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Abstract
Ritonavir-boosted nirmatrelvir (RBN) has been authorized recently in several countries as an orally active anti-SARS-CoV-2 
treatment for patients at high risk of progressing to severe COVID-19 disease. Nirmatrelvir is the active component against 
the SARS-CoV-2 virus, whereas ritonavir, a potent CYP3A inhibitor, is intended to boost the activity of nirmatrelvir by 
increasing its concentration in plasma to ensure persistence of antiviral concentrations during the 12-hour dosing interval. 
RBN is involved in many clinically important drug–drug interactions both as perpetrator and as victim, which can complicate 
its use in patients treated with antiseizure medications (ASMs). Interactions between RBN and ASMs are bidirectional. As 
perpetrator, RBN may increase the plasma concentration of a number of ASMs that are CYP3A4 substrates, possibly lead-
ing to toxicity. As victims, both nirmatrelvir and ritonavir are subject to metabolic induction by concomitant treatment with 
potent enzyme-inducing ASMs (carbamazepine, phenytoin, phenobarbital and primidone). According to US and European 
prescribing information, treatment with these ASMs is a contraindication to the use of RBN. Although remdesivir is a valu-
able alternative to RBN, it may not be readily accessible in some settings due to cost and/or need for intravenous administra-
tion. If remdesivir is not an appropriate option, either bebtelovimab or molnupiravir may be considered. However, evidence 
about the clinical efficacy of bebtelovimab is still limited, and molnupiravir, the only orally active alternative, is deemed to 
have appreciably lower efficacy than RBN and remdesivir.
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1 Introduction

On December 22, 2021, the Food and Drug Administra-
tion (FDA) issued an Emergency Use Authorization (EUA) 
for the combination of nirmatrelvir and low-dose ritonavir 
or ritonavir-boosted nirmatrelvir (RBN,  Paxlovid®) for the 
treatment of patients (≥ 12 years and body weight ≥ 40 kg) 
with mild-to-moderate COVID-19 who are within 5 days 
of symptom onset and are at high risk of progression to 
severe disease [1]. The oral dose for patients with normal 
renal function is nirmatrelvir 300 mg (2 × 150-mg tablets) 
plus ritonavir 100 mg (1 × 100-mg tablet), twice daily for 
5 days [1]. On January 28, 2022 the European Commission 
also authorized the marketing of RBN for the treatment of 
COVID-19 in adults who do not require supplemental oxy-
gen and who are at increased risk of the disease becoming 
severe [2].

In the RBN combination, the component active against 
the SARS-Cov-2 virus is nirmatrelvir, which exerts its thera-
peutic effect by blocking viral replication through inhibition 
of the SARS-CoV-2 main protease. The role of ritonavir, 
a potent inhibitor of the CYP3A-mediated metabolism of 
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Key Points 

Ritonavir-boosted nirmatrelvir (RBN), a newly approved 
medication to prevent progression of COVID-19 to 
severe disease, can be a victim and perpetrator of many 
clinically important drug–drug interactions.

When used in patients with epilepsy on antiseizure 
medications (ASMs), RBN can inhibit the metabolism of 
ASMs which are CYP3A4 substrates, resulting poten-
tially in manifestations of ASM toxicity.

Inhibition of midazolam and everolimus metabolism by 
RBN is a special concern and their co-administration is 
best avoided in patients requiring RBN. If intravenous 
midazolam is required, a reduction in dose requirements 
should be considered and use should be in a setting 
where potentially serious adverse effects can be managed 
adequately.

RBN is currently contraindicated in patients taking 
carbamazepine and other potent enzyme-inducing ASMs 
because the reduction in plasma levels of nirmatrelvir 
due to enzyme induction can result in loss of antiviral 
effect and selection of RBN-resistant SARS-CoV-2 
strains.

nirmatrelvir. Accordingly, FDA and EMA prescribing infor-
mation contraindicates the co-administration of RBN with 
potent CYP3A4 inducers, as they may substantially reduce 
nirmatrelvir/ritonavir concentrations, leading to a potential 
loss of virological effect and related development of resist-
ance [1, 2]. Some health professional organizations, such 
as the Israeli Chapter of the International League against 
Epilepsy (ILAE), have aligned with these recommendations 
[29]. The regulatory contraindications to the use of RBN 
could be problematic for many individuals with epilepsy, 
because there are no orally administered anti-COVID-19 
medications as effective as RBN currently available [3].

This article provides an assessment of clinically relevant 
interactions between RBN and concomitant ASMs, and dis-
cusses therapeutic strategies for ASM-treated patients who 
acquire COVID-19 and are at risk for progression to severe 
disease.

