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Abstract

Background: Essential proteins are an important part of the cell and closely related to the life activities of the cell.
Hitherto, Protein-Protein Interaction (PPI) networks have been adopted by many computational methods to predict
essential proteins. Most of the current approaches focus mainly on the topological structure of PPl networks.
However, those methods relying solely on the PPI network have low detection accuracy for essential proteins.
Therefore, it is necessary to integrate the PPI network with other biological information to identify essential
proteins.

Results: In this paper, we proposed a novel random walk method for identifying essential proteins, called HEPT. A
three-dimensional tensor is constructed first by combining the PPI network of Saccharomyces cerevisiae with
multiple biological data such as gene ontology annotations and protein domains. Then, based on the newly
constructed tensor, we extended the Hyperlink-Induced Topic Search (HITS) algorithm from a two-dimensional to a
three-dimensional tensor model that can be utilized to infer essential proteins. Different from existing state-of-the-
art methods, the importance of proteins and the types of interactions will both contribute to the essential protein
prediction. To evaluate the performance of our newly proposed HEPT method, proteins are ranked in the
descending order based on their ranking scores computed by our method and other competitive methods. After
that, a certain number of the ranked proteins are selected as candidates for essential proteins. According to the list
of known essential proteins, the number of true essential proteins is used to judge the performance of each
method. Experimental results show that our method can achieve better prediction performance in comparison with
other nine state-of-the-art methods in identifying essential proteins.

Conclusions: Through analysis and experimental results, it is obvious that HEPT can be used to effectively improve
the prediction accuracy of essential proteins by the use of HITS algorithm and the combination of network
topology with gene ontology annotations and protein domains, which provides a new insight into multi-data
source fusion.
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Background

Proteins play an important role in the life activities of
cells. Essential proteins are proteins that can cause cell
death or cell infertility if they are missing. Therefore, the
identification of essential proteins is important not only
for understanding the structure of organisms but also
for detection of drug-targets [1] and the prevention of
genetic diseases [2]. Methods for identifying essential
proteins can be generally divided into two categories.
The methods of the first type focus on the use of experi-
mental techniques including single gene knockout [3],
RNA interference [4], and genome-wide transposition to
mutagenesis of several microorganisms [5]. The draw-
back of those methods is the expensive price for the bio-
logical experiments. The second type of method is
computation methods whose costs are far less than the
experimental methods. Based on the topological proper-
ties of PPI networks, a lot of computational methods
such as degree of centrality (DC) [6], information center
(IC) [7], closeness centrality (CC) [8], betweenness cen-
trality (BC) [9], subgraph centrality (SC) [10], and neigh-
bor centrality (NC) [11] have been proposed for
prediction of essential proteins. The prediction accuracy
of these methods is largely influenced by the quality of
the PPI network. Unfortunately, most of the PPI net-
works obtained from high-throughput biological experi-
ments are unreliable and incomplete. In particular, there
are a large proportion of PPI networks with false posi-
tives. Therefore, some biological data such as sequence
data, protein domains, gene expression profiles, protein
complexes, and gene ontology (GO) annotations are in-
troduced by researchers to predict essential proteins suc-
cessively. For example, Hsing et al. [12] developed a
method for predicting highly connected central nodes
based on GO annotations and interaction data. Ren
et al. [13] proposed a prediction model for essential pro-
teins by fusing PPI network topology and protein com-
plex information. Zaki et al. [14] proposed a protein
ranking algorithm (ProRank) to quantify the significance
of each protein based on the evolutionary relationships
and the interaction structure between proteins in the
network. Li et al. [15] presented a predictive model of
essential proteins based on PPI networks and combining
complex centralities. Peng et al. [16] proposed a predict-
ive model, called UDoNC, by integrating protein domain
information and PPI networks in yeast. It showed that
proteins with more types of self-protein domains tend to
be essential. Li et al. and Zhang et al. developed two pre-
dictive models called PeC [17] and CoEWC [18], which
predicted essential proteins through gene expression and
topological characteristics of PPI network. Zhao et al.
[19] proposed a predictive model POEM that can meas-
ure the essentiality of protein, by detecting overlapping
basic modules based on required protein modularity.
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The above methods have improved the prediction ac-
curacy by integrating PPI networks and multi-source
biological data. They usually constructed a trustable sin-
gle network by aggregating multiple biological data.
However, they ignore the intrinsic correlation between
multi-source data. Moreover, different types of interac-
tions may have different effects on the identification of
essential proteins. In order to solve this problem, we
used the tensor to represent the multi-relationship net-
work [20] of proteins firstly, in which there were mul-
tiple interactions between two proteins and each type of
interaction has its own unique properties. HITS algo-
rithm was extended from two-dimension matrix to
three-dimension tensor model for ranking the score of
proteins.

