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Abstract
Background: This study aimed to examine multi‐dimensional MRI features’ predict‐
ability on survival outcome and associations with differentially expressed Genes 
(RNA Sequencing) in groups of glioblastoma multiforme (GBM) patients.
Methods: Radiomics features were extracted from segmented lesions of T2‐FLAIR 
MRI data of 137 GBM patients. Radiomics features include intensity, shape and tex‐
tural features in seven classes were included in the analysis. Patients were divided 
into two groups depending on their survival time (shorter or longer than 1‐year sur‐
vival). Four different machine learning algorithms were implemented to construct the 
prediction models. Features with top importance (importance >0.04) were selected 
to construct the prediction model using the model with the best performance. The 
interactions between image features and genomics were then analysed with Pearson's 
correlation analysis.
Results: The GBDT model with 72 features with highest importance had the highest 
accuracy of 0.81 on both short and long survival time classes, and the area under the 
curve (AUC) of the receiver operative characteristic (ROC) of the short and long sur‐
vival time class were 0.79 and 0.81. Six metagenes showed significant interactive 
effect (P < 0.05), and Pearson's correlation analysis revealed that three of these 
metagenes (TIMP1, ROS1 EREG) showed moderate (0.3 < |r| < 0.5) or high correlation 
(|r| > 0.5) with image features.
Conclusion: Radiogenomics analysis shows that MRI features are predictive of sur‐
vival outcomes, and image features are highly associated with selective metagenes. 
Radiogenomics analysis is a useful method for optimizing clinical diagnosis and se‐
lecting effective treatments.
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1  | INTRODUC TION

Glioblastoma multiforme (GBM), one of the most invasive and fatal 
brain tumours that develops from glial cells, can severely affects the 
central nervous system and general health [1]. The percent 5‐year sur‐
viving rate was estimated to be 33.2% between 2008 and 2014 accord‐
ing to statistics from the Surveillance, Epidemiology and End Results 
(SEER) database and the Centers for Disease Control and Prevention's 
National Center for Health Statistics (https://seer.cancer.gov/
csr/1975_2015/). Due to the heterogeneous nature of GBM, relatively 
high age of disease onset, migration of malignant cells to surrounding 
tissue, the treatment outcome for GBM are highly variable, yielding an 
average survival rate of 12.6 months [2]. Current clinical practice for 
treating GBM mostly involves tumour resection and chemotherapy [3].

Genomics study is an essential method to study GBM by exam‐
ining alternations in genomic pathways and identifying relevant bio‐
markers. Gene studies involving tissues, plasma, or cell lines used 
protein expression data to reveal that common alternations in GBM 
include mutations of specific gene and proteins such as RTKs, TP53 
RB1 and increased expression of EGFR and PDGFRA [4, 5]. However, 
tissue sample is usually acquired after biopsy and may not be suit‐
able for all patients, especially for early diagnosis.

Neuroimaging of GBM is a non‐invasive tool for disease diagno‐
sis and monitor treatment outcome. A wide range of MR techniques 
including T1, T2 and FLAIR imaging are used to capture GBM charac‐
teristics. Typically, GBM appears as a heterogeneous enhancement 
region with a non‐enhancing necrosis in the center [6]. FLAIR se‐
quences have advantages of showing abnormalities more clearly [7]. 
MRI‐based features were shown to be highly predictive of tumour 
grading in GBM [8]. Textural image features were associated with 
CD3 T cell infiltration status in GMB [9].

In recent years, the emergence of radiogenomics, combing radio‐
mics image features and genomics, allows the study of GBM more 
comprehensively. For example, MRI parameters revealed that hae‐
modynamic abnormalities were associated with the expression level 
of the mTOR‐EGFR pathway in [10]. Based on previous findings, we 
aimed to investigate the machine learning based methods in combi‐
nation with radiogenomics to study the associations among MRI fea‐
tures, genomics and the survival rates in GBM patients. Computer 
assisted methods allow more comprehensive characterization of im‐
aging data and more sophisticated way to predict disease outcome. 
We hypothesize that radiomics features of FLAIR imaging data can 
be predictive of patients’ survival, and radiogenomics analysis can 

reveal the linkage between images features and known genes in pre‐
viously defined molecular pathways.