2  Literature Search

We conducted a literature search in PubMed using the key 
words ‘antiepileptic drugs’ and ‘drug interactions’ and ‘nir-
matrelvir’ or ‘ritonavir’ and 'human'. For the compilation of 
Tables 1 and 2 and for additional information, we searched 
PubMed using the key words ‘ritonavir’ or ‘nirmatrelvir’ 
associated with each of the following ASMs: brivaracetam, 
cannabidiol, carbamazepine, cenobamate, clobazam, clonaz-
epam, diazepam, eslicarbazepine acetate, ethosuximide, fel-
bamate, fenfluramine, gabapentin, lacosamide, lamotrigine, 
levetiracetam, lorazepam, midazolam, oxcarbazepine, per-
ampanel, phenytoin, phenobarbital, pregabalin, primidone, 
rufinamide, stiripentol, topiramate, valproic acid, vigabatrin, 
and zonisamide. References cited in the relevant publications 
identified by the search and authors’ files were reviewed. We 
also reviewed European and US prescribing information for 
each of the ASMs and antiviral medicines discussed in this 
article.

3  Pharmacokinetic Characteristics 
of Ritonavir and Nirmatrelvir

Ritonavir absolute bioavailability following oral dosing is 
unknown, but based on mass balance studies the extent of 
absorption is estimated to be > 60% [5, 30]. Absorption is 
not affected to a major extent by intake with food [5, 30]. 
Ritonavir is 98–99% bound to plasma proteins. Its half-life 
is in the order of 3–5 hours and its average oral clearance 
(CL/F) following multiple dosing is in the range of 7–9 L/h 
[5]. Ritonavir appears to induce its own clearance (CL) fol-
lowing multiple dosing compared to its single-dose CL [5]. 
Ritonavir is extensively metabolized primarily by CYP3A; 

nirmatrelvir, is solely to boost the activity of nirmatrelvir by 
increasing its concentration in plasma and ensuring persis-
tence of effective nirmatrelvir concentrations throughout the 
12-h dosing interval [2–4]. In fact, ritonavir is an inhibitor, 
inducer and substrate of various cytochrome P450 (CYP) 
enzymes and other metabolizing enzymes as well as drug 
transporters [3–5], leading to several clinically relevant drug 
interactions. This raises a number of concerns when RBN 
is administered concomitantly with antiseizure medications 
(ASMs) that are susceptible to being victims or perpetrators 
of metabolic drug–drug interactions.

Interactions between RBN (or its components) and ASMs 
can occur bi-directionally (Tables 1, 2) [3, 6, 7]. First, ritona-
vir’s potent inhibition of CYP3A increases the plasma expo-
sure of ASMs primarily cleared through CYP3A-mediated 
metabolism, potentially leading to toxicity. Second, induc-
tion of CYP2C9, CYP2C19 and uridine 5′-diphospho-glu-
curonosyl-transferases (UGTs) by ritonavir can decrease the 
plasma exposure of ASMs metabolized by these enzymes, an 
interaction which is, however, unlikely to be clinically rel-
evant due to the delay in onset of enzyme induction and the 
short (5-day) duration of RBN treatment. Third, use of RBN 
in patients receiving chronic treatment with enzyme-induc-
ing ASMs such as carbamazepine, phenytoin or phenobar-
bital may result in subtherapeutic plasma concentrations of 
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four metabolites have been identified in humans but are 
unlikely to contribute to the antiviral effect [5]. Ritonavir 
CL is minimally affected by other CYP3A inhibitors [5], 
including ketoconazole [31]. Rifampicin, a potent CYP3A 
inducer, when co-administered with a booster dose of rito-
navir (100 mg twice daily [BID]), decreases ritonavir plasma 
exposure (AUC) and trough plasma ritonavir concentration 
by about 90% [32, 33].

When it is administered alone, nirmatrelvir is absorbed 
relatively rapidly from the gastrointestinal tract, with peak 
plasma concentration occurring about 3 hours after dosing 
[1]. The plasma protein binding of nirmatrelvir is estimated 
at 69%. Nirmatrelvir is metabolized by CYP3A-mediated 
metabolism. Co-administration with the CYP3A inhibitor 
ritonavir increases plasma nirmatrelvir concentrations sev-
eral-fold and prolongs its half-life, resulting in persistence of 
effective antiviral concentrations throughout a 12-h dosing 
interval [34]. During repeated co-administration, ritonavir 
inhibits nirmatrelvir metabolism so effectively as to reduce 
nirmatrelvir metabolic clearance to negligible values. In 
pharmacokinetic studies following co-administration with 
ritonavir, the only nirmatrelvir-related entity detected in 
plasma was unchanged nirmatrelvir [2]. Following multiple 
oral dosing of RBN (300/100 mg BID) to 12 healthy sub-
jects, nirmatrelvir’s mean half-life was 6.05 hours and its 
mean CL/F was 9 L/h [1], with nirmatrelvir being mainly 
eliminated unchanged in the feces (28–50% of the oral dose) 
and in the urine [1, 2].