A tensor [21] is a special kind of vector that extends
the vector. When the tensor is first-order, it is equivalent
to a vector. However, when the order of the tensor be-
comes higher, it is not equivalent to a high-order vector.
The second-order tensor is a matrix, and the third or
higher order tensors are collectively referred to as high-
order tensors. Obviously, the tensor is well-suited as a
model for describing complex networks. Hence, in this
paper, according to the concept of tensor, a new method
based on tensor and Hyperlink-Induced Topic Search
(HITS) algorithm [22] is proposed to predict the essen-
tial protein. A tensor model will be established first
through fusing GO annotations, protein domains and
PPI networks from Saccharomyces cerevisiae. Then the
HITS algorithm will be extended from a two-
dimensional matrix to a tensor model that can be uti-
lized to infer essential proteins. Different from state-of-
the-art methods (Pec, COEWC, and POEM), the import-
ance of proteins and the types of interactions will both
do contribution to the essential protein prediction. In
addition, the types of protein interactions and the pro-
tein scores will affect each other during the iteration
process, the protein conservation features derived from
orthologous information and the functional features de-
rived from subcellular localization will be considered to
generate an initial probability vector as well. Finally, we
implement the DIP data [25] to evaluate the predictive
performance of our method, and experimental results
show that our method is better than other previous cen-
tral methods such as DC [6], IC [7], CC [8], BC [9], SC
[10], NC [11], and three competing methods that inte-
grate network topology features and biological data
sources simultaneously such as PeC [17], CoOEWC [18],
and POEM [23] simultaneously.

Methods

In this work, we firstly established a tensor model by
combining multi-source biological data with a PPI net-
work to reduce negative impacts on prediction. And
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then, we extend the HITS algorithm from the two-
dimensional matrix to the three-dimensional tensor for
essential proteins prediction.

Construction of the protein-protein interaction tensor

An adjacency matrix A can be used to represent a PPI
network in which one element represents whether there
is an interaction between a pair of proteins. Due to the
introduction of multiple biological data sources, there
may be more than one interaction between a pair of pro-
teins. Therefore, matrices are not suitable for describing
the complex relationships between proteins. Hence, we
would adopt tensor to expand the matrix. As shown in
Fig. 1, it is obvious that the tensor is more suitable than
matrix to represent complex networks with multiple
relationships.

We combine protein interaction network topology
features, protein domain information, and GO annota-
tions to establish a single-node and multi-relational
protein tensor T first. Here, the single node is the
protein; the multi-relationships refer to the co-
neighbor relationships established between the protein
pairs based on topological analysis, the co-domain re-
lationships established based on the protein domain
information and the co-annotation relationships estab-
lished based on the GO annotations. The formation
process of these relationships will be described in de-
tails in the following.
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1) The establishment of co-neighbor relationship

The data on protein interactions obtained by high-
throughput technology is incomplete. Network topology
analysis provides some good ways to overcome these
problems. Intuitively, the more co-neighbors between
two proteins, the more likely they will interact with each
other. In this paper, the proteins p; and p; would be con-
sidered to be interconnected, if they have at least one
common neighbor. This kind of connections between
proteins is called the first type of relationships, or the
co-neighbor relationships, which can be calculated as
follows [23]:

|Nl'ﬂNj}2
(INi[-1) x (INj|-1)

Co N (Pmp;‘) ={
if | N; |> 1 and | N; |> 10 otherwise

(1)

where N; and N; denote the neighborhood sets of p;
and p; respectively.

