based, anti-bio-
film assay

Ex vivo: human skin
In vivo: mice
Tested bacteria: e.g., MRSA, A. 

baumannii, P. aeruginosa

[151]

Blend electrospinning PU PHMB In vitro: noncell-based
Tested bacteria: S. aureus

[152]

Coaxial electrospinning PCL (shell) (poly-L-lysine modi-
fied)

PVP-I (core) In vitro: noncell-based
Tested bacteria: S. aureus, E. coli

[153]

Blend electrospinning PCL Thymol In vitro: noncell-based,
anti-biofilm assay, cell-based
Tested bacteria: S. aureus, MSSA, 

MRSA

[154]

Blend electrospinning PVP Curcumin and cerium nitrate In vitro: noncell-based
Tested bacteria: S. aureus, E. coli

[155]

Surface functionalization PVA, lysine (Lys) Lavender oil, ibuprofen In vitro: noncell-based
Tested bacteria: S. aureus, P. 

aeruginosa

[156]

Surface functionalization PCL Bacteriophage In vitro: noncell-based
Tested bacteria: P. aeruginosa

[157]

Blend electrospinning γ-PGA (ethylene glycol-
crosslinked)

Photosensitizer In vitro: noncell-based
In vivo: mice
Tested bacteria: S. aureus, E. coli

[158]
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PLA/collagen blend. The water solubility of collagen leads to 
a porous structure and enables the diffusion of water molecules 
into the fibers and therefore the release of gentamicin [145]. The 
observed burst effect of blend electrospun fibers is consistent 
with another study where tetracycline was incorporated in PVA/
chitosan blend fibers [146].

Microneedles

The application of microneedles (MN) is an emerging 
transdermal drug delivery approach. The microscale needles 
exhibit a length of 25 to 2000 µm and are arranged on a patch 
with up to hundreds of needles per centimeter (Fig. 4). It has 
been shown that MN successfully penetrate the outer layers 
of skin, while, due to their small size, they do not provoke 
any pain stimulus and minimize damage to the skin barrier 
function [159, 160]. The incorporation of active ingredients 
into microneedles can take place in different ways as 
presented in Fig. 4. MN made of metal, silicone, or ceramic 
can be coated with a film containing active ingredients. 
Hydrogel-forming MN provide another possibility, their 
gelation enables the diffusion of active ingredients from 
an attached patch into the skin. A third possibility is posed 
by dissolving MN consisting of polysaccharides or other 
polymers in which the drug is encapsulated [161]. While 
necrotic tissue in infected wounds and the mechanical 
barrier provided by biofilms often hinder the administration 
of antimicrobial agents, MN appear to present a promising 
drug delivery system, since they are able to penetrate those 
barriers. Recently, several studies examined the effects of 
MN in combination with various antimicrobial agents on 
microorganisms and biofilms (Table 4).

Xu et al. fabricated patches with self-dissolvable MN 
and loaded the needle tips with gelatine NP containing 
chloramphenicol. After the MN were dissolved in the wound 
area, the gelatine NP were released and disassembled by 
the gelatinase produced by the active bacterial community 
of the biofilm. In comparison to chloramphenicol in free 
solution, they found that the MN-mediated treatment was 
more effective in treating Vibrio vulnificus biofilms [162]. 
A similar approach was shown by Permana et  al., who 
investigated the antimicrobial efficacy of chitosan-coated 
NP loaded with doxycycline and applied with the help of 
MN [163].

The combination of an electrospun fiber dressing with 
dissolvable MN arrays and AMP was reported by Su et al. 
This antimicrobial dressing was not only able to eradicate 
methicillinresistant Staphylococcus aureus (MRSA) 
biofilms in different wound infection models after daily 
treatment without applying surgical debridement, but also to 
completely remove a dual-species biofilm of Pseudomonas 
aeruginosa and MRSA in an ex vivo human skin infection 
model [164].