4  Impact of Inhibition‑Based Drug 
Interactions Caused by Ritonavir‑Boosted 
Nirmatrelvir (RBN) on the Management 
of Patients Receiving Antiseizure 
Medications (ASMs)

Enzyme inhibition-based drug interactions in patients 
receiving RBN can be ascribed primarily to ritonavir’s abil-
ity to act as a potent inhibitor of CYP3A enzymes, most 
importantly CYP3A4 [1, 2]. There is conflicting information 
on whether nirmatrelvir can affect CYP3A activity and no 
evidence of its impact on CYP3A inhibition caused by rito-
navir [1, 2]. Indeed, a phase I study that used oral midazolam 
as a CYP3A4 probe substrate found that nirmatrelvir did 
not affect the prominent inhibition of midazolam first-pass 
metabolism caused by ritonavir [35].

Following oral dosing with ritonavir in humans, CYP3A 
inhibition is rapid, mechanism-based, dose- and exposure 
duration-dependent, with maximal inhibition being reached 
after 2 days of exposure [15]. The rate of disappearance of 
CYP3A inhibition after ritonavir withdrawal can be highly 
variable, with appreciable inhibition being generally still 
present 3 days after discontinuation of the drug [15, 36]. 

The increase in plasma concentration of CYP3A substrates 
when given concomitantly with ritonavir can be quite large. 
For example, ritonavir (500 mg BID for 7 days) increased 
rifabutin plasma exposure at steady-state (AUC ss) by 4-fold 
[37]. The ritonavir-induced increase in the plasma concen-
tration of other drugs is especially prominent for medica-
tions, such as midazolam (Table 2), nirmatrelvir, lopinavir, 
and saquinavir, that undergo extensive CYP3A-mediated 
first-pass metabolism in the gut or the liver. The reason for 
this is that inhibition of first-pass metabolism can result in 
several-fold increases in oral bioavailability. The prominent 
increase in plasma exposure of CYP3A4 substrates follow-
ing co-administration with ritonavir has been utilized to 
boost the activity not only of nirmatrelvir, but also of various 
human immunodeficiency virus (HIV) and hepatitis C virus 
(HCV) protease inhibitors [38–41]. An observation relevant 
to the potential use of RBN in patients with epilepsy and 
comorbid COVID-19 is that clinically relevant inhibition of 
CYP3A-mediated drug metabolism occurs as early as after 
intake of a single dose of ritonavir [38]. Most ASMs that 
are CYP3A substrates (Table 3) are not subject to extensive 
first-pass metabolism, and therefore the decrease of their 
metabolic clearance by a 5-day course of RBN treatment 
is likely to be of a smaller magnitude than that reported for 
orally administered midazolam or protease inhibitors. Yet, 
the possibility of RBN causing a clinically significant eleva-
tion in the plasma concentration of these ASMs should be 
considered [42].

Because the authorized RBN regimen limits duration of 
treatment to 5 days, enzyme-inhibition mediated interac-
tions could be expected to have greater clinical relevance 
for ASMs with relatively short half-lives, such as mida-
zolam and tiagabine, because for these drugs the increase 
in plasma concentration following metabolic inhibition will 
occur rapidly. Should RBN be used in patients on chronic 
therapy with ASMs that are CYP3A substrates, monitor-
ing for potential adverse effects (and plasma concentration 
elevation) is advisable. This recommendation is in line with 
a case report from Japan, where a 20-year-old man with 
epilepsy and HIV infection treated with carbamazepine 
developed signs of carbamazepine toxicity (vomiting, ver-
tigo and transient liver dysfunction) within 12 h of taking 
a single oral 200-mg dose of ritonavir [43]. These symp-
toms were associated with a high plasma carbamazepine 
concentration, twice the value found before ritonavir was 
administered. In the same patient, plasma carbamazepine 
levels declined following ritonavir discontinuation, and 
rose again (with re-appearance of clinical signs of toxic-
ity) when ritonavir was re-introduced. Another case report 
described a 49-year-old HIV-infected woman with epilepsy 
treated with carbamazepine, who developed severe ataxia 
with inability to walk within 4 days of starting a regimen that 
included ritonavir (400 mg BID), saquinavir (400 mg BID), 
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and efavirenz (600 mg QD) [44]. Her serum carbamazepine 
concentration was 20.4 µg/mL, compared with 6.9 µg/mL 
prior to starting antiviral treatment. Her symptoms remit-
ted after reducing the carbamazepine dose to 100 mg/day, 
resulting in a serum carbamazepine concentration compa-
rable to that measured before starting antiviral therapy. The 
interaction was ascribed to rapid inhibition of the CYP3A4-
mediated metabolism of carbamazepine by ritonavir. Several 
other similar cases have been reported [45]. Although not 
directly applicable to RBN-treated patients because RBN is 
contraindicated in patients receiving carbamazepine, these 
reports illustrate the clinical relevance of inhibition-based 
drug interactions caused by ritonavir. For ASMs that have 
longer half-lives than carbamazepine, such as zonisamide 
and perampanel, the increase in their plasma concentrations 
following addition of a CYP3A4 inhibitor would take place 
more gradually, but could still be clinically significant.

