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Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor
prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma
comorbidity approaches are restricted on condition. Existing evidence indicates that
luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to
evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying
molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used
system pharmacology and bioinformatics analysis to assess the physicochemical
properties and biological activities of luteolin and further analyze the binding activities,
targets, biological functions, and mechanisms of luteolin against COVID-19/asthma
comorbidity. We found that luteolin may exert ideal physicochemical properties and
bioactivity, and molecular docking analysis confirmed that luteolin performed effective
binding activities in COVID-19/asthma comorbidity. Furthermore, a protein–protein
interaction network of 538 common targets between drug and disease was
constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin
against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6,
TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert
effects on virus defense, regulation of inflammation, cell growth and cell replication, and
immune responses, reducing oxidative stress and regulating blood circulation through the
Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K–AKT signaling
pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible
“dangerous liaison” between COVID-19 and asthma is still a potential threat to world
health. This research is the first to explore whether luteolin could evolve into a drug
candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with
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superior drug likeness and bioactivity has great potential to be used for treating COVID-
19/asthma comorbidity, but the predicted results still need to be rigorously verified
by experiments.
Keywords: luteolin, COVID-19, asthma, comorbidity, system pharmacology, bioinformatics analysis
INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19) emerged
in December 2019 and quickly spread worldwide. It is recognized
that severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) to
initiate infectious procedures (1, 2). As SARS-CoV-2 has the
characteristics of a high fatality rate, COVID-19 affecting global
health and economy has become a serious public health
emergency (1, 3). Although efforts to develop vaccines and
therapeutic drugs to combat COVID-19 are proceeding at the
fastest scale, COVID-19 still has a negative impact on human
health (4–6). The access to aerosol is very restrictive in resource-
poor countries for the COVID-19 pandemic, resulting in
exacerbating the incidence and development of asthma (4).
There are good reasons to worry about the possible “dangerous
liaison” between COVID-19 and asthma. SARS-CoV-2 infection
can cause a series of respiratory problems and even progress to
respiratory failure with acute respiratory distress syndrome (7).
Asthma patients with the persistence of impaired innate immune
responses are more susceptible to releasing lower levels of INF
during viral respiratory infections (8–10). Moreover, a cohort
study finds that children with COVID-19/asthma comorbidity
show more serious disease progression and a single-center
retrospective propensity-matched analysis proves that patients
infected with COVID-19 have a higher prevalence of asthma (11,
12). In addition, a study recruiting 493,000 patients from the UK
Biobank confirms that adults with asthma have a higher risk of
suffering from COVID-19 and a nationwide cohort study
performed by Koreans proves that asthma contributes to
increased susceptibility to SARS-CoV-2 infection and poor
prognosis of COVID-19 (13, 14). Therefore, we need to raise
the warning of the possibility that asthma patients have a great
potential to be distinctly vulnerable to developing COVID-19
comorbidity and experiencing serious clinical consequences.

Inhaled corticosteroids (ICS) as the first-line treatment for
asthma are thought to be an immunosuppressive agent, which
might enhance the possibility of upper respiratory infection in
asthma (15, 16). Moreover, research reveals that ICS are harmful
to antiviral innate immune response (17). Jordan et al. conduct a
study incorporating 818,490 asthma patients that estimates the
relationship between the fatality risk of COVID-19 and ICS
treatment and find that ICS intervention may cause damage and
suboptimal outcome to asthma/mild COVID-19 comorbidity
patients (18). A recovery trial corrected that systemic glucocorticoid
treatment for patients with mild COVID-19 increases the risk of
death, and another study finds that treatment with glucocorticoid
shows no clinical benefit for COVID-19-caused mild to moderate
acute respiratory distress syndrome (11, 19, 20). The above
org 2
results indicate that glucocorticoid for COVID-19/asthma
comorbidity patients requires cautious interpretation, and thus,
safer and more effective interventions or adjunctive interventions
are likely to be afforded for such patients.