Against the background of the state-of-the-art drug delivery 
systems, the advanced drug delivery systems have some 
considerable advantages. The penetration into biofilms can 
be improved by both NP and MN, while liposomes enable the 
intracellular transport of antimicrobials. Bacterial resistance 
mechanisms can be overcome by specific vesicular carriers. 
Additionally, the use of NP and liposomes allows for targeting. 
Release kinetics can easily be adjusted using polymeric NP or 

Fig. 4   Drug incorporation strategies into microneedles. a Coated 
microneedles. b Hydrogel-forming microneedles, the drug diffuses 
from the patch through the microneedles. c Dissolving micronee-
dles, in which the drug is encapsulated. d LM image of dye-loaded 
microneedles
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fibers. Fibers further promote physiological wound healing 
through their structure. However, the field of innovative 
applications has yet not fully been exploited. Although many 
promising systems have been developed, the pathophysiological 
situation of infected wounds as well as requirements for “real 
life” clinical application are often insufficiently considered, and 
the studies remain on an academic level lacking transfer potential 
towards clinical applications. More interdisciplinary research is 
urgently needed for the development of drug delivery systems 
that are not only effective in artificial test environments but have 
the potential to become next-generation wound therapeutics.

Preclinical testing of novel drugs 
and formulations for infected wounds

As mentioned above, the simulation of an infected wound 
scenario represents a particular challenge. Due to ethical and 
regulatory reasons, wound healing studies with novel drugs 
or formulations cannot be performed in humans. Therefore, 
predictive models of human skin wounds, especially in the 
infected state, are required. Additionally, there is a strong 
need for appropriate analytical techniques to evaluate the 
therapeutic effect and potential side effects.

Table 4   Summary of studies regarding the effects of MN in combination with antimicrobial agents on microorganisms and biofilms

PVA polyvinyl alcohol, PVP polyvinylpyrrolidone, PCL polycaprolactone, PLGA poly(lactic-co-glycolic acid)

Microneedle design Fabrication materials Loading Test model/tested bacteria Ref.

Dissolving MNs PVA, PVP Silver NPs incorporated into 
bacteria-responsive microparticles 
(MP)

In vitro: noncell-based, anti-biofilm 
assay

Ex-vivo: rat skin
Tested bacteria: S. aureus, P. aer-

uginosa

[165]

Dissolving MNs Manuka honey  - In vitro: noncell-based
Tested bacteria: MRSA

[166]

Dissolving MNs PVA, PVP Carvacrol-PCL-NPs In vitro: noncell-based
Ex-vivo: pig skin
Tested bacteria: S. aureus, P. aer-

uginosa

[167]

Two-layered dissolving MNs PVA, PVP covered 
with PVP, glycerol

Doxycycline loaded PLGA and PCL 
NPs

In vitro: noncell-based, anti-biofilm 
assay

Ex-vivo: pig skin
Tested bacteria: S. aureus, P. aer-

uginosa

[163]

Dissolving MNs PVP Antimicrobial peptides In vitro: noncell-based
Ex vivo: human skin
In vivo: mice
Tested bacteria: MRSA, K. pneumo-

niae, A. baumannii, P. aeruginosa

[164]

Dissolving MNs Chitosan, Zn2+  - In vitro: noncell- based, anti-biofilm 
assay

Tested bacteria: S. aureus, E. coli

[168]

Dissolving MNs with loaded needle 
tips

PVP Chloramphenicol bearing, gelati-
nase-sensitive gelatin NPs

In vitro: anti-biofilm assay
Tested bacteria: V. vulnificus

[162]

Dissolving MNs Gantrez® AN-139 Methylene blue In vitro: noncell-based, anti-biofilm 
assay

Tested bacteria: S. aureus, E. coli, 
C. albicans

[160]

Dissolving MNs Hyaluronic acid Green tea extract In vitro: noncell-based
In vivo: rats
Tested bacteria: E. coli, S. typh-

imurium, P. putida, B. subtilis, S. 
aureus

[169]
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Models of infected human skin wounds