Special considerations apply to everolimus, a mammalian 
target of rapamycin (mTOR inhibitor) used as an immuno-
suppressant which is also approved for the treatment of sei-
zures associated with tuberous sclerosis complex. Everoli-
mus is a CYP3A4 substrate, and its plasma levels have been 
shown to be increased 15-fold by co-administration of the 
CYP3A4-inhibitor ketoconazole [6]. Ritonavir could be 
expected to cause a similar interaction, as confirmed by a 
recent case report [46]. Accordingly, based on prescribing 
information and different guidelines, co-administration of 
everolimus with strong enzyme inhibitors, including rito-
navir [6, 47, 48] and RBN [3, 6, 7], should be avoided [46, 
47]. A management option in COVID-19 patients requir-
ing RBN therapy consists of withholding everolimus for 
the duration of RBN treatment and for the subsequent 3 
days [6, 49], but for people with epilepsy, potential adverse 
consequences on seizure control could be a concern. For 
transplant patients receiving everolimus who require treat-
ment to prevent progression of COVID-19 to severe disease, 
the American Society of Transplantation (AST) does not 
encourage prescription of RBN, and recommends use of an 
alternative antiviral treatment [50] which, based on current 
evidence, should preferably be remdesivir [4]. It might be 
wise to extend this recommendation to patients receiving 
everolimus as an antiseizure treatment.

Another medication that requires special consideration is 
midazolam, a CYP3A4 substrate which, as an ASM, is used 
mostly by the buccal, intranasal or intravenous (i.v.) routes 
for the acute (emergency) treatment of prolonged seizures, 
seizure clusters or status epilepticus. RBN (300/100 mg BID 
for 5 days) has been found to increase the plasma exposure 
(AUC) to orally administered midazolam by 14-fold, and to 
increase midazolam half-life by 2-fold (Table 2) [1, 2, 35]. 
As a result, based on European and US prescribing informa-
tion, use of oral midazolam is contraindicated in patients 
receiving RBN treatment [1, 2]. The impressive increase 

in midazolam exposure by RBN after oral intake of mida-
zolam is mostly due to inhibition of its gastrointestinal and 
hepatic first-pass metabolism by ritonavir. When midazolam 
is used buccally or intranasally for seizure control, its first-
pass metabolism is largely avoided and the magnitude of 
interaction with RBN may be attenuated, but it is most likely 
to remain clinically significant (Table 2). Accordingly, Noy-
man et al. [29] recommended that rescue therapy with buc-
cal midazolam should be avoided in RBN-treated patients, 
and that an alternative rescue ASM, such as rectal diazepam 
(an ASM metabolized not only by CYP3A4, but also by 
CYP2C19) be used instead, at least in the out-of-hospital 
setting. Intranasal diazepam or intranasal lorazepam can also 
be valuable alternative rescue medications, with lorazepam 
having the advantage of being cleared by glucuronide con-
jugation. Of note, diazepam is listed in European [2] but 
not US [1] prescribing information among the medications 
contraindicated in RBN-treated patients. This is presumably 
due to the risk of excessive sedation which, however, would 
not be a major concern when diazepam is used as a single 
dose as rescue ASM.

Midazolam, diazepam, and lorazepam are also used for 
the i.v. treatment of status epilepticus. In patients receiv-
ing RBN therapy, lorazepam is advantageous because its 
metabolism is not mediated by CYP3A4. Should i.v. mida-
zolam be required in RBN-treated patients, patients should 
be closely monitored in a hospital setting where any seri-
ous adverse effects such as respiratory depression can be 
adequately managed [2]. A reduction in midazolam dose 
requirements should also be considered, especially when 
more than a single dose of midazolam (or a prolonged infu-
sion) is required [2].

Ritonavir administered as a boosting dose is a weak inhib-
itor of CYP2D6 [51]. Ritonavir can also act as an inhibitor 
of P-glycoprotein (P-gp) and nirmatrelvir is known to inhibit 
several drug transporters in vitro (P-gp, MATE1, OCT1, and 
OATP1B1) [34]. There is insufficient information to deter-
mine whether these effects can lead to clinically relevant 
interactions with ASMs.