2) The establishment of co-domain relationship

Domains may be another clue to the discovery of protein
relationships, which it is a stable functional block of pro-
teins, sequences, and structural motifs that exist inde-
pendently in different proteins. Achieving cellular
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Fig. 1 The representation of tensor. It shows a network with four nodes, eight edges and three types of edges. On the bottom side of Fig. 1,
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function requires the cooperation of proteins through
many domains. Hence, we can assume that proteins with
same domains may interact with the same or similar
functions.

Step 1: Calculation of the domain score P_D of
proteins

o o 4
— X tj- mi Xty
ZNP, I 1 <ksp ZNP, Y

j=1

Lol 4 POl 4
max —— Xty |- min —— Xty
1<k<|P| (;NPj ’) 1<j<|P| (;NP,- ’)
(2)

P—D(Pi) =

where P is the set of proteins, DO is the set of dif-
ferent domains in all proteins, and NP; is the number
of proteins comprising domain . If the protein con-
tains the domain d;, then there is £; = 1; otherwise,
there is t; = 0. In addition, in terms of the frequency
of the protein domain, the domain score is an im-
portant probability of the presence of protein. In the
study of this topic, we hypothesized that the basic
probabilities of different proteins based on domains
are independent of each other.

Step 2: Calculation of co-domain probabilities between
pairs of proteins

Based on above assumption, the proteins p; and p;
would be considered to be interconnected, if they have
at least one common domain type. These kinds of con-
nections between proteins are called the second type of
relationships, or the co-domain relationships, which can
be calculated as follows:

Co-5(pip,) = P-D(p,) x P-D(p)) 3)

3) The establishment of co-annotation relationship
Considering that proteins participate in functional
modules during the molecular processing phase and
work with other proteins to perform a function. That
is to say, multiple proteins may share functions by
participating in the same functional module. Hence,
we can use GO annotation to supplement the inter-
action in the PPI network. For any two proteins p;
and p; in the PPI network, let F; and F; represent the
set of functional components of p; and p; respectively,
and Co_A (p, p;) represents the probability of sharing
functions of the two proteins, then it can be obtained
as follows [24]:
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L) S >0and | F;[> 0
CO—A(PnP/):{ Fi [ x| F;| if | F;[>0and | F
0

, otherwise
(4)

Here, FinF; represents a common GO set of proteins
pi and p;.

It is obvious that the tensor T can be set correspond-
ingly after forming three connections, as shown in Fig. 2
below.

Prediction of essential proteins based on the tensor T
Based on the fact that some PPI networks have the char-
acteristics of the small worlds, such as the scale-free fea-
tures and the infinite distance between pairs of nodes,
the random walk model is widely used in the prediction
of PPI networks. This two-dimensional matrix-based it-
erative method has also been demonstrated to have ex-
cellent performance through experimental results. After
building a tensor model to combine the PPI network
with multiple data sources, the next key step of our work
is to extend the random walk algorithm to multidimen-
sional tensors. Considering that tensor is not only a sim-
ple extension of vectors and matrices but also has its
own unique properties, so the tensor data processing
should be specially processed; otherwise, it will destroy
the original data, and the correlation and complementa-
rily are also ignored between different modal data. Thus,
a new HITS-based random walk model is proposed to
predict the basic protein of protein tensor in this
section.