Luteolin has shown broad antiviral and anti-inflammatory
capabilities (21–24). Surprisingly, studies have confirmed that
luteolin can specifically bind to the surface spike protein of
SARS-CoV-2 to block viral entrance into the host cells and
inhibit the expression of SARS-CoV 3CL protease (25, 26).
Furthermore, it is exciting to find that luteolin and the luteolin
structural analog eriodictyol have great potential to be the
inhibitors of COVID-19 (19, 27). Luteolin can inhibit the
cytokine storm caused by the production of IL-1b and
histamine by mast cells stimulated by SARS-CoV-2 (28–31). Its
novel structural analogs methoxyluteolin and 3′,4′,5,7-
tetramethoxyluteolin also inhibit human mast cells to perform
anti-inflammatory effect (32, 33). Meanwhile, appropriate
luteolin formulations may also prevent or reduce brain fog
associated with long COVID-19 syndrome (34). Luteolin is
also considered to attenuate bronchoconstriction and airway
hyperreactivity, thus has the potential to become a promising
therapeutic intervention against asthma (35). To our knowledge,
the therapeutic targets and molecular mechanisms of luteolin
against COVID-19 in asthma patients have not been previously
explored. Based on this, we used system pharmacology and
bioinformatics analysis to assess the drug likeness and
bioactivity of luteolin and analyze the targets and signaling
pathways of luteolin against COVID-19/asthma comorbidity.
The flow diagram of our research is shown in Figure 1.
MATERIALS AND METHODS

Ethics Statement
The data were obtained from open-source databases, and thus,
ethics committee approval was not applicable in this study.
Luteolin Database Building
PubChem (https://pubchem.ncbi.nlm.nih.gov/) comprises a
wide range of chemical information from 750 data sources
(36). The 2D structure, 3D structure, InChI, and canonical
SMILES profiles of luteolin were obtained from PubChem (36).
Analyses of Physicochemical Properties
and Biological Activities
The Molinspiration server (https://www.molinspiration.com/),
an open-source and highly efficient chemoinformatics tool, can
January 2022 | Volume 12 | Article 769011
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FIGURE 1 | The flow diagram of this research showing a pragmatic strategy for identifying the pharmacological mechanisms of luteolin against coronavirus disease
2019 (COVID-19)/asthma comorbidity based on system pharmacology and bioinformatics analysis.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7690113

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xie et al. Luteolin Against COVID-19/Asthma Comorbidity
carry out molecular manipulation and processing. Thus, the
Molinspiration server was used to evaluate the molecular
descriptors, drug likeness, and bioactivity of luteolin (37). The
standard SMILES profile of luteolin was uploaded to
“Calculation of Molecular Properties and Bioactivity Score”
section. The drug likeness analyzed based on the Lipinski’s rule
of five comprised the following parameters: logP, molecular
weight (MW), number of hydrogen bond acceptors (n-ON),
and number of hydrogen bond donors (n-OHNH) (38). The
biological activity analysis of luteolin included G-protein-
coupled receptor (GPCR) ligand, ion channel modulator,
kinase inhibitor, nuclear receptor ligand, protease inhibitor,
and enzyme inhibitor (37–40). The additional percentage of
absorption (%ABS) value was calculated according to the
following formula: %ABS = 109 − [0.345 × TPSA] (38).

Fishing of Luteolin-Related Targets
Different types of pharmacological targets related to luteolin
were collected from the following databases: 1) Traditional
Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP, http://tcmspw.com/) (41), 2)
PharmMapper (http://www.lilabecust.cn/pharmmapper/) (42),
3) Swiss Target Prediction (http://www.swisstargetprediction.
ch/) (43), 4) Chemical Association Networks (STITCH, http://
stitch.embl.de/) (44), 5) Comparative Toxicogenomics Database
(CTD, http://ctdbase.org/) (45), 6) Drug Gene Interaction
Database (DGIdb, https ://www.dgidb.org/) (46), 7)
Encyclopedia of Traditional Chinese Medicine (ECTM, http://
www.tcmip.cn/ETCM/) (47), and 8) Symptom Mapping
(SymMap, https://www.Symmap.org/) (48). The target proteins
were transformed to standard gene symbols by using the UniProt
database (https://www.uniprot.org/) with the limitation of
“Human species”.