5  Impact of Induction‑Based Drug 
Interactions Caused by RBN 
on the Management of Patients Receiving 
ASMs

At clinically relevant concentrations, nirmatrelvir appears 
to be devoid of enzyme-inducing properties [1]. Conversely, 
ritonavir, in addition to being a CYP3A inhibitor, acts as 
an inducer of CYP1A2, CYP2B6, CYP2C8, CYP2C9, 
CYP2C19, and other enzymes, including UGTs [1, 2, 5, 34]. 
Therefore, it has the potential to stimulate the metabolism 
of ASMs that are substrates of these enzymes. Evidence for 
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this has been provided by studies with ritonavir-containing 
anti-HIV treatment regimens (Table 2). In particular, rito-
navir given in combination with atazanavir (300/100 mg/
day atazanavir/ritonavir) or lopinavir (400/100 mg BID 
lopinavir/ritonavir) for 13 days reduced the mean plasma 
exposure of lamotrigine, a UGT substrate, by 32 and 50%, 
respectively [27, 28]. In another study, ritonavir given in 
combination with lopinavir (400/100 mg BID lopinavir/
ritonavir) for 10 days reduced the mean steady-state plasma 
exposure of phenytoin, a CYP2C9 and CYP2C19 substrate, 
by 32% (90% CI 16–43) [8]. There is also evidence that 
relatively long-term ritonavir treatment can stimulate diaz-
epam metabolism [26], though the initial prevailing effect of 
RBN is likely to be inhibition of diazepam metabolism and 
potentiation of diazepam effects [7]. In a case report, treat-
ment with ritonavir (99 mg TID) in combination with other 
anti-HIV medications was associated with a 48% decrease 
in plasma concentrations of valproic acid (a UGT substrate) 
and exacerbation of mania in a patient with bipolar disorder 
on valproic acid therapy [52].

Because ritonavir has a short half-life (3–5 h), steady-state 
plasma ritonavir concentrations are expected to be reached 
soon after starting treatment. However, unlike enzyme 
inhibition that occurs as soon as the inhibitor appears in 
circulation at sufficient concentrations, enzyme induction 
requires a few days to develop fully, because its time-course 
depends on the turnover times of the induced enzymes which 
are generally longer than the half-lives of most ASMs [53]. 
Therefore, when ritonavir (with nirmatrelvir) is used only for 
5 days as recommended, its induction potential is likely to be 
far less relevant clinically compared with its enzyme inhibit-
ing activity [1]. In spite of this, European RBN prescribing 
information states that "ritonavir dosed as a pharmacokinetic 
enhancer induces oxidation by CYP2C9 and glucuronidation 
and as a result is expected to decrease the plasma concentra-
tions of anticonvulsants. Careful monitoring of serum levels 
or therapeutic effects is recommended when these medicines 
are co-administered with ritonavir." [2]. Monitoring plasma 
ASM levels, however, can be difficult considering that RBN 
treatment is primarily administered outside the hospital set-
ting and for a short duration.

In fact, the effect of a 5-day course of RBN on the plasma 
levels of ASMs that are metabolized by CYP1A2, CYP2B6, 
CYP2C8, CYP2C9, CYP2C19, and UGTs has not been 
investigated. As discussed above, ritonavir used in combina-
tion with anti-HIV medications for 10–13 days (a treatment 
period longer than that recommended for RBN) reduces the 
plasma exposure of lamotrigine, phenytoin, and valproic 
acid. Although these interactions are unlikely to be clinically 
significant given the short duration of RBN treatment [1], 
patients receiving other ASMs that are substrates of enzymes 
induced by ritonavir (Table 3) may be advised to report any 
unexpected change in seizure control [2, 35].

6  Effects of ASMs on the Pharmacokinetics 
of RBN and Its Antiviral Effectiveness 
in Patients with COVID‑19

6.1  Effect of Potent Enzyme‑Inducing ASMs on RBN 
Pharmacokinetics

Because nirmatrelvir and ritonavir are extensively metab-
olized by CYP3A, their clearance is influenced by con-
comitant treatment with ASMs affecting the activity of this 
enzyme. The main concern relevant to epilepsy management 
which was raised during RBN development was the pos-
sibility of decreased plasma concentration of nirmatrelvir, 
the RBN component active against the anti-SARS-CoV-2 
virus, in patients receiving enzyme inducing ASMs. This 
concern was justified by a considerable body of evidence 
indicating that potent enzyme-inducing ASMs, particu-
larly phenytoin, carbamazepine, and phenobarbital, mark-
edly reduce the plasma concentrations of anti-HIV drugs 
(Table 1) [54, 55] to levels below those required to suppress 
viral replication [54–56]. A decrease in plasma nirmatrel-
vir exposure in patients taking enzyme inducing ASMs is 
expected to occur as a result of two processes, namely a 
direct increase in nirmatrelvir metabolic clearance as a well 
a reduced inhibition of nirmatrelvir metabolism by ritonavir, 
because plasma ritonavir concentration is also expected to 
be reduced by enzyme induction.

Based on this background, the RBN manufacturer con-
ducted a pre-authorization study to assess the influence of 
carbamazepine on the pharmacokinetics of nirmatrelvir in 
nine healthy individuals. The study has not been published, 
and only limited information is accessible through regula-
tory documents. According to these documents, participants 
received RBN (300 mg/100 mg) on two occasions, in a con-
trol session (RBN alone) and during the last 5 days of a 
15-day treatment with carbamazepine (100 mg BID days 
1–3, 200 mg BID days 4–7, and 300 mg BID days 8–15). 
There seems to be a discrepancy in regulatory files as to 
whether RBN was given as a single dose [57] or multiple 
doses [1, 35]. In spite of this uncertainty, co-administration 
with carbamazepine was associated with a reduction in mean 
nirmatrelvir AUC to 44.50% (90% CI 33.77–58.65) of the 
AUC value recorded when RBN was given alone [1, 2, 57, 
58]. In parallel, peak plasma nirmatrelvir concentration 
(Cmax) was reduced to 56.80% (90% CI 47.0–68.6) of the 
value recorded in the control session.

These results and their potential clinical implications 
were discussed in EMA’s preliminary public assessment 
report issued on December 16, 2021 which recognized the 
need “to take into consideration a risk of efficacy loss caused 
by carbamazepine induction, and an urgent medical need to 
treat patients with epilepsy at high risk for progression to 
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severe COVID-19. Because ASMs treatment in this popu-
lation cannot be easily interrupted, even for a short period 
of time, further discussion is needed on the expected effi-
cacy at the proposed therapeutic dose (i.e. 300 mg /100 mg 
nirmatrelvir/ritonavir) and the therapeutic margin in this 
particular population” [57]. The report concluded that the 
impact of carbamazepine on RBN efficacy at a 300/100 mg 
dose is ‘uncertain’, and that it is difficult to predict whether 
“a dose increase would enable to strictly avoid a sub-optimal 
concentration with a critical risk of resistance” [57]. This 
reasoning led European regulators to further conclude that 
a dose increase cannot be proposed, and that treatment with 
carbamazepine should be conservatively listed as a contrain-
dication to the use of RBN [2, 35]. Similarly to US prescrib-
ing information [1], the contraindication is also extended to 
phenytoin and phenobarbital, which are also potent enzyme 
inducers. Interestingly, neither European nor US prescrib-
ing information lists primidone as a contraindicated come-
dication, despite evidence that primidone is extensively 
converted to phenobarbital and shows enzyme-inducing 
properties similar to those of potent enzyme-inducing ASMs 
[59]. Presumably, failure to list primidone among poten-
tially interacting ASMs is due to the fact that, currently, 
primidone is rarely used in the treatment of epilepsy. In any 
case, it would appear reasonable to consider primidone as 
equivalent to phenobarbital for the purpose of COVID-19 
management in patients with epilepsy, as also suggested by 
the COVID-19 Treatment Guidelines Panel of the National 
Institutes of Health (NIH) [3].

It is worth emphasizing that withdrawal of potent 
enzyme-inducing ASMs is not an option for patients requir-
ing RBN treatment, not only because of the risk of loss of 
seizure control but also because enzyme induction persists 
for at least several days after discontinuation of the inducer. 
This implies that the interaction with nirmatrelvir/ritona-
vir cannot be prevented by stopping carbamazepine, primi-
done, phenytoin, or phenobarbital. It also implies that the 
contraindication to RBN use applies not only to patients 
being treated with potent enzyme-inducing ASMs, but also 
to those who received the same ASMs in the previous 14 
days [7].

6.2  Effects of Other ASMs on RBN Pharmacokinetics

Other ASMs, most notably oxcarbazepine, eslicarbazepine 
acetate, and rufinamide, are less potent inducers than car-
bamazepine, phenytoin, and phenobarbital [60, 61]. Addi-
tionally, there are ASMs (namely felbamate [60] and ceno-
bamate [62]) that can have both inducing and inhibiting 
activities on CYP3A. The effects of these ASMs on RBN 
pharmacokinetics is unknown, although based on their inter-
action profile with other medications [60–62], a moderate 
enzyme-inducing effect can be expected. US and European 

prescribing information does not specifically contraindi-
cate the use of RBN in patients with epilepsy receiving 
these ASMs as comedication. The COVID-19 Advisory 
for Ontario, however, does list oxcarbazepine and eslicar-
bazepine acetate (together with carbamazepine, phenytoin, 
phenobarbital, and primidone) among the ASMs which, if 
used within past 14 days, contraindicate use of RBN [7]. On 
the other hand, the University of Liverpool Drug Interaction 
Checker considers the potential for interaction of oxcarbaz-
epine and eslicarbazepine acetate with RBN as ‘weak’ (not 
warranting a contraindication), stating that these medica-
tions “could potentially decrease nirmatrelvir/ritonavir expo-
sure, although to a limited extent” [6]. Of note, in a prelimi-
nary report  oxcarbazepine has been suggested  not to affect 
the antiviral response to the anti-HIV drug dolutegravir [63]. 
On the contrary, the metabolism of dolutegravir is induced to 
a clinically significant extent by carbamazepine [55].

Some ASMs, most notably stiripentol, can inhibit CYP3A 
[64] and therefore can potentially increase the plasma con-
centration of RBN. Interactions with ASMs that inhibit 
CYP3A such as stiripentol are unlikely to have major clini-
cal significance for two sets of reasons. First, co-administra-
tion of RBN with the potent CYP3A4 inhibitor itraconazole 
(200 mg/day for 8 days) was only associated with a mod-
est (38%) increase in nirmatrelvir plasma exposure (AUC), 
which was not regarded to be clinically significant [35]. 
Accordingly, prescribing information does not contraindi-
cate the concurrent use of RBN and itraconazole, although 
careful monitoring for potential side effects of the antiviral 
treatment is advised. Second, ritonavir is a potent CYP3A 
inhibitor, and it is likely that CYP3A is already maximally 
inhibited by ritonavir.

7  Management of COVID‑19 in Patients 
Receiving ASMs Contraindicating Use 
of RBN

The approach to anti-SARS-CoV-2 therapy requires con-
sideration of several factors, including characteristics of the 
affected individual, vaccination and immune status, presence 
of any interacting comedications, stage of COVID-19 dis-
ease and its clinical manifestations, the SARS-CoV-2 variant 
prevailing at the time, and the healthcare resources available 
in each specific setting [3]. This section focuses mostly on 
treatment options for non-hospitalized adults with epilepsy 
receiving enzyme-inducing ASMs contraindicating the use 
of RBM. Recommendations concerning treatment choices 
in these patients are based primarily on current NIH guide-
lines for the management of COVID-19 in the US and areas 
where the Omicron BA.2 subvariant has become prevalent 
[4]. For updates, and for recommendations concerning other 
regions or the management of COVID-19 in children and in 
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patients hospitalized because of COVID-19, health profes-
sionals should refer to other available comprehensive guide-
lines [3, 65–69].

For non-hospitalized adults from areas where Omi-
cron BA.2 is the dominant subvariant, three alternative 
anti-SARS-CoV-2 medications, namely remdesivir, bebt-
elovimab, and molnupiravir, should be considered whenever 
RBN is unavailable or contraindicated due to the risk of drug 
interactions (Table 4). A fourth previously considered medi-
cation, the monoclonal antibody sotrovimab, is no longer 
recommended because of its substantially decreased in vitro 
activity against the Omicron BA.2 subvariant [4].

Remdesivir is a prodrug ultimately converted to an active 
nucleoside triphosphate metabolite (GS-443902), which is 
incorporated into the SARS-CoV-2 RNA and prevents viral 
replication by inhibiting RNA-dependent RNA polymerase 
[70]. Remdesivir has very low oral bioavailability due to 
extensive first-pass metabolism, and therefore needs to be 
administered by the i.v. route. In non-hospitalized high-risk 
patients, remdesivir’s efficacy rate in reducing progression 
to severe COVID-19 disease was 87% [71], a rate simi-
lar to that reported for RBN [4]. In vitro, remdesivir can 
affect the activity of various CYP enzymes and transport-
ers (Table 4), but the clinical significance of these effects 
is unclear. The risk of interactions leading to inhibition or 
induction of enzymes involved in remdesivir metabolism, 
or interactions affecting remdesivir transporters (Table 4), 
is also unknown [72]. Although only a minor proportion of 
remdesivir is metabolized by CYP3A, European prescrib-
ing information states that co-administration of remdesivir 
with strong enzyme inducers is not recommended, though 
not formally contraindicated [73]. In fact, the strong inducer 
rifampicin has been predicted to have only a modest effect 
on remdesivir exposure [74], suggesting that co-administra-
tion with carbamazepine and other enzyme-inducing ASMs 
should not be associated with any major interaction.

Bebtelovimab is an anti-SARS-CoV-2 monoclonal anti-
body that received FDA emergency use authorization for the 
treatment of non-hospitalized patients with mild to moderate 
COVID-19 who are at high risk of progressing to severe 
disease [75]. Evidence for its efficacy comes from laboratory 
data showing potent activity against the Omicron variant and 
its BA.1, BA1.1 and BA.2 subvariants, and from a single 
phase II, randomized, placebo-controlled trial in COVID-19 
individuals who were at low risk of progressing to severe 
disease [3]. The risk of interactions between bebtelovimab 
and ASMs is considered to be low. However, in some disease 
states, treatment with monoclonal antibodies can result in 
altered plasma concentrations of concomitant medications 
[76], suggesting that careful monitoring of response and/or 
plasma ASM levels is desirable should bebtelovimab be used 
in patients receiving ASMs.

Molnupiravir is, like remdesivir, an ester prodrug which 
undergoes rapid hydrolysis to the ribonucleoside ana-
logue N4-hydroxycytidine, the primary entity found in 
blood. N4-hydroxycytidine distributes into cells where it 
is phosphorylated to the pharmacologically active entity 
N4-hydroxycytidine triphosphate, which is eliminated by 
similar metabolic pathways as endogenous pyrimidines [77, 
78]. In a pivotal clinical trial in non-hospitalized high-risk 
COVID-19 patients, molnupiravir reduced the risk of pro-
gression to severe disease by 30% [79], which is a lower 
efficacy rate than that associated with RBN and remdesivir 
[4, 80]. Molnupiravir, however, has the advantage over bebt-
elovimab and remdesivir of being suitable for oral adminis-
tration. Molnupiravir metabolism is also not CYP-mediated 
and is not susceptible to inhibition- or induction-based drug 
interactions with concomitant medications. Additionally, 
neither molnupiravir nor its metabolite N4-hydroxycytidine 
affect the activity of CYP enzymes and transporters [78].

Taking all evidence into account, current NIH guidelines 
for the management of non-hospitalized adults with COVID-
19 who are at high risk of disease progression recommend 
that, when RBN is not available or cannot be used because 
of drug interactions, remdesivir should be used as a first 
option [4]. According to the same guidelines, bebtelovimab 
or molnupiravir should only be used when RBN or remdesi-
vir are clinically inappropriate, unavailable, or unfeasible to 
use. These recommendations are justified by the putatively 
greater efficacy of remdesivir compared with molnupiravir, 
and the greater level of evidence for the efficacy of remde-
sivir compared with bebtelovimab. With respect to logisti-
cal constraints, molnupiravir is the only medication that is 
administered orally. Bebtelovimab is given as a single i.v. 
infusion, and remdesivir as i.v. infusions for 3 consecutive 
days.

8  Summary and Conclusions

Use of RBN in COVID-19 patients receiving chronic treat-
ment with ASMs requires consideration of bidirectional 
interactions between these drugs. Specifically, RBN may 
increase the plasma concentration of some ASMs that are 
CYP3A4 substrates with a risk of ASM toxicity. The risk of 
serious adverse effects is particularly high for buccal/intra-
nasal midazolam and for everolimus, which should not be 
co-administered with RBN (i.v. midazolam may be used, 
but only in a setting where respiratory depression can be 
adequately managed). In addition to inhibiting CYP3A4 
activity, RBN may induce the metabolism of ASMs that 
are metabolized by CYP2C9, CYP2C19, or UGTs, leading 
to a decrease in their plasma concentrations. Because of 
the short duration of RBN therapy (5 days), some of these 
interactions, particularly those involving induction of ASM 
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metabolism, are likely to be of limited clinical significance. 
In any case, careful assessment of potential changes in ASM 
response is advisable when RBN is added on to pre-existing 
treatment with potentially affected ASMs, and monitoring 
of plasma ASM concentrations may be especially indicated 
for ASMs which are CYP3A4 substrates.

A specific group of interactions causing major concern 
are those resulting in induction of nirmatrelvir/ritonavir 
metabolism by ongoing treatment with potent enzyme-
inducing ASMs, namely carbamazepine, phenytoin, pheno-
barbital, and primidone. Treatment with these ASMs is a 
contraindication to the use of RBN.

Patients with epilepsy who are at high risk of progression 
to severe COVID-19 disease and in whom RBN is contrain-
dicated need to be treated with alternative anti-SARS-CoV-2 
agents. Although remdesivir is a valuable alternative, in 
some settings it may not be readily accessible due to lack 
of availability, cost considerations, and/or logistic difficulties 
related to its i.v. route of administration. If remdesivir is not an 
appropriate option, either bebtelovimab or molnupiravir may 
be considered. However, evidence about bebtelovimab clini-
cal efficacy is still limited, and molnupiravir (the only orally 
active alternative anti-SARS-CoV-2 medication) is deemed 
to have appreciably lower efficacy than RBN and remdesivir.

Note added in proof In the latest revision of US prescribing 
information, dated July 6, 2022, primidone is added to the list of 
contraindicated comedications.
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