The HITS is a classic random walk algorithm in
addition to PageRank. In the HITS algorithm, the im-
portance of a node is measured by an authority value
and a hub value, and the two measurements are related
to each other. In this paper, the HITS-based random
walk algorithm will be extended to the protein tensor
model established in the previous stage. Different from
two-dimensional matrices, there are many types of asso-
ciations between proteins in tensors, and each relation-
ship has a different importance for the identification of
essential proteins. Based on the principle of HITS algo-
rithm and characteristics of tensor, in our prediction
model, we assume the following:

1) If a node is connected by a number of nodes with
high hub scores through important edges, it has a
higher authoritative score.

2) If a node is connected to many nodes with high
authoritative scores through important edges, it has
a higher pivotal score.

3) If a type of edge is frequently connected between a
high-hub node and a high-authority node, then it
has a higher importance.
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Fig 2 An example of the tensor constructed in this work. An example of the tensor constructed in this work. a The input data. b The different
relationship with three data respectively. ¢ The three-relational protein tensor T

For convenience, VA, VH, and VE are used to rep-
resent the authoritative score vector, the hub score
vector, and the importance score vector of different
types of edges respectively. Elements in VA and VH
are initialized with 1/n, while elements in VE are
equal to 1/m. n represents the number of nodes, and
m represents the number of types of edges between
nodes. As described above, there are three different
types of edges in our newly constructed interaction
network, so m = 3.

By performing a normalization operation on the tensor
T, three probability transfer tensors T, T™, and T
can be established, which correspond to the vectors VA,
VH, and VE respectively. The calculation formulas are
as follows:

Lijk e
@ % lfzti,/’,k>0
a f—
tiie =1 Z tijk !
i-1

1 /n otherwise

fi’k ifiti,,,k >0

t,(;;)k =1 Z Lijk =1 (6)
1711 /n otherwise
mti’k ifiti,,-,k >0

tl(e])k = {Z Lk K (7)
k:11 /m otherwise

In this paper, a novel HEPT method is proposed to
predict essential proteins by using the similar power iter-
ation algorithm. For the ¢-th iteration, the three vectors
VA, VH, and VE are calculated at step 6-8 shown in al-
gorithm 1.

In above equation (9), a is the adjustment parameter
and D is the jump probability vector, whose value is de-
termined by the homologous score of the protein and
the subcellular localization score.
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D = I(i) x S(i) 8)

Among them, the homology score of protein p; can be
calculated as follows:

NI (i)
max (NI(j))

1<j<n|

1(i) = %)

where the molecule is the number of species of the
immediate protein containing protein p;, and the de-
nominator is the largest species of all proteins contain-
ing the immediate protein.

The subcellular localization formula for protein p; is as
follows:

S(i) = max(F.S(j))

10
jed (i) ( )

In the above equation, d (i) is a subcellular collection
of protein p,. F_S (j) is the score of the j-th sub-cell, and
the equation is as follows:

|Pj|

ma
 max (lpel)

FS(j) = (11)

where the molecule is the number of proteins contain-
ing subcellular j, and the denominator is the maximum
amount of protein in all subcellular cells.

When the iteration reached a stable state, the proteins
were arranged in descending order according to the vec-
tor VA. Based on the above description, the overall
framework of the HEPT method is as follows in Table 1.

In summary, we established a protein interaction ten-
sor by combing PPI networks and multiple biological

Table 1 Overall framework of the HEPT method
Algorithm 1: HEPT method

Input: A PPI network G, protein domain, GO annotation, orthologs
datasets, subcellular localization datasets; stopping threshold €

Output: Top N proteins sorted by VA in descending order

Step 1. Construct the tensor T according to Equation (1), (2), (3), (4)
Step 2. Calculate jump probability vector D with Equation (12), (13), (14),
(15)

Step 3. Construct two transition probability tensors 7@, 7" and 7€
with Equation (6)-(8)

Step 4. Initialize VAy = 1/n, VHy = 1/n, VEg = 1/m
Step 5. Lett =1
Step 6. Calculate VA, = (1 —a) X D+ a x T X VH, _ {VE,_;

Step 7. Calculate VH, = T x VA, X VE,_
Step 8. Calculate VE, = T x VA, x VH,

Step 9. If IVA, = VA _ Il + IVH = VH, _ 1l + IVE, = VE, 1l Z € then tet va =

VAt, VH = VHt, VE = VEt. Otherwise, let t = t + 1, and then go to Step 6.