Collection of COVID-19 or Asthma-
Related Targets
The COVID-19-related targets were identified from differentially
expressed genes (DEGs) by analyzing available transcriptomic
RNA-seq data of COVID-19 (GSE152641 and GSE171110) from
the Gene Expression Omnibus database (GEO, https://www.
ncbi.nlm.nih.gov/geo) (49). The “limma” in R (version 3.6.2,
https://www.r-project.org/) was applied to access the profile of
DEGs, which must fit the screening criteria of adjusted P-value
<0.05 and |log2FC| >1 (50). DEGs were visualized by volcano
plots, which were drawn by “ggpubr” and “ggthemes” of R-
language package. Moreover, the COVID-19-related targets were
also gathered from seven open-source databases listed as follows:
1) CTD (http://ctdbase.org/), 2) DisGeNET (http://www.
disgenet.org), 3) DrugBank (https://go.drugbank.com/) (51), 4)
GeneCards (https://www.genecards.org/) (52), 5) PubChem, 6)
Therapeutic Target Database (TTD, http://db.idrblab.net/) (53),
and 7) NCBI Gene (https://www.ncbi.nlm.nih.gov/).

As for asthma-related targets, we first analyzed the DEGs
from the GSE74986 and GSE76262 datasets from the GEO
database, which were also assessed by the “limma” package of
R-language Bioconductor with the criteria of adjusted P-value
Frontiers in Immunology | www.frontiersin.org 4
<0.05 and |log2FC| >1 (50). Additionally, targets related to
asthma were also acquired by exploring the following six
databases: 1) CTD, 2) DisGeNET, 3) GeneCards, 4) Online
Mendelian Inheritance in Man (OMIM, https://omim.org/)
(54), 5) TTD, and 6) NCBI Gene.

Targets of Luteolin Against COVID-19/
Asthma Comorbidity Acquisition
The overlapping targets between luteolin, asthma, and COVID-
19 were further obtained by using the Venn diagram tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/) and Microsoft
Excel. The intersection between luteolin-related targets and
COVID-19/asthma-related targets was the final targets of
luteolin against COVID-19/asthma comorbidity.

Analyses of the Protein–Protein Interaction
Network and Hub Targets
The protein–protein interaction (PPI) network helps to better
understand the biological mechanisms involved in target-related
pathogenesis at the protein level. Thus, the STRING 11.0b
database (https://string-db.org/) was used to construct the PPI
network and receive hub targets. The organism was set to “Homo
sapiens” and the minimum required interaction score was 0.4
(55). Subsequently, the PPI network was visualized and analyzed
by Cytoscape 3.7.2 software (https://cytoscape.org/). The degree
values in the PPI network were calculated by using the
NetworkAnalyzer plugin of Cytoscape 3.7.2 software. Then,
targets with degree values higher than the median were filtered
as hub targets (56).

Enrichment Analyses for Hub Targets
Enrichment analyses of Gene Ontology (GO) (including
molecular function, cellular component, and biological
process) and biological pathways (including KEGG pathways,
Reactome pathways, and Wiki pathways) of hub targets were
carried out through g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)
(57). The organism was set to “Homo sapiens” and a term with
adjusted P-value <0.05 was considered significantly enriched.
The GO terms or pathway terms with smaller adjusted P-values
were believed to have more potent effects on fighting COVID-
19/asthma comorbidity, and the top 30 GO terms and pathway
terms were illustrated in the results ranked by adjusted P-value
from low to high.

Molecular Docking Verification of
Luteolin and Targets
The protein structures of targets were downloaded from the PDB
database (https://www.rcsb.org/) (58). The 3D structure of
luteolin was provided by the PubChem database. Pymol
(https://pymol.org/2/) and AutoDock software (Vina 1.5.6,
http://autodock.scripps.edu/) were applied to extract the ligand
from the target protein, then the original ligand to the active site
of the complex was redocked, and the conformation of the
original ligand was compared with the conformation of the
ligand after docking (59). Root mean square deviation (RMSD)
would be considered that the docking method is reliable when
January 2022 | Volume 12 | Article 769011
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RMSD <2 (60). Furthermore, the water molecules were removed,
hydrogen atoms were added, and the spatially active sites of
ligand molecules docking in the target protein compound were
determined for docking preparation.