In vivo, ex vivo, and in vitro models have been developed 
to imitate infected human skin wounds (Fig. 5). Next to 
the possibility of investigating the wound healing process, 
chronification of wounds as well as biofilm formation, 
such models allow for the testing of novel wound healing 
agents or drug delivery systems. During preclinical testing, 
animal models are used, including mice, rats, rabbits, 
and pigs [170]. Even though in vivo models represent a 
complete organism’s reactions in terms of wound healing, 
infection, and therapeutic success of applied medications, 
the translatability of animal data to the situation in the 
human body is limited. Especially in rodents like mice and 
rats, which are predominantly used as models, the immune 
response is significantly different and wound healing is 
governed by an additional layer of muscles, which is absent 
in the human body [171]. In this respect, pig models show 
more similarities to humans [172], but their use is limited 
due to high costs. Simultaneously, ethical concerns remain 
[173] and the variability between experiment conditions 
and different animals results in limited reproducibility and 
comparability between different animal studies.

Ex vivo infected wound models provide a promising 
alternative. Porcine or murine tissues are typically used, 
but models based on human skin also exist [174]. The skin 
is cultured in an artificial environment (e.g., hydrogel) that 
offers more controlled experimental conditions [175].

Cell-based in vitro models include two-dimensional 
cell monolayers and more sophisticated three-dimensional 
tissue engineered human skin equivalents. Hereby, cell 
monolayers of keratinocytes offer a very simple method 
used for basic research purposes, but cannot mimic 
bacterial invasion and interaction with different cell types 
or the extracellular matrix that occur in vivo [173, 175]. In 
contrast, complex three-dimensional models show improved 

simulation of the complex microenvironment of human 
infected wounds, but unlike human skin they usually do 
not contain immune cells as well as blood cells and hair 
follicles [176, 177].

For simulating an infection, the wound is inoculated with 
one or more pathogens (Fig. 5), whereby selection of an 
appropriate concentration for inoculation remains difficult 
as high doses may induce an increased mortality, while 
inoculation of too few bacteria may not represent the true 
status presented in infected wounds and in case of in vivo 
models pathogen elimination by the hosts immune system 
may occur [175].

Most models only represent an acute state of infection 
with planktonic bacteria, while no biofilm formation occurs. 
This is due to the fact that considering biofilm formation 
complicates the modeling of infected wounds and requires 
a prolonged observation period. Still, the main challenge 
is maintaining an infected wound model over a prolonged 
period of time in terms of the length of time for chronic 
wound infections and providing an adequate supply of 
nutrients and oxygen [175]. To circumvent the need of living 
cells, static or dynamic in vitro biofilm models can be used 
to test novel antimicrobial agents (Fig. 5). In vitro biofilm 
models allow a cheap and easy access to high-throughput 
experiments. However, a lack of interactions between 
biofilm and host’s microenvironment exists leading to a 
questionable physiologic relevance.

Analytical techniques

The analytical assessment of wound healing can be achieved 
using a variety of different techniques, with emphasis on 
optical methods ranging from digital photography to 
microscopy approaches. Complementary, microbiological 
assays and DNA sequencing techniques can be used to 
quantify the bacterial burden.

Fig. 5   Schematic overview of 
models of infected human skin 
wounds: planktonic bacteria can 
be used to either infect in vivo, 
in vitro, or ex vivo wound 
models directly or to develop 
in vitro static or dynamic 
biofilm models; precultured 
bacterial biofilms can also infect 
wound models
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Light microscopy (LM) is commonly used for histological 
examination of sample sections. Since it is a low-cost and 
robust method, the application is widespread [15]. Harrison-
Balestra et al. used LM in combination with a modified 
Congo red staining technique to demonstrate the sequential 
development of mature biofilm grown by wound-isolated 
Pseudomonas aeruginosa. They could show that the EPS of 
the developing biofilm was visible after 5 h and exhibited 
the characteristics of a mature biofilm by 10 h [178]. Since 
staining only allows for a presumptive identification of 
species, it is impossible to obtain a definitive identification 
of microbial species with LM. In addition, its use is limited 
to microbial cell suspensions and thin tissue sections.