2  | MATERIAL S AND METHODS

2.1 | Dataset

MRI data were obtained from the Cancer Imaging Archive (TCIA) 
(https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM), 
and corresponding genomics data were acquired from the Genomic 
Data Commons (GDC) Data Portal. A total of 137 patients with MRI 
data, 129 patients with known genomic data were included in the anal‐
ysis and 46 patients were the intersection of MRI data set and gene 
data set. Patient characteristics are summarized in Table 1. Because the 
average survival rate of GBM patients was reported to be 12.6 months 
[2], and all the patients in our cohort has demised during follow‐up, 
for the classification purpose, we used 1 year as a threshold and the 
patients were divided into short (<1 year) and long (>1 year) survival 
groups. Figure 1 shows the process of the workflow of this study.

2.2 | Image preprocessing and lesion segmentation

Lesion segmentation is required before feature extraction. Lesion 
volumes were manually delineated by an experienced radiologist 
using 3D slicer (https://www.slicer.org/). All original loaded MRI im‐
ages of patients were DICOM format. After adding MRI data into 3D 
slicer, we selected the Segment Editor module to segment the lesion.

2.3 | Feature extraction

Feature extraction was performed using a Python software package 
Pyradiomics [11]. First‐order and multi‐dimensional features were 
extracted from seven feature classes including First Order Features, 
Shape Features, Gray Level Co‐occurrence Matrix (GLCM) Features, 
Gray Level Size Zone Matrix (GLSZM) Features, Gray Level Run 
Length Matrix (GLRLM) Features, Neighboring Gray Tone Difference 
Matrix (NGTDM) Features, Gray Level Dependence Matrix (GLDM) 
Features. Detailed number of each feature is listed in Table S1.

2.4 | Machine learning model 
construction and evaluation

The MRI dataset was divided into the training and testing sets ac‐
cording to a ratio of 7:3. Four machine learning algorithms including 

TA B L E  1  Clinical characteristics of the cohort. This table shows the clinical information of the data analysed in this study. Gene∩MRI 
means that the dataset has both genetic data and MRI data

Gender Death days to diagnosis Number Age

Men Female Long (>1 year) Short (<1 year) Total Mean SD

Gene 85 44 68 61 129 62.05 (25‐89) 12.55

MRI 85 52 71 66 137 61.24 (16‐86) 13.53

Gene+MRI 27 19 25 21 46 61.86 (32‐86) 12.04

https://seer.cancer.gov/csr/1975_2015/
https://seer.cancer.gov/csr/1975_2015/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://www.slicer.org/
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GBDT (Gradient Boosting Decision Tree), logistic regression, sup‐
port vector machine (SVM) and KNN (k‐nearest neighbours) were 
tested. These four methods are representative in their own cat‐
egory. Gradient boosting decision tree is a tree‐based ensemble 
machine learning model which can achieve state‐of‐the‐art accu‐
racy in classification and regression. Logistic regression is a classic 
probabilistic model. Support vector machine is another widely used 
model featured by kernel trick [12]. As for k‐nearest neighbours, 
it is a typical lazy‐learning method and is frequently treated as a 
benchmark in predictive modelling [13]. Feature importance was 
computed using GBDT (https://doi.org/10.2307/2699986), imple‐
mented by python package sci‐kit learn (https://scikit-learn.org/
stable/index.html). In the final prediction model construction, fea‐
ture with importance value smaller than 0.04 which were treated 
as not important were excluded. This threshold is chosen after the 
manually checking of the distribution of feature importance.

Confusion matrices and receiver operative characteristic (ROC) 
were computed to evaluate and compare the performances of all 
four machine learning models. The model that is most predictive 
of GBM patients’ survival time is chosen for further radiogenomics 
analysis.