Luteolin was docked with targets, including spike (S)-protein,
receptor-binding domain (RBD), main protease (Mpro), ACE2,
transmembrane protease serine 2 (TMPRSS2), cluster
differentiation 147 (CD147), and the top 6 hub targets
predicted by the PPI network through the AutoDock software.
The position coordinates of the ligand in the target protein were
defined as active pocket and the spacing was set to 0.375. Then,
“Run AutoDock” was clicked to perform the molecular docking
and binding energy <0 was supposed that luteolin could
spontaneously bind to the targets (61).
RESULTS

Analysis of the Physicochemical
Properties of Luteolin
The evaluation of drug likeness is of vital importance in the
production and upgrading of drug entities, and we first predicted
the physicochemical properties of luteolin according to the
Lipinski’s rule of five. The criteria of the Lipinski’s rule of five
are as follows: logP ≤5, MW ≤500 Da, n-ON ≤10, and n-OHNH
≤5 (38). In addition, the topological polar surface area (TPSA)
value is a key indicator for evaluating and predicting the oral
bioavailability of molecular compounds, and the TPSA value of
≤140 Å represents good oral bioavailability (37, 62–64). %ABS
value calculated according to TPSA value between 67% and 83%
means an ideal oral bioavailability (37, 62–64). Surprisingly, the
results showed that luteolin met the criteria of logP = 1.97 < 5,
MW = 286.24 < 500 Da, n-ON = 6 < 10, and n-OHNH = 4 <5,
and the value of TPSA at 111.12 Å < 140 and %ABS at 70.66 that
ranged from 57.95% to 78.98% were at the range of ideal oral
bioavailability as shown in Table 1.

Bioactivity Prediction of Luteolin
As summarized in Table 2, the physiological role of luteolin may
be associated with a variety of mechanisms, including possible
interactions with GPCR ligands, ion channel modulator, kinase
Frontiers in Immunology | www.frontiersin.org 5
inhibitor, nuclear receptor ligand, protease inhibitor, and
enzyme inhibitor. Moreover, luteolin exhibited promising
kinase inhibitor, nuclear receptor ligand, and enzyme inhibitor
affinities with bioactivity scores greater than 0.2 > 0, while it
showed moderate GPCR ligand, ion channel modulator, and
protease inhibitor affinities with bioactivity values between −0.50
and 0.00. The results indicated that luteolin had better nuclear
receptor ligand affinity (nuclear receptor ligand > enzyme
inhibitor > kinase inhibitor > GPCR ligand > ion channel
modulation > protease inhibitor).

Target Identification of Luteolin and
COVID-19/Asthma Comorbidity
Eight open-source databases were used to obtain the targets related
to luteolin, namely, TCMSP (54), PharmMapper (354), Swiss
Target Prediction (100), STITCH (10), CTD (194), DGIdb (32),
ECTM (72), and SymMap (64). We established a luteolin-related
target set by syndicating a union of the predicted results and 638
targets related to luteolin were gathered after the removal of
duplications and transferring gene symbols (Figure 2A).

Subsequently, we obtained the DEGs of asthma and COVID-
19 from GEO via analyzing GSE74986 (522 targets), GSE76262
(71 targets), GSE152641 (1,896 targets), and GSE171110 (4,023
targets). GSE74986 recruited 74 asthma patients and 12 healthy
controls to isolate from bronchial alveolar lavage cells, and the
profile of GSE76262 collected from induced sputum cells
comprised 118 participants with asthma and 21 healthy
donors. Volcano plots of DEGs for asthma patients are shown
in Figures 3A, B. GSE152641 information originated from the
whole blood of 62 COVID-19 patients and 24 healthy controls,
and GSE171110 contained the whole-blood gene expression
profiles of 44 COVID-19 patients and 10 healthy donors.
Volcano plots of DEGs for COVID-19-infected patients are
shown in Figures 3C, D.

Then, we continued to collect target genes related to COVID-
19 from seven open-source databases, namely, CTD (7,252),
DisGeNET (1,843), DrugBank (344), GeneCards (1,566),
PubChem (637), TTD (93), and NCBI Gene (214). After
checking duplications, 12,642 target genes were obtained
(Figure 2B). As for asthma-related genes, we obtained the
targets