Step 10. Sort proteins by the value of VA in the descending order
Step 11. Output top N of sorted proteins
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data. And then, we proposed a new essential proteins
prediction method, named HEPT by running the HITS
algorithm on the constructed tensor.

Results and discussion

| Experimental data

Computational analysis was performed by a PPI network
of Saccharomyces cerevisiae. Yeast is the most complete
and reliable in single cells, and its characteristics have
been well demonstrated by knockout experiments. The
effectiveness of our proposed method was demonstrated
by a detailed introduction to the results of the DIP data
set [25]. After self-interaction and repetitive interactions
having been filtered out, the DIP data set consisted of
5093 proteins and 24,743 interactions. In addition, there
were 1107 different types of domains among the 3042
proteins in the Pfam database [26]. The protein function
annotation data was the latest version downloaded from
the GO official [27] website. To avoid being too specific
or too general, only those GO terms annotated with at
least 10 or at most 200 proteins were used for experi-
mental verification, and the number of processed GO
terms was 267.

Moreover, the subcellular localization information of
proteins used to evaluate proteins was collected from
COMPARTMENTS database [28]. The seventh edition
of the InParanoid database [29] contained a collection of
pairwise comparisons between 100 whole genomes (99
eukaryotes and 1 prokaryote) from which information
on orthologous proteins was derived. Additionally, a set
of basic proteins used in our experiments were obtained
from the MIPS [30], SGD [31], DEG [32], and SGDP
[33] databases. Of the 1285 essential proteins, there were
1167 essential proteins in the DIP network.

Il Effect of parameter a

In this paper, we introduced the parameter a (0 < a < 1)
in Eq. (9). In this section, we adopted a precision-recall
(PR) curve to evaluate the effects of the parameter a to
the performance of our method. And as illustrated in
the following (Fig. 3), simulation results showed the
comparison results while the parameter a was set to dif-
ferent values. Many of the top essential candidates are
used to measure prediction accuracy. From observing
the following in Fig. 3, it is easy to see that HEPT can
archive the highest prediction accuracy when a was set
to 0.3.

Il Comparison with other methods

We validated the performance of our proposed new
method for predicting essential proteins by making a
comprehensive comparison of HEPT with a representa-
tive set of competitive methods for predicting essential
proteins, including DC, IC, BC, CC, SC, NC, PeC,
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Fig. 3 The effect of the parameter a. The figure shows the prediction accuracy of HEPT in each top percentage of ranked proteins by setting
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CoEWC, and POEM. The first six methods in the list of
competitive methods are classical essential proteins pre-
diction methods, while three other methods discover es-
sential proteins by integrating PPI networks and
multiple biological data. The values calculated by the dif-
ferent methods were used to sort the proteins. During
simulation, we used a certain number of top proteins as
candidates for essential proteins, and then distinguished
how many of them were truly essential proteins. The
number of essential proteins detected by HEPT and
other nine competing methods on the yeast DIP network
were shown in the following (Fig. 4).

As shown in Fig. 4, it is obvious that the predictive
performance of HEPT is better than all these state-of-
the-art competing methods. Among the top100 to top
600 proteins, the predictive performance of HEPT im-
proved 63.64%, 34.13%, 26.92%, 24.35%, 21.15%, and
24.84% respectively, while compared with NC, which
had the best performance among the other six
topological-based centers such as DC, IC, BC, CC,
SC, and NC. In addition, while compared with PeC,
CoEWC, and POEM, the predictive performance of

HEPT was much better than these state-of-the-art
methods as well.

