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Abstract
Background: This	study	aimed	to	examine	multi‐dimensional	MRI	features’	predict‐
ability	 on	 survival	 outcome	 and	 associations	 with	 differentially	 expressed	 Genes	
(RNA	Sequencing)	in	groups	of	glioblastoma	multiforme	(GBM)	patients.
Methods: Radiomics	features	were	extracted	from	segmented	lesions	of	T2‐FLAIR	
MRI	data	of	137	GBM	patients.	Radiomics	features	include	intensity,	shape	and	tex‐
tural	features	in	seven	classes	were	included	in	the	analysis.	Patients	were	divided	
into	two	groups	depending	on	their	survival	time	(shorter	or	longer	than	1‐year	sur‐
vival).	Four	different	machine	learning	algorithms	were	implemented	to	construct	the	
prediction	models.	Features	with	top	importance	(importance	>0.04)	were	selected	
to	construct	the	prediction	model	using	the	model	with	the	best	performance.	The	
interactions	between	image	features	and	genomics	were	then	analysed	with	Pearson's	
correlation	analysis.
Results: The	GBDT	model	with	72	features	with	highest	importance	had	the	highest	
accuracy	of	0.81	on	both	short	and	long	survival	time	classes,	and	the	area	under	the	
curve	(AUC)	of	the	receiver	operative	characteristic	(ROC)	of	the	short	and	long	sur‐
vival	 time	class	were	0.79	and	0.81.	 Six	metagenes	 showed	 significant	 interactive	
effect	 (P	<	0.05),	 and	 Pearson's	 correlation	 analysis	 revealed	 that	 three	 of	 these	
metagenes	(TIMP1, ROS1 EREG) showed moderate (0.3 < |r|	<	0.5)	or	high	correlation	
(|r|	>	0.5)	with	image	features.
Conclusion: Radiogenomics	analysis	shows	that	MRI	features	are	predictive	of	sur‐
vival	outcomes,	and	image	features	are	highly	associated	with	selective	metagenes.	
Radiogenomics	analysis	 is	a	useful	method	for	optimizing	clinical	diagnosis	and	se‐
lecting	effective	treatments.
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1  | INTRODUC TION

Glioblastoma	multiforme	 (GBM),	 one	 of	 the	most	 invasive	 and	 fatal	
brain	tumours	that	develops	from	glial	cells,	can	severely	affects	the	
central	nervous	system	and	general	health	[1].	The	percent	5‐year	sur‐
viving	rate	was	estimated	to	be	33.2%	between	2008	and	2014	accord‐
ing	to	statistics	from	the	Surveillance,	Epidemiology	and	End	Results	
(SEER)	database	and	the	Centers	for	Disease	Control	and	Prevention's	
National	 Center	 for	 Health	 Statistics	 (https://seer.cancer.gov/
csr/1975_2015/).	Due	to	the	heterogeneous	nature	of	GBM,	relatively	
high	age	of	disease	onset,	migration	of	malignant	cells	to	surrounding	
tissue,	the	treatment	outcome	for	GBM	are	highly	variable,	yielding	an	
average	survival	 rate	of	12.6	months	 [2].	Current	clinical	practice	 for	
treating	GBM	mostly	involves	tumour	resection	and	chemotherapy	[3].

Genomics	study	is	an	essential	method	to	study	GBM	by	exam‐
ining	alternations	in	genomic	pathways	and	identifying	relevant	bio‐
markers.	Gene	 studies	 involving	 tissues,	 plasma,	 or	 cell	 lines	 used	
protein	expression	data	to	reveal	that	common	alternations	in	GBM	
include	mutations	of	specific	gene	and	proteins	such	as	RTKs,	TP53	
RB1	and	increased	expression	of	EGFR	and	PDGFRA	[4,	5].	However,	
tissue	sample	is	usually	acquired	after	biopsy	and	may	not	be	suit‐
able	for	all	patients,	especially	for	early	diagnosis.

Neuroimaging	of	GBM	is	a	non‐invasive	tool	for	disease	diagno‐
sis	and	monitor	treatment	outcome.	A	wide	range	of	MR	techniques	
including	T1,	T2	and	FLAIR	imaging	are	used	to	capture	GBM	charac‐
teristics.	Typically,	GBM	appears	as	a	heterogeneous	enhancement	
region	with	 a	 non‐enhancing	 necrosis	 in	 the	 center	 [6].	 FLAIR	 se‐
quences	have	advantages	of	showing	abnormalities	more	clearly	[7].	
MRI‐based	features	were	shown	to	be	highly	predictive	of	tumour	
grading	 in	GBM	 [8].	Textural	 image	 features	were	 associated	with	
CD3	T	cell	infiltration	status	in	GMB	[9].