Fluorescence in situ hybridization (FISH) uses fluorescent-
labelled complementary DNA, RNA, or modified nucleic acid 
strands to identify and, if applicable, locate a specific DNA 
or RNA within a tissue or in a microbial suspension. Imaging 
is possible with either a fluorescence microscope (FM) or by 
confocal laser scanning microscopy (CLSM). While the use 
of FM is limited to microbial cell suspensions and thin tissue 
sections, CLSM enables the examination of tissue blocks 
and the reconstruction of 2D or 3D structures. Almeida et al. 
used a modified FISH method in combination with CLSM to 
quantify and visualize the different microorganisms in mixed 
biofilm populations and were able to identify different microbial 
layers within the biofilm [179]. Further, FISH and CLSM 
have successfully been used to evaluate the effect of topical 
ointments on biofilms formed by Pseudomonas aeruginosa 
and Staphylococcus aureus [180]. Of course, FM and CLSM 
can be used with other fluorescent markers [181]; however, the 
use is limited to the observation of fluorescent structures, while 
nonfluorescent structures will be missed [15].

Scanning electron microscopy (SEM) enables the 
identification of biofilm by imaging the surface layers and 
providing insight into the 3D structure. In vitro biofilms can 
be investigated regarding size, arrangement, and architecture 
of cell aggregates and the extracellular matrix [182, 183]. 
Similar structures in samples from chronic nonhealing wounds 
in humans can indicate microbial biofilm formation [184]. 
Since SEM generally requires dehydration of the samples, it 
is not possible to examine living material; additionally, the 
dehydration may cause changes in the samples [15].

All these analytical methods have a destructive sample 
preparation in common, either sectioning and staining or 
dehydrating. Therefore, the analysis is limited to only one point 
in time and there is a need for nondestructive methods. Staining 
has the additional disadvantage that a detailed knowledge of the 
sample is required so that unknown states can only be discovered 
by chance. A noninvasive analysis technique widely used in 
clinical practice is digital photography. The progress of wound 
healing can be assessed by evaluating the images; however, the 
photography is limited to superficial observation.

An emerging technology is optical topography (OT), 
which enables additional analysis of wound bed volume. 
Based on the white light reflection, OT enables the 
nondestructive three-dimensional visualization of the entire 
defect area within a wound (Fig. 6). Planz et al. reported 
great potential of this technique for monitoring wound 
healing by successive scanning of the wound geometry 
[185]. OT thus represents a technique with which the 
influence of biofilms on wound healing can be observed 
noninvasively and over a longer period of time.

Confocal Raman microscopy (CRM) poses another 
emerging label-free and noninvasive technique, which 

Fig. 6   Noninvasive measurement of a wound model, resulting in a three-dimensional visualization of the wound with optical topography and dif-
ferent Raman spectra for the epidermis and dermis, as well as a false-color Raman image of a virtual section of the wound
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additionally allows for examining individual cells, 
biological tissues, and pathophysiological changes 
within tissues. Raman spectra of biological molecules 
reveal a chemically selective fingerprint peak pattern, 
containing information about the sample’s composition 
and interactions (Fig. 6). Due to these advantages, CRM 
has already been used for various skin applications, from 
the analysis of physiological component distribution in 
skin tissue to the diagnosis of pathological states and 
the identification of wound healing stages [186, 187]. 
CRM is a promising technique to monitor the interaction 
between human skin cells and biofilm at the cellular level 
and the impact of biofilm on wound healing over time in 
a noninvasive way.