2.5 | Relevant gene selection

Differentially expressed genes (DEGs) analysis was performed 
with R software, using package DESeq2. A gene is declared to be 
DEGs if a difference or change observed in read counts or expres‐
sion is statistically significant. Fold change and t test are widely 
used methods to estimate gene variances in practice [14]. The con‐
dition we added for screening out DEGs was |log2(fold change)| > 
1 and adjusted P < 0.05. And the same DEGs analytical process 
was applied to Dataset of Gene and Dataset with both MRI and 

F I G U R E  1  The workflow of this study. 
The radiomics workflow. Lesions were 
segmented from untreated MR images. 
Feature extraction was performed from 
lesions by pyradiomics. The radiomics 
features were selected for classifier model 
constructing. And the classifier model was 
evaluated by confusion matrix and ROC 
curves

https://doi.org/10.2307/2699986
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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TA B L E  2  Detailed names and abbreviations of 72 features

Full name Short name

log‐sigma‐3‐0‐mm‐3D_gldm_SmallDependenceEmphasis gldm‐SDE

wavelet‐HHL_gldm_DependenceNonUniformityNormalized gldm‐DNUN

log‐sigma‐3‐0‐mm‐3D_firstorder_Uniformity firstorder‐Uniformity

wavelet‐HHH_glszm_GrayLevelNonUniformityNormalized glszm‐GLNUN

wavelet‐LLL_glcm_InverseVariance glcm‐IV

wavelet‐LLH_glszm_ZonePercentage glszm‐ZP

wavelet‐LLH_glcm_Idm glcm‐LLH‐Idm

wavelet‐HLH_glcm_InverseVariance glcm‐HLH‐IV

log‐sigma‐4‐0‐mm‐3D_glcm_Idm glcm‐Idm

wavelet‐HLH_glcm_SumSquares glcm‐HLH‐SS

wavelet‐HLH_gldm_GrayLevelVariance gldm‐HLH‐GLV

wavelet‐LLL_glszm_ZoneVariance glszm‐LLL‐ZV

log‐sigma‐4‐0‐mm‐3D_glcm_Id glcm‐Id

wavelet‐HHL_glrlm_RunLengthNonUniformityNormalized glrlm‐HHL‐RLNUN

wavelet‐HLL_glrlm_RunLengthNonUniformityNormalized glrlm‐HLL‐RLNUN

wavelet‐HLH_glszm_SmallAreaEmphasis glszm‐HLH‐SAE

wavelet‐LLL_glcm_Correlation glcm‐LLL‐Correlation

wavelet‐HHH_glszm_SmallAreaEmphasis glszm‐SAE

wavelet‐HHL_glcm_DifferenceAverage glcm‐DA

log‐sigma‐5‐0‐mm‐3D_glcm_Correlation glcm‐Correlation

log‐sigma‐4‐0‐mm‐3D_glrlm_ShortRunEmphasis glrlm‐SRE

original_glrlm_RunLengthNonUniformityNormalized glrlm‐RLNUN