In	recent	years,	the	emergence	of	radiogenomics,	combing	radio‐
mics	 image	features	and	genomics,	allows	the	study	of	GBM	more	
comprehensively.	For	example,	MRI	parameters	revealed	that	hae‐
modynamic	abnormalities	were	associated	with	the	expression	level	
of	the	mTOR‐EGFR	pathway	in	[10].	Based	on	previous	findings,	we	
aimed	to	investigate	the	machine	learning	based	methods	in	combi‐
nation	with	radiogenomics	to	study	the	associations	among	MRI	fea‐
tures,	genomics	and	the	survival	rates	 in	GBM	patients.	Computer	
assisted	methods	allow	more	comprehensive	characterization	of	im‐
aging	data	and	more	sophisticated	way	to	predict	disease	outcome.	
We	hypothesize	that	radiomics	features	of	FLAIR	imaging	data	can	
be	predictive	of	patients’	 survival,	 and	 radiogenomics	analysis	can	

reveal	the	linkage	between	images	features	and	known	genes	in	pre‐
viously	defined	molecular	pathways.

2  | MATERIAL S AND METHODS

2.1 | Dataset

MRI	 data	 were	 obtained	 from	 the	 Cancer	 Imaging	 Archive	 (TCIA)	
(https://wiki.cancerimagingarchive.net/display/Public/TCGA‐GBM),	
and	corresponding	genomics	data	were	acquired	 from	 the	Genomic	
Data	Commons	(GDC)	Data	Portal.	A	total	of	137	patients	with	MRI	
data,	129	patients	with	known	genomic	data	were	included	in	the	anal‐
ysis	and	46	patients	were	the	intersection	of	MRI	data	set	and	gene	
data	set.	Patient	characteristics	are	summarized	in	Table	1.	Because	the	
average	survival	rate	of	GBM	patients	was	reported	to	be	12.6	months	
[2],	 and	all	 the	patients	 in	our	cohort	has	demised	during	 follow‐up,	
for	the	classification	purpose,	we	used	1	year	as	a	threshold	and	the	
patients	were	divided	 into	short	 (<1	year)	and	 long	 (>1	year)	 survival	
groups.	Figure	1	shows	the	process	of	the	workflow	of	this	study.

2.2 | Image preprocessing and lesion segmentation

Lesion	 segmentation	 is	 required	 before	 feature	 extraction.	 Lesion	
volumes	 were	 manually	 delineated	 by	 an	 experienced	 radiologist	
using	3D	slicer	(https://www.slicer.org/).	All	original	loaded	MRI	im‐
ages	of	patients	were	DICOM	format.	After	adding	MRI	data	into	3D	
slicer,	we	selected	the	Segment	Editor	module	to	segment	the	lesion.

2.3 | Feature extraction

Feature	extraction	was	performed	using	a	Python	software	package	
Pyradiomics	 [11].	 First‐order	 and	multi‐dimensional	 features	were	
extracted	from	seven	feature	classes	including	First	Order	Features,	
Shape	Features,	Gray	Level	Co‐occurrence	Matrix	(GLCM)	Features,	
Gray	 Level	 Size	 Zone	 Matrix	 (GLSZM)	 Features,	 Gray	 Level	 Run	
Length	Matrix	(GLRLM)	Features,	Neighboring	Gray	Tone	Difference	
Matrix	(NGTDM)	Features,	Gray	Level	Dependence	Matrix	(GLDM)	
Features.	Detailed	number	of	each	feature	is	listed	in	Table	S1.