Fur ther analytical techniques suitable for the 
noninvasive time-dependent wound analysis are 
optical coherence tomography (OCT), high-frequency 
ultrasound (HFUS), in vivo fluorescence laser scanning 
microscopy (FLSM), magnetic resonance imaging 
(MRI), multispectral polarized light imaging (MPLI), 
terahertz imaging (TI), and near-infrared spectroscopy 
(NIR) [188, 189]. OCT measures the optical pathway 
from backscattered light to image biological tissue [188, 
190, 191]. Kuck et  al. assess OCT as insufficiently 
established to replace histological sections, since it is 
not possible to reveal the whole complexity of wound 
healing. However, OCT might offer the possibility of 
reducing skin biopsies for monitoring purposes [188]. 
In comparison to HFUS, which uses backscattered 
ultrasonic waves instead of light, Vogt et al. concluded 
that OCT shows a better resolution, while HFUS offers 
the advantage of a less restricted field-of-view [191]. 
The resolution of FLSM is comparable to histological 
analysis, though the penetration depends on the laser 
used and is often limited to the epidermis and upper 
dermis [189, 192]. MPLI combines the detection of 
reflection, scattering, and transmission at the same time. 
MPLI images correlate well with histological analysis 
and can be generated rapidly over large surfaces, but 
the resolution does not allow for information of the 
morphology of individual cells or fine structures [193]. 
MRI allows for the investigation of the behavior of 
water molecules in vivo by applying a magnetic field 
[194, 195]. By capturing pulses of electromagnetic 
radiation, TPI enables skin areas to be mapped within a 
few minutes. The thickness as well as the hydration level 
of the stratum corneum can be assessed [196, 197]. IR 
induces fundamental molecular vibrations, overtone and 
combination bands of these vibrations can be seen in der 
NIR region. While IR penetrates only into the uppermost 
layers of the stratum corneum, NIR also penetrates also 
the dermal skin layer due to shorter wavelengths [198].

Conclusion and future perspectives

The incidence of infected wounds is increasing, and so is the 
economic and humanitarian interest in an effective therapy. 
Biofilm formation especially in chronic wounds complicates 
the treatment. While there is a wide range of active ingredients, 
from antiseptics to antibiotics, they are all associated with 
relevant disadvantages. Aside the challenge of achieving 
adequate concentrations at the site of infection, bacteria show 
increasing resistance against many antibiotics. Antiseptics 
can be used to avoid the development of resistance; however, 
they are often cytotoxic to human cells. To circumvent these 
challenges, suitable drug delivery systems are of particular 
importance. In recent years, the development has moved away 
from classic pharmaceutical formulations such as semi-solid and 
liquid preparations in combination with dry wound dressings 
towards wound dressings that promote wound healing through 
a moist environment and even more advanced drug delivery 
systems like particulate carriers, vesicular carriers, fibers, and 
microneedles. Although these systems are very promising and 
offer considerable advantages over state-of-the-art drug delivery 
systems, in most cases, their applicability in clinical practice 
has not yet been sufficiently considered, resulting in a lack of 
translation from academic studies to the clinics.

A particular challenge in the development of effective 
treatments is the preclinical testing to predict the efficacy, 
absorption, and safety of new active agents or drug delivery 
systems in an infected wound environment. Besides 
examination of isolated in vitro biofilm models, different 
infected wound models ranging from in vivo over ex vivo to 
in vitro have been developed. However, the imitation of chronic 
wounds remains a challenge for all models so far. Within the 
scope of analytics, the noninvasive techniques of confocal 
Raman microscopy and optical topography represent promising 
alternatives to established invasive imaging methods.

In addition, the future development of infected wound 
therapy should not only concentrate on the delivery of drugs 
adapted to the wound environment, but should also include 
in situ analysis of wounds with integrated sensors to allow 
for monitoring of changes in the wound environment.

In summary, there has been a lot of effort in developing 
effective treatment options for infected wounds. The 
combination of a better understanding of the wound 
environment with effective drug delivery systems will enable 
the future perspective of a targeted therapy, which can slow 
down the progression of resistance development while at the 
same time reducing adverse side effects. The area is currently 
far from being fully developed, but the broad spectrum of novel 
approaches provides a promising basis for future research.
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