IV Validated by precision-recall curves

In this section, the overall performance of each method
was evaluated using a precision-recall (PR) curve. During
simulation, the proteins in the PPI network were first
ranked in descending order according to the scores cal-
culated by each method. And then the top K protein
would be selected as the candidate essential protein
(positive data set), and the remaining protein was the
candidate non-essential protein (negative data set), and
the K ranged from 1 to 5093. The accuracy and recall
values for each method were calculated for different K
values. Finally, the values of precision and recall values
were then in the PR curve with different cutoff values.
Figure 5a shows the PR curves for HEPT and six
topological-based central methods such as DC, IC, BC,
CC, SC, and NC. Figure 5b shows the PR curves includ-
ing PeC, CoEWC, and POEM for HEPT and other four
methods. From observing Fig. 5, it was clear that the PR
of HEPT was the best of all methods.
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Fig. 4 Comparison of the number of essential proteins detected by HEPT and other methods. In order to evaluate the essentiality of proteins in
the PPI network, we compared HEPT method with nine existing state-of-the-art central methods such as DC, IC, CC, BC, SC, NC, PeC, CoEWC, and
POEM. During simulation, we would perform a score calculation and then sort the scores in descending order. Then, the top ranked scores
(including top 100, top 200, top 300, top 400, top 500, top 600) were selected as candidates for verification of essential proteins. a Top 100
ranked proteins. b Top 200 ranked proteins. ¢ Top 300 ranked proteins. d Top 400 ranked proteins. @ Top 500 ranked proteins. f Top 600

V Validated by jackknife methodology

In this section, HEPT was further compared to other
competing methods (DC, BC, CC, SC, IC, NC, PeC,
CoEWC, and POEM) by using jackknife methodology
[34]. The area under the folding curve of each method
was used to evaluate its prediction performance. In

addition, ten random assortments were used for com-
parison. Figure 6a shows the comparison of HEPT and
three central methods (DC, IC, and SC). Figure 6b pre-
sents the comparison of HEPT and three topological-
based central methods (BC, CC, and NC). Figure 6c¢ il-
lustrates the comparison of HEPT with other three
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methods (PeC, CoEWC, and POEM). From observing
Fig. 6, it is easy to see that the classification curve of
HEPT is significantly better than those nine other
methods previously proposed. The area under HEPT’s
curve is improved 45.80%, 45.76%, 60.15%, 65.87%,
61.78%, 20.63%, 13.64%, 20.25%, and 10.46% than that of
DC, BC, CC, SC, IC, NC, PeC, CoEWC, and POEM, re-
spectively. These nine existing state-of-the-art methods
also have better predictive performance than random
sorting.

VI Analysis of the differences between HEPT and other
methods

In this section, we compared the relationship between
HEPT and other competing methods by comparing the
top 100 proteins and comparing the prediction accuracy
of each protein in different methods to illustrate why
and how HPET can achieve good prediction perform-
ance. The number of predicted proteins in the top 100
proteins sorted by each pair of methods was given in
Table 2.
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CoEWC, and POEM) based on protein data are validated by the jackknife methodology. Moreover, the 10 random classifications were drawn for
comparison. The x-axis represents the proteins in PPl network ranked by HEPT and nine other methods, ranked from left to right as strongest to
weakest prediction of essentiality. The y-axis is the accumulated count of essential proteins encountered as moving from left to right through the
ranked. The areas under the curve for HEPT and the other methods are used for comparing their prediction performance. a The comparison
results of HEPT, DC, IC, and SC. b The comparison results of HEPT, BC, CC, and NC. ¢ The comparison results of HEPT and other three methods:
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Table 2 Overlap and different proteins predicted by HEPT and other competitive methods ranked in top 100 proteins

Centrality measures (Mi) [HEPTAMI| [Mi — HEPT| The non-essential Percentage of non-essential
proteins in proteins in {Mi — HEPT} with
{Mi — HEPT} low HEPT value (%)

DC 24 76 50 60.00

IC 26 74 49 61.22

SC 19 81 62 54.84

BC 24 76 50 54.00

CcC 25 75 54 5741

NC 31 69 43 55.81

PeC 43 57 24 87.50

CoEWC 44 56 25 88.00

POEM 45 55 17 82.35

First, we compared HEPT to DC, BC, CC, SC, IC, NC,
PeC, CoEWC, and POEM by predicting how many pro-
teins were predicted by HEPT and any of the other nine
methods. Table 2 shows the overlap and different pro-
teins of HEPT and one of the other methods. |HEPTnMi
| was the number of common proteins identified by
HEPT and the central method Mi; {Mi-HEPT}, and |Mi-
HEPT| were the proteins detected by Mi instead of
HPET and the predicted protein quantity respectively.