wavelet‐LHL_glcm_Idn glcm‐LHL‐Idn

wavelet‐HLH_glcm_Idn glcm‐HLH‐Idn

wavelet‐HHL_glcm_Idn glcm‐HHL‐Idn

wavelet‐LLL_glrlm_RunLengthNonUniformityNormalized glrlm‐LLL‐RLNUN

wavelet‐LLL_glcm_Imc2 glcm‐LLL‐Imc2

log‐sigma‐5‐0‐mm‐3D_glcm_Idn glcm‐Idn

log‐sigma‐4‐0‐mm‐3D_glcm_Idmn glcm‐Idmn

wavelet‐HLH_glcm_ClusterProminence glcm‐HLH‐CP

wavelet‐HHL_glcm_DifferenceEntropy glcm‐HHL‐DE

wavelet‐HHH_firstorder_InterquartileRange firstorder‐HHH‐IR

wavelet‐HHL_firstorder_InterquartileRange firstorder‐HHL‐IR

log‐sigma‐3‐0‐mm‐3D_firstorder_Entropy firstorder‐Entropy

wavelet‐LLH_gldm_LargeDependenceEmphasis gldm‐LLH‐LDE

wavelet‐LLH_glcm_DifferenceEntropy glcm‐LLH‐DE

wavelet‐HLH_firstorder_InterquartileRange firstorder‐HLH‐IR

wavelet‐LHL_gldm_LargeDependenceEmphasis gldm‐LHL‐LDE

original_gldm_LargeDependenceEmphasis gldm‐LDE

wavelet‐LHH_glcm_SumEntropy glcm‐LHH‐SE

wavelet‐LHH_glszm_LargeAreaEmphasis glszm‐LHH‐LAE

log‐sigma‐5‐0‐mm‐3D_glcm_SumSquares glcm‐SS

log‐sigma‐2‐0‐mm‐3D_glcm_Contrast glcm‐Contrast

wavelet‐LHH_gldm_LargeDependenceEmphasis gldm‐LHH‐LDE

log‐sigma‐5‐0‐mm‐3D_glrlm_RunEntropy glrlm‐RE

(Continues)
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Gene data to obtain DEGs. DEGs are treated as metagenes in our 
analysis.

After screening out DEGs, the number of samples was reduced while 
individual differences among groups were enhanced. In order to screen 
for efficiently DEGs, we selected the DEGs from the intersection of the 
Genetic Dataset and Dataset which contain both MRI and Gene data.

2.6 | Correlations between image 
features and genomics

To survey the potential correlations between the important image 
features of the classification model and the efficiently DEGs, we 
performed Pearson correlation analysis. Statistically, the absolute 

F I G U R E  2  The performance of the 
GBDT classifier. A, Confusion matrix 
(The horizontal line means the number of 
predicted in each group; the vertical line 
means the actual number of each group. 
The leading diagonal represents correct 
prediction; the minor diagonal represents 
incorrect prediction). B, Receiver 
operating characteristic (ROC) curve. (X 
axis represents false positive rate and Y 
axis is true positive rate.)

Full name Short name

log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance glszm‐ZV

wavelet‐HHL_glcm_JointEntropy glcm‐JointEntropy

log‐sigma‐3‐0‐mm‐3D_glszm_LargeAreaEmphasis glszm‐LAE

wavelet‐LLH_gldm_GrayLevelNonUniformity gldm‐GLNU

wavelet‐HLL_glszm_GrayLevelNonUniformity glszm‐GLNU

log‐sigma‐5‐0‐mm‐3D_glszm_ZoneEntropy glszm‐ZE

wavelet‐HLL_gldm_GrayLevelNonUniformity gldm‐HLL‐GLNU

wavelet‐LLL_glcm_SumEntropy glcm‐LLL‐SE

wavelet‐HHH_glrlm_HighGrayLevelRunEmphasis glrlm‐HHH‐HGLRE

wavelet‐HHH_firstorder_Maximum firstorder‐Max

wavelet‐LLH_gldm_GrayLevelVariance gldm‐LLH‐GLV

wavelet‐LLH_glcm_SumSquares glcm‐LLH‐SS

original_firstorder_MeanAbsoluteDeviation firstorder‐MAD

wavelet‐LLH_glcm_JointAverage glcm‐JointAverage

wavelet‐LLH_glrlm_GrayLevelVariance glrlm‐GLV

log‐sigma‐2‐0‐mm‐3D_gldm_DependenceNonUniformity gldm‐DNU

log‐sigma‐5‐0‐mm‐3D_glrlm_HighGrayLevelRunEmphasis glrlm‐HGLRE

wavelet‐HLL_firstorder_Variance firstorder‐Variance

wavelet‐LHL_firstorder_RootMeanSquared firstorder‐RMS

original_glrlm_ShortRunHighGrayLevelEmphasis glrlm‐SRHGLE

original_glszm_SmallAreaHighGrayLevelEmphasis glszm‐SAHGLE

log‐sigma‐2‐0‐mm‐3D_glcm_ClusterProminence glcm‐CP

original_glszm_HighGrayLevelZoneEmphasis glszm‐HGLZE

wavelet‐LLL_gldm_SmallDependenceHighGrayLevelEmphasis gldm‐SDHGLE

original_glszm_LargeAreaHighGrayLevelEmphasis glszm‐LAHGLE

log‐sigma‐2‐0‐mm‐3D_gldm_LargeDependenceHighGrayLevelEmphasis gldm‐LDHGLE

wavelet‐LLL_gldm_LargeDependenceHighGrayLevelEmphasis gldm‐LLL‐LDHGLE

TA B L E  2   (Continued)
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value of Pearson's correlation coefficient is between 0.3 and 0.5, 
indicating a moderate correlation and greater than 0.5 indicating 
a significant correlation. We also filtered out the weak correlation 
based on Benjamin‐Hochberg adjusted P‐values [15]. For the gener‐
alization purpose, we used the Pearson correlation as the final cor‐
relation selection metrics.

2.7 | Risk stratification of metagenes

In order to survey the prognostic power of identified metagenes. 
We used the maximally selected rank statistics [16], implemented 
by R package maxstat to find the optimal cut point for the risk 
stratification on the basis of expression value of corresponding 
metagenes. Afterwards, we used Kaplan‐Meier (KM) estimator to 
measure the patients’ survival rates in high and low gene expres‐
sion strata and plotted the aforementioned information by R pack‐
age survminer.

3  | RESULTS

3.1 | Selected radiomics features

Thresholding based on feature importance (importance index >0.04) 
resulted in a total of 72 features for constructing the final prediction 
model. The threshold is chosen after the manually checking of feature 
importance distribution (Figure S1A). Table 2 lists the full name and ab‐
breviation of the corresponding 72 features in the model.

3.2 | Model comparison

Among the four machine learning algorithms, GBDT had the high‐
est accuracy of 0.81 for discriminating patients with short or 
long survival in testing set, while the accuracy of logistic regres‐
sion, SVM and KNN is 0.69, 0.76 and 0.79, respectively. Figure 2 
shows the performance of the GBDT classifier. Figure 2A is the 

F I G U R E  3  Gene expressions of 
six gene. The distribution of six Gene 
expressions among patients with short vs. 
long survival time. The expression levels 
of six genes were significantly different in 
two classes of survival patients

TA B L E  3   Intersection of difference analysis between group long and short. Threshold of difference analysis adjusted P < 0.05 & 
|log2FoldChange|>1

mRNA Base mean log2FC P value P.adj Base mean log2FC P value P.adj

WDR72 22.54202 −1.53057 0.00001 0.00327 22.10411 −2.66113 <0.00001 0.00678

C14orf39 9.74465 −1.03545 0.00051 0.04247 13.31277 −2.21750 0.00002 0.02407

TIMP1 25087.60318 1.06274 <0.00001 0.00109 28495.57870 1.53657 0.00004 0.03445

CHIT1 345.04844 1.40483 <0.00001 0.00109 329.45162 2.05879 0.00001 0.02339

ROS1 16.00196 1.42552 <0.00001 0.00178 21.31838 2.24119 0.00003 0.03445

EREG 57.47073 2.63671 <0.00001 <0.00001 69.45137 2.75592 0.00002 0.00678

FC: fold change; p.adj: adjusted p value.
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confusion matrix demonstrating the proportion of correct and 
wrong predictions in each survival class. Figure 2B shows the 
ROC curves for predicting patients with short and long survivals, 
yielding an AUC value of 0.79 for short‐survival class and 0.81 for 
long‐survival class.

3.3 | Metagenes selection

Six metagenes including WDR72, C14orf39, TIMP1, CHIT1, ROS1 
and EREG were found to have significantly different expression lev‐
els among patients with short vs. long survival time (Figure 3). The 

F I G U R E  4  Correlation between genes and image features. The matrix correlation between top image features and genes. A, The matrix 
showing the correlations between top image features and genes. B, The correlations between top image features and genes after the 
threshold of 0.4 was applied to filter out features that had weak correlations with corresponding genes

F I G U R E  5  Correlation between three 
genes and nine image features. The 
correlations of nine image features and 
three genes. The solid line represents a 
positive correlation, and the dotted line 
represents a negative correlation
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F I G U R E  6  The Kaplan‐Meier survival curve of six genes. KM survival curves show significant overall survival differences between 
higher‐expression levels and lower‐expression levels of survival rates of patients. For all the subplots, the ‘group 1’, coloured by yellow, 
stands for higher‐expression group at the optimal cut point identified by maximally selected rank statistics
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difference analysis of these six genes was conducted between the 
long and short group, and the result is shown in Table 3.

3.4 | Relationship between genes and 
image features

Figure 4A is the matrix showing the correlations between top 
image features and metagenes. A threshold of 0.4 was applied to 
filter out features that had weak correlations with correspond‐
ing metagenes (Figure 4B). A total of nine image features (includ‐
ing eight textural features and one intensity‐based feature) were 
strongly correlated with three metagenes (TIMP1, ROS1, EREG). 
EREG is positively associated with Dependence Non‐Uniformity 
(gldm‐DNUN), Difference Average (glcm‐DA), Contrast (glcm‐
Contrast) and Cluster Prominence (glcm‐CP) and negatively associ‐
ated with Inverse Difference (glcm‐Id), Zone Variance (glszm‐ZV), 
LargeArea Emphasis (glszm‐LAE) and Root Mean Squared (first‐
order‐RMS). ROS1 gene is negatively associated with Inverse 
Difference Moment (glcm‐LLH‐Idm). TIMP1 is positively associ‐
ated with Contrast (glcm‐Contrast), Cluster Prominence (glcm‐CP) 
and negatively associated with Inverse Difference (glcm‐Id), Zone 
Variance (glszm‐ZV), LargeArea Emphasis (glszm‐LAE). Correlation 
thresholding based on Benjamini‐Hochberg adjusted P‐values 

was show in Figure S1B. The correlations of image features and 
metagenes are shown in Figure 5.

4  | DISCUSSION

4.1 | Associations between image features and 
survival outcome

Our results indicate that prediction models using radiomics features 
can discriminate patients with under or over 1‐year survival time, 
suggesting that MR image features are predictive of survival out‐
come in GBM. Textual features such as large dependence emphasis 
and entropy are especially indicative of clinical outcome. Similarly, 
Gutman et al. showed that contrast‐enhanced tumour volume was 
strongly correlated with poor survival [17]. Lao et al. used deep 
learning method to correlate radiomics features with survival in 
GBM [18]. Our study provides additional evidence of using computer 
assisted learning methods to examine the relevant information con‐
tained in image features. Compared to conventional manual analysis 
approaches, radiomics analysis can have the advantage of providing 
more efficient and unbiased quantification.

4.2 | Differentially expressed genes in different 
survival groups

We identified six genes (WDR72, C14orf39, TIMP1, CHIT1, ROS1 
and EREG) with significantly different levels of expression be‐
tween short and long survival groups. To reveal the relationship 
between expression levels of six genes and the prognosis of pa‐
tients, a survival analysis was performed. In this study, we used 
Kaplan‐Meier (KM) estimator to measure the patients’ survival 
rates in high and low gene expression [19]. Figure 6 shows the KM 
survival curve for six genes. The KM survival curves showed sig‐
nificant differences in overall survival between patients with high 
and low expression levels of six genes. The association between 
six genes expression levels and patient survival was significantly 
(P < 0.05). The C‐index of the six genes (WDR72, C14orf39, TIMP1, 
CHIT1, ROS1 and EREG) is 0.59, 0.55, 0.47, 0.46, 0.55, 0.45, respec‐
tively. EGFR has long been identified as an important therapeutic 
target for the treatment of GBM, and in patients with low overall 
survival time, elevated levels of EREG expression has been found. 
[20]. EREG can initiate the signalling cascade, and in gastric, EREG 
is up‐regulate [21]. Previous studies have shown the Epiregulin 
(EGFR) ligands have the effect of stabilizing receptors, affecting 
breast cancer cells associated with differentiation function [22]. 
Altered TIMP‐1 expression has been identified as a biomarker in 
GBM, with decreased TIMP‐1 linking to longer survival in GBM 
[23]. ROS1, which belongs to one subfamily of kinase insulin recep‐
tor genes, is a proto‐oncogene, highly expressed in a variety of 
tumour cells. This gene is often altered in lung cancer, of which the 
effects on the progression of GBM are remains to be eliminated 
[24].

TA B L E  4  Associations between image features and metagenes. 
This table shows the associations between nine image features and 
three metagenes, and the last column is the values of Pearson 
correlation coefficient

Efficient 
DEGs Important image features PCC

EREG wavelet‐HHL_gldm_
DependenceNonUniformityNormalized

0.41

EREG log‐sigma‐4‐0‐mm‐3D_glcm_Id −0.46

EREG wavelet‐HHL_glcm_DifferenceAverage 0.42

EREG log‐sigma‐2‐0‐mm‐3D_glcm_Contrast 0.49

EREG log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance −0.56

EREG log‐sigma‐3‐0‐mm‐3D_glszm_
LargeAreaEmphasis

−0.51

EREG wavelet‐LHL_firstorder_RootMeanSquared −0.41

EREG log‐sigma‐2‐0‐mm‐3D_glcm_
ClusterProminence

0.46

TIMP1 log‐sigma‐4‐0‐mm‐3D_glcm_Id −0.43

TIMP1 log‐sigma‐2‐0‐mm‐3D_glcm_Contrast 0.42

TIMP1 log‐sigma‐5‐0‐mm‐3D_glszm_ZoneVariance −0.47

TIMP1 log‐sigma‐3‐0‐mm‐3D_glszm_
LargeAreaEmphasis

−0.49

TIMP1 log‐sigma‐2‐0‐mm‐3D_glcm_
ClusterProminence

0.43

ROS1 wavelet.LLH_glcm_Idm −0.40

DEG: differentially expressed genes; PCC: Pearson correlation 
coefficient.
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4.3 | Associations between image 
features and genes

Associating genes and microRNAs with high FLAIR volumes ena‐
bles researchers to screen for molecular cancer subtypes and 
genomic relationship of cellular invasion. [25]. We found TIMP‐1 
and EREG showed similar correlations with textural features 
(Table 4). Similar to our finding about EREG, Hu et al. indicated 
six genes including EGFR were significantly correlated with im‐
aging features in GBM [26]. Grossmann et al. showed that volu‐
metric image features were associated with homoeostasis and 
cell cycling pathways, concluding that oedema in FLAIR images 
were most predictive of GBM subtypes and overall survival [27]. 
Other relevant gene, such as POSTN, was found to play impor‐
tant roles in the regulatory pathways through radiogenomics 
analysis [25].

4.4 | Limitations and suggestions

In this study, we used MRI data of 137 to identify radiomics features, 
but only a subpopulation of them (46) are provided with genomics 
data as well. For future analysis, larger patient sample size with both 
imaging and genomics data may be better to detect more correlating 
genes. In addition to FLAIR data, additional sequences and imaging 
modalities can be combined for multimodal analysis, which can pro‐
vide comparison results about different methods.

We selected 72 features to construct the prediction model. More 
advanced dimensionality reduction method can be implemented for 
potential improvements of dimensionality reduction and improving 
classification performances.

Our study validates the method of radiogenomics analysis to 
study the correlations among gene variables, imaging features and 
survival outcome in GBM. Our findings provide useful informa‐
tion for further examination of corresponding genes, which may 
potentially serve as biomarkers for GMB diagnosis and treatment 
indicators.
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