2.4 | Machine learning model 
construction and evaluation

The	MRI	dataset	was	divided	into	the	training	and	testing	sets	ac‐
cording	to	a	ratio	of	7:3.	Four	machine	learning	algorithms	including	

TA B L E  1  Clinical	characteristics	of	the	cohort.	This	table	shows	the	clinical	information	of	the	data	analysed	in	this	study.	Gene∩MRI	
means	that	the	dataset	has	both	genetic	data	and	MRI	data

Gender Death days to diagnosis Number Age

Men Female Long (>1 year) Short (<1 year) Total Mean SD

Gene 85 44 68 61 129 62.05	(25‐89) 12.55

MRI 85 52 71 66 137 61.24	(16‐86) 13.53

Gene+MRI 27 19 25 21 46 61.86	(32‐86) 12.04

https://seer.cancer.gov/csr/1975_2015/
https://seer.cancer.gov/csr/1975_2015/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://www.slicer.org/
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GBDT	(Gradient	Boosting	Decision	Tree),	logistic	regression,	sup‐
port	vector	machine	(SVM)	and	KNN	(k‐nearest	neighbours)	were	
tested.	These	 four	methods	 are	 representative	 in	 their	own	cat‐
egory.	Gradient	boosting	decision	 tree	 is	 a	 tree‐based	ensemble	
machine	learning	model	which	can	achieve	state‐of‐the‐art	accu‐
racy	in	classification	and	regression.	Logistic	regression	is	a	classic	
probabilistic	model.	Support	vector	machine	is	another	widely	used	
model	featured	by	kernel	trick	[12].	As	for	k‐nearest	neighbours,	
it	 is	a	typical	 lazy‐learning	method	and	is	frequently	treated	as	a	
benchmark	 in	predictive	modelling	 [13].	Feature	 importance	was	
computed	using	GBDT	(https://doi.org/10.2307/2699986),	imple‐
mented	 by	 python	 package	 sci‐kit	 learn	 (https://scikit‐learn.org/
stable/index.html).	In	the	final	prediction	model	construction,	fea‐
ture	with	importance	value	smaller	than	0.04	which	were	treated	
as	not	important	were	excluded.	This	threshold	is	chosen	after	the	
manually	checking	of	the	distribution	of	feature	importance.

Confusion	matrices	and	receiver	operative	characteristic	(ROC)	
were	 computed	 to	 evaluate	 and	 compare	 the	 performances	 of	 all	
four	machine	 learning	models.	 The	model	 that	 is	most	 predictive	
of	GBM	patients’	survival	time	is	chosen	for	further	radiogenomics	
analysis.

2.5 | Relevant gene selection

Differentially	 expressed	 genes	 (DEGs)	 analysis	 was	 performed	
with	R	software,	using	package	DESeq2.	A	gene	is	declared	to	be	
DEGs	if	a	difference	or	change	observed	in	read	counts	or	expres‐
sion	 is	statistically	significant.	Fold	change	and	 t	 test	are	widely	
used	methods	to	estimate	gene	variances	in	practice	[14].	The	con‐
dition	we	added	for	screening	out	DEGs	was	|log2(fold	change)|	>	
1	 and	 adjusted	P	<	0.05.	And	 the	 same	DEGs	 analytical	 process	
was	applied	to	Dataset	of	Gene	and	Dataset	with	both	MRI	and	

F I G U R E  1  The	workflow	of	this	study.	
The	radiomics	workflow.	Lesions	were	
segmented	from	untreated	MR	images.	
Feature	extraction	was	performed	from	
lesions	by	pyradiomics.	The	radiomics	
features	were	selected	for	classifier	model	
constructing.	And	the	classifier	model	was	
evaluated	by	confusion	matrix	and	ROC	
curves

https://doi.org/10.2307/2699986
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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TA B L E  2  Detailed	names	and	abbreviations	of	72	features

Full name Short name

log‐sigma‐3‐0‐mm‐3D_gldm_SmallDependenceEmphasis gldm‐SDE

wavelet‐HHL_gldm_DependenceNonUniformityNormalized gldm‐DNUN

log‐sigma‐3‐0‐mm‐3D_firstorder_Uniformity firstorder‐Uniformity

wavelet‐HHH_glszm_GrayLevelNonUniformityNormalized glszm‐GLNUN

wavelet‐LLL_glcm_InverseVariance glcm‐IV

wavelet‐LLH_glszm_ZonePercentage glszm‐ZP

wavelet‐LLH_glcm_Idm glcm‐LLH‐Idm

wavelet‐HLH_glcm_InverseVariance glcm‐HLH‐IV

log‐sigma‐4‐0‐mm‐3D_glcm_Idm glcm‐Idm

wavelet‐HLH_glcm_SumSquares glcm‐HLH‐SS

wavelet‐HLH_gldm_GrayLevelVariance gldm‐HLH‐GLV

wavelet‐LLL_glszm_ZoneVariance glszm‐LLL‐ZV

log‐sigma‐4‐0‐mm‐3D_glcm_Id glcm‐Id

wavelet‐HHL_glrlm_RunLengthNonUniformityNormalized glrlm‐HHL‐RLNUN

wavelet‐HLL_glrlm_RunLengthNonUniformityNormalized glrlm‐HLL‐RLNUN

wavelet‐HLH_glszm_SmallAreaEmphasis glszm‐HLH‐SAE

wavelet‐LLL_glcm_Correlation glcm‐LLL‐Correlation

wavelet‐HHH_glszm_SmallAreaEmphasis glszm‐SAE

wavelet‐HHL_glcm_DifferenceAverage glcm‐DA

log‐sigma‐5‐0‐mm‐3D_glcm_Correlation glcm‐Correlation

log‐sigma‐4‐0‐mm‐3D_glrlm_ShortRunEmphasis glrlm‐SRE

original_glrlm_RunLengthNonUniformityNormalized glrlm‐RLNUN

wavelet‐LHL_glcm_Idn glcm‐LHL‐Idn

wavelet‐HLH_glcm_Idn glcm‐HLH‐Idn

wavelet‐HHL_glcm_Idn glcm‐HHL‐Idn

wavelet‐LLL_glrlm_RunLengthNonUniformityNormalized glrlm‐LLL‐RLNUN

wavelet‐LLL_glcm_Imc2 glcm‐LLL‐Imc2

log‐sigma‐5‐0‐mm‐3D_glcm_Idn glcm‐Idn

log‐sigma‐4‐0‐mm‐3D_glcm_Idmn glcm‐Idmn

wavelet‐HLH_glcm_ClusterProminence glcm‐HLH‐CP

wavelet‐HHL_glcm_DifferenceEntropy glcm‐HHL‐DE

wavelet‐HHH_firstorder_InterquartileRange firstorder‐HHH‐IR

wavelet‐HHL_firstorder_InterquartileRange firstorder‐HHL‐IR

log‐sigma‐3‐0‐mm‐3D_firstorder_Entropy firstorder‐Entropy

wavelet‐LLH_gldm_LargeDependenceEmphasis gldm‐LLH‐LDE

wavelet‐LLH_glcm_DifferenceEntropy glcm‐LLH‐DE

wavelet‐HLH_firstorder_InterquartileRange firstorder‐HLH‐IR

wavelet‐LHL_gldm_LargeDependenceEmphasis gldm‐LHL‐LDE

original_gldm_LargeDependenceEmphasis gldm‐LDE

wavelet‐LHH_glcm_SumEntropy glcm‐LHH‐SE

wavelet‐LHH_glszm_LargeAreaEmphasis glszm‐LHH‐LAE

log‐sigma‐5‐0‐mm‐3D_glcm_SumSquares glcm‐SS

log‐sigma‐2‐0‐mm‐3D_glcm_Contrast glcm‐Contrast

wavelet‐LHH_gldm_LargeDependenceEmphasis gldm‐LHH‐LDE

log‐sigma‐5‐0‐mm‐3D_glrlm_RunEntropy glrlm‐RE

(Continues)
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Gene	data	to	obtain	DEGs.	DEGs	are	treated	as	metagenes	in	our	
analysis.

After	screening	out	DEGs,	the	number	of	samples	was	reduced	while	
individual	differences	among	groups	were	enhanced.	In	order	to	screen	
for	efficiently	DEGs,	we	selected	the	DEGs	from	the	intersection	of	the	
Genetic	Dataset	and	Dataset	which	contain	both	MRI	and	Gene	data.

2.6 | Correlations between image 
features and genomics

To	survey	the	potential	correlations	between	the	 important	 image	
features	 of	 the	 classification	 model	 and	 the	 efficiently	 DEGs,	 we	
performed	 Pearson	 correlation	 analysis.	 Statistically,	 the	 absolute	

F I G U R E  2  The	performance	of	the	
GBDT	classifier.	A,	Confusion	matrix	
(The	horizontal	line	means	the	number	of	
predicted	in	each	group;	the	vertical	line	
means	the	actual	number	of	each	group.	
The	leading	diagonal	represents	correct	
prediction;	the	minor	diagonal	represents	
incorrect	prediction).	B,	Receiver	
operating	characteristic	(ROC)	curve.	(X 
axis	represents	false	positive	rate	and	Y 
axis	is	true	positive	rate.)

Full name Short name

log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance glszm‐ZV

wavelet‐HHL_glcm_JointEntropy glcm‐JointEntropy

log‐sigma‐3‐0‐mm‐3D_glszm_LargeAreaEmphasis glszm‐LAE

wavelet‐LLH_gldm_GrayLevelNonUniformity gldm‐GLNU

wavelet‐HLL_glszm_GrayLevelNonUniformity glszm‐GLNU

log‐sigma‐5‐0‐mm‐3D_glszm_ZoneEntropy glszm‐ZE

wavelet‐HLL_gldm_GrayLevelNonUniformity gldm‐HLL‐GLNU

wavelet‐LLL_glcm_SumEntropy glcm‐LLL‐SE

wavelet‐HHH_glrlm_HighGrayLevelRunEmphasis glrlm‐HHH‐HGLRE

wavelet‐HHH_firstorder_Maximum firstorder‐Max

wavelet‐LLH_gldm_GrayLevelVariance gldm‐LLH‐GLV

wavelet‐LLH_glcm_SumSquares glcm‐LLH‐SS

original_firstorder_MeanAbsoluteDeviation firstorder‐MAD

wavelet‐LLH_glcm_JointAverage glcm‐JointAverage

wavelet‐LLH_glrlm_GrayLevelVariance glrlm‐GLV

log‐sigma‐2‐0‐mm‐3D_gldm_DependenceNonUniformity gldm‐DNU

log‐sigma‐5‐0‐mm‐3D_glrlm_HighGrayLevelRunEmphasis glrlm‐HGLRE

wavelet‐HLL_firstorder_Variance firstorder‐Variance

wavelet‐LHL_firstorder_RootMeanSquared firstorder‐RMS

original_glrlm_ShortRunHighGrayLevelEmphasis glrlm‐SRHGLE

original_glszm_SmallAreaHighGrayLevelEmphasis glszm‐SAHGLE

log‐sigma‐2‐0‐mm‐3D_glcm_ClusterProminence glcm‐CP

original_glszm_HighGrayLevelZoneEmphasis glszm‐HGLZE

wavelet‐LLL_gldm_SmallDependenceHighGrayLevelEmphasis gldm‐SDHGLE

original_glszm_LargeAreaHighGrayLevelEmphasis glszm‐LAHGLE

log‐sigma‐2‐0‐mm‐3D_gldm_LargeDependenceHighGrayLevelEmphasis gldm‐LDHGLE

wavelet‐LLL_gldm_LargeDependenceHighGrayLevelEmphasis gldm‐LLL‐LDHGLE

TA B L E  2   (Continued)
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value	 of	 Pearson's	 correlation	 coefficient	 is	 between	 0.3	 and	 0.5,	
indicating	 a	 moderate	 correlation	 and	 greater	 than	 0.5	 indicating	
a	significant	correlation.	We	also	 filtered	out	 the	weak	correlation	
based	on	Benjamin‐Hochberg	adjusted	P‐values	[15].	For	the	gener‐
alization	purpose,	we	used	the	Pearson	correlation	as	the	final	cor‐
relation	selection	metrics.

2.7 | Risk stratification of metagenes

In	order	to	survey	the	prognostic	power	of	 identified	metagenes.	
We	used	the	maximally	selected	rank	statistics	[16],	 implemented	
by	 R	 package	 maxstat	 to	 find	 the	 optimal	 cut	 point	 for	 the	 risk	
stratification	 on	 the	 basis	 of	 expression	 value	 of	 corresponding	
metagenes.	Afterwards,	we	used	Kaplan‐Meier	 (KM)	estimator	to	
measure	the	patients’	survival	rates	 in	high	and	 low	gene	expres‐
sion	strata	and	plotted	the	aforementioned	information	by	R	pack‐
age	survminer.

3  | RESULTS

3.1 | Selected radiomics features

Thresholding	based	on	feature	importance	(importance	index	>0.04)	
resulted	in	a	total	of	72	features	for	constructing	the	final	prediction	
model.	The	threshold	is	chosen	after	the	manually	checking	of	feature	
importance	distribution	(Figure	S1A).	Table	2	lists	the	full	name	and	ab‐
breviation	of	the	corresponding	72	features	in	the	model.

3.2 | Model comparison

Among	the	four	machine	learning	algorithms,	GBDT	had	the	high‐
est	 accuracy	 of	 0.81	 for	 discriminating	 patients	 with	 short	 or	
long	survival	in	testing	set,	while	the	accuracy	of	logistic	regres‐
sion,	SVM	and	KNN	is	0.69,	0.76	and	0.79,	respectively.	Figure	2	
shows	 the	performance	of	 the	GBDT	classifier.	Figure	2A	 is	 the	

F I G U R E  3  Gene	expressions	of	
six	gene.	The	distribution	of	six	Gene	
expressions	among	patients	with	short	vs.	
long	survival	time.	The	expression	levels	
of	six	genes	were	significantly	different	in	
two	classes	of	survival	patients

TA B L E  3   Intersection	of	difference	analysis	between	group	long	and	short.	Threshold	of	difference	analysis	adjusted	P	<	0.05	&	
|log2FoldChange|>1

mRNA Base mean log2FC P value P.adj Base mean log2FC P value P.adj

WDR72 22.54202 −1.53057 0.00001 0.00327 22.10411 −2.66113 <0.00001 0.00678

C14orf39 9.74465 −1.03545 0.00051 0.04247 13.31277 −2.21750 0.00002 0.02407

TIMP1 25087.60318 1.06274 <0.00001 0.00109 28495.57870 1.53657 0.00004 0.03445

CHIT1 345.04844 1.40483 <0.00001 0.00109 329.45162 2.05879 0.00001 0.02339

ROS1 16.00196 1.42552 <0.00001 0.00178 21.31838 2.24119 0.00003 0.03445

EREG 57.47073 2.63671 <0.00001 <0.00001 69.45137 2.75592 0.00002 0.00678

FC:	fold	change;	p.adj:	adjusted	p	value.
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confusion	 matrix	 demonstrating	 the	 proportion	 of	 correct	 and	
wrong	 predictions	 in	 each	 survival	 class.	 Figure	2B	 shows	 the	
ROC	curves	for	predicting	patients	with	short	and	long	survivals,	
yielding	an	AUC	value	of	0.79	for	short‐survival	class	and	0.81	for	
long‐survival	class.

3.3 | Metagenes selection

Six	 metagenes	 including	 WDR72, C14orf39, TIMP1, CHIT1, ROS1 
and EREG	were	found	to	have	significantly	different	expression	lev‐
els	among	patients	with	short	vs.	long	survival	time	(Figure	3).	The	

F I G U R E  4  Correlation	between	genes	and	image	features.	The	matrix	correlation	between	top	image	features	and	genes.	A,	The	matrix	
showing	the	correlations	between	top	image	features	and	genes.	B,	The	correlations	between	top	image	features	and	genes	after	the	
threshold	of	0.4	was	applied	to	filter	out	features	that	had	weak	correlations	with	corresponding	genes

F I G U R E  5  Correlation	between	three	
genes	and	nine	image	features.	The	
correlations	of	nine	image	features	and	
three	genes.	The	solid	line	represents	a	
positive	correlation,	and	the	dotted	line	
represents	a	negative	correlation



4382  |     LIAO et AL.

F I G U R E  6  The	Kaplan‐Meier	survival	curve	of	six	genes.	KM	survival	curves	show	significant	overall	survival	differences	between	
higher‐expression	levels	and	lower‐expression	levels	of	survival	rates	of	patients.	For	all	the	subplots,	the	‘group	1’,	coloured	by	yellow,	
stands	for	higher‐expression	group	at	the	optimal	cut	point	identified	by	maximally	selected	rank	statistics
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difference	analysis	of	these	six	genes	was	conducted	between	the	
long	and	short	group,	and	the	result	is	shown	in	Table	3.

3.4 | Relationship between genes and 
image features

Figure	4A	 is	 the	 matrix	 showing	 the	 correlations	 between	 top	
image	features	and	metagenes.	A	threshold	of	0.4	was	applied	to	
filter	 out	 features	 that	 had	 weak	 correlations	 with	 correspond‐
ing	metagenes	 (Figure	4B).	A	total	of	nine	 image	features	 (includ‐
ing	eight	 textural	 features	and	one	 intensity‐based	 feature)	were	
strongly	 correlated	 with	 three	 metagenes	 (TIMP1, ROS1, EREG).	
EREG	 is	 positively	 associated	 with	 Dependence	 Non‐Uniformity	
(gldm‐DNUN),	 Difference	 Average	 (glcm‐DA),	 Contrast	 (glcm‐
Contrast)	and	Cluster	Prominence	(glcm‐CP)	and	negatively	associ‐
ated	with	Inverse	Difference	(glcm‐Id),	Zone	Variance	(glszm‐ZV),	
LargeArea	 Emphasis	 (glszm‐LAE)	 and	 Root	 Mean	 Squared	 (first‐
order‐RMS).	 ROS1	 gene	 is	 negatively	 associated	 with	 Inverse	
Difference	 Moment	 (glcm‐LLH‐Idm).	 TIMP1	 is	 positively	 associ‐
ated	with	Contrast	(glcm‐Contrast),	Cluster	Prominence	(glcm‐CP)	
and	negatively	associated	with	Inverse	Difference	(glcm‐Id),	Zone	
Variance	(glszm‐ZV),	LargeArea	Emphasis	(glszm‐LAE).	Correlation	
thresholding	 based	 on	 Benjamini‐Hochberg	 adjusted	 P‐values	

was	 show	 in	 Figure	 S1B.	 The	 correlations	 of	 image	 features	 and	
metagenes	are	shown	in	Figure	5.

4  | DISCUSSION

4.1 | Associations between image features and 
survival outcome

Our	results	indicate	that	prediction	models	using	radiomics	features	
can	 discriminate	 patients	with	 under	 or	 over	 1‐year	 survival	 time,	
suggesting	 that	MR	 image	 features	 are	 predictive	 of	 survival	 out‐
come	in	GBM.	Textual	features	such	as	large	dependence	emphasis	
and	entropy	are	especially	 indicative	of	clinical	outcome.	Similarly,	
Gutman	et	al.	 showed	that	contrast‐enhanced	tumour	volume	was	
strongly	 correlated	 with	 poor	 survival	 [17].	 Lao	 et al.	 used	 deep	
learning	 method	 to	 correlate	 radiomics	 features	 with	 survival	 in	
GBM	[18].	Our	study	provides	additional	evidence	of	using	computer	
assisted	learning	methods	to	examine	the	relevant	information	con‐
tained	in	image	features.	Compared	to	conventional	manual	analysis	
approaches,	radiomics	analysis	can	have	the	advantage	of	providing	
more	efficient	and	unbiased	quantification.

4.2 | Differentially expressed genes in different 
survival groups

We	 identified	 six	 genes	 (WDR72, C14orf39, TIMP1, CHIT1, ROS1 
and EREG)	 with	 significantly	 different	 levels	 of	 expression	 be‐
tween	short	and	 long	 survival	groups.	To	 reveal	 the	 relationship	
between	expression	 levels	of	 six	genes	and	 the	prognosis	of	pa‐
tients,	 a	 survival	 analysis	was	performed.	 In	 this	 study,	we	used	
Kaplan‐Meier	 (KM)	 estimator	 to	 measure	 the	 patients’	 survival	
rates	in	high	and	low	gene	expression	[19].	Figure	6	shows	the	KM	
survival	curve	for	six	genes.	The	KM	survival	curves	showed	sig‐
nificant	differences	in	overall	survival	between	patients	with	high	
and	 low	expression	 levels	of	six	genes.	The	association	between	
six	genes	expression	 levels	and	patient	survival	was	significantly	
(P	<	0.05).	The	C‐index	of	the	six	genes	(WDR72, C14orf39, TIMP1, 
CHIT1, ROS1 and EREG)	is	0.59,	0.55,	0.47,	0.46,	0.55,	0.45,	respec‐
tively.	EGFR	has	long	been	identified	as	an	important	therapeutic	
target	for	the	treatment	of	GBM,	and	in	patients	with	low	overall	
survival	time,	elevated	levels	of	EREG	expression	has	been	found.	
[20].	EREG	can	initiate	the	signalling	cascade,	and	in	gastric,	EREG 
is	 up‐regulate	 [21].	 Previous	 studies	 have	 shown	 the	 Epiregulin	
(EGFR)	 ligands	 have	 the	 effect	 of	 stabilizing	 receptors,	 affecting	
breast	 cancer	 cells	 associated	with	 differentiation	 function	 [22].	
Altered	TIMP‐1	 expression	has	been	 identified	as	 a	biomarker	 in	
GBM,	with	 decreased	 TIMP‐1	 linking	 to	 longer	 survival	 in	 GBM	
[23].	ROS1,	which	belongs	to	one	subfamily	of	kinase	insulin	recep‐
tor	 genes,	 is	 a	 proto‐oncogene,	 highly	 expressed	 in	 a	 variety	 of	
tumour	cells.	This	gene	is	often	altered	in	lung	cancer,	of	which	the	
effects	on	the	progression	of	GBM	are	remains	 to	be	eliminated	
[24].

TA B L E  4  Associations	between	image	features	and	metagenes.	
This	table	shows	the	associations	between	nine	image	features	and	
three	metagenes,	and	the	last	column	is	the	values	of	Pearson	
correlation	coefficient

Efficient 
DEGs Important image features PCC

EREG wavelet‐HHL_gldm_
DependenceNonUniformityNormalized

0.41

EREG log‐sigma‐4‐0‐mm‐3D_glcm_Id −0.46

EREG wavelet‐HHL_glcm_DifferenceAverage 0.42

EREG log‐sigma‐2‐0‐mm‐3D_glcm_Contrast 0.49

EREG log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance −0.56

EREG log‐sigma‐3‐0‐mm‐3D_glszm_
LargeAreaEmphasis

−0.51

EREG wavelet‐LHL_firstorder_RootMeanSquared −0.41

EREG log‐sigma‐2‐0‐mm‐3D_glcm_
ClusterProminence

0.46

TIMP1 log‐sigma‐4‐0‐mm‐3D_glcm_Id −0.43

TIMP1 log‐sigma‐2‐0‐mm‐3D_glcm_Contrast 0.42

TIMP1 log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance −0.47

TIMP1 log‐sigma‐3‐0‐mm‐3D_glszm_
LargeAreaEmphasis

−0.49

TIMP1 log‐sigma‐2‐0‐mm‐3D_glcm_
ClusterProminence

0.43

ROS1 wavelet.LLH_glcm_Idm −0.40

DEG:	differentially	expressed	genes;	PCC:	Pearson	correlation	
coefficient.
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4.3 | Associations between image 
features and genes

Associating	genes	and	microRNAs	with	high	FLAIR	volumes	ena‐
bles	 researchers	 to	 screen	 for	 molecular	 cancer	 subtypes	 and	
genomic	relationship	of	cellular	invasion.	[25].	We	found	TIMP‐1 
and EREG	 showed	 similar	 correlations	 with	 textural	 features	
(Table	4).	 Similar	 to	our	 finding	 about	EREG,	Hu	et al.	 indicated	
six	genes	 including	EGFR	were	significantly	correlated	with	 im‐
aging	features	in	GBM	[26].	Grossmann	et	al.	showed	that	volu‐
metric	 image	 features	 were	 associated	with	 homoeostasis	 and	
cell	cycling	pathways,	concluding	that	oedema	 in	FLAIR	 images	
were	most	predictive	of	GBM	subtypes	and	overall	survival	[27].	
Other	relevant	gene,	such	as	POSTN,	was	found	to	play	 impor‐
tant	 roles	 in	 the	 regulatory	 pathways	 through	 radiogenomics	
analysis	[25].

4.4 | Limitations and suggestions

In	this	study,	we	used	MRI	data	of	137	to	identify	radiomics	features,	
but	only	a	subpopulation	of	them	(46)	are	provided	with	genomics	
data	as	well.	For	future	analysis,	larger	patient	sample	size	with	both	
imaging	and	genomics	data	may	be	better	to	detect	more	correlating	
genes.	In	addition	to	FLAIR	data,	additional	sequences	and	imaging	
modalities	can	be	combined	for	multimodal	analysis,	which	can	pro‐
vide	comparison	results	about	different	methods.

We	selected	72	features	to	construct	the	prediction	model.	More	
advanced	dimensionality	reduction	method	can	be	implemented	for	
potential	improvements	of	dimensionality	reduction	and	improving	
classification	performances.

Our	 study	 validates	 the	 method	 of	 radiogenomics	 analysis	 to	
study	the	correlations	among	gene	variables,	 imaging	features	and	
survival	 outcome	 in	 GBM.	 Our	 findings	 provide	 useful	 informa‐
tion	 for	 further	 examination	 of	 corresponding	 genes,	 which	 may	
potentially	 serve	 as	 biomarkers	 for	GMB	 diagnosis	 and	 treatment	
indicators.
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