As shown in Table 2, among the top 100 proteins,
common proteins identified by DC, IC, SC, BC, CC, and
NC were less than 32%, while the common proteins pre-
dicted by HEPT and PeC, CoEWC, and POEM were less

than 46%. HEPT and the other nine methods have only
a small overlap in the predicted protein, indicating that
HEPT is a special method different from other methods.
The third column in Table 2 refers to the number of
non-essential proteins in different proteins identified by
Mi and not identified by HEPT. Further studies of these
non-essential proteins predicted by other methods have
found that more than 54% of non-essential proteins are
lowly rated by HEPT for six central methods based on
network topology (DC, IC, SC, BC, CC, and NC), while
PeC, CoEWC, and POEM predict that 82% of non-
essential proteins also have low POEM scores (less than
0.25).

1.0
0.9 i
0.8 i
0.7
0.6 1
0.5 i
0.4

0.3

Percentage of essential proteins

0.2 1

0.1 +

*—ﬁ———-;\—*__**_*\*’_*

—A— Different proteins predicted by other methods
—k— Different proteins predicted by HEPT

0.0 T T T T
Different DC IC SC BC

Proteins: 76 74 81 76

CoEWC, and POEM), respectively

Fig. 7 Comparison of the percentage of essential proteins out of all the different proteins between HEPT and other methods. Different proteins
between two prediction methods are the proteins predicted by one method while neglected by the other method. The figure shows the
percentages of the essential proteins in the different proteins between HEPT and nine other competing methods (DC, IC, SC, BC, CC, NC, PeC,

T % T T ¥ T ) T 1
CC NC PeC CoEWC POEM
75 69 57 56 55




Zhang et al. Human Genomics (2020) 14:14

Second, we evaluated HEPT predictions and other
methods to predict predictions for different proteins.
Figure 7 illustrates the percentage of essential pro-
teins in all different proteins between HEPT and
other competing methods. From observing Fig. 7, it
was obvious that HEPT performed better than other
methods in detecting the percentage of essential pro-
teins. Moreover, SC had the largest number of differ-
ent proteins from HEPT, and POEM had the smallest
difference from HEPT, which were the two most ex-
treme examples. HEPT detected 81 different proteins
in all of the top 100 proteins compared to SC, of
which 87.73% were essential, while only 27.6% of the
proteins detected by SC were essential. In another
case, 55 different proteins were identified by HEPT or
POEM. HEPT was able to predict that more than
84.55% of the essential proteins were in 22 different
protein species, while POEM was less than 65.85%,
and the rest of the methods (DC, CC, BC, IC, NC,
PeC, and CoEWC) yielded similar results.

Conclusions

The current calculation methods for detecting essential
proteins combined with the network are developed and
obtained good performance. But a large proportion of
these methods ignored the inherent relationships be-
tween multiple organisms meanwhile. In this paper, we
filled these gaps by integrating PPI networks, protein do-
mains, and gene expression profiles to construct protein
tensors. Moreover, we designed a new random walk
model to predict basic proteins by establishing three-
dimensional tensors. The experimental results showed
that the prediction accuracy of HEPT was better than
other competitive methods such as six topological-based
central methods and three multi-source data fusion
methods. Therefore, to improve the performance of pro-
tein prediction through these comparisons, it is neces-
sary to construct a multi-dimensional biological data
model and take into account the importance of nodes
and different types of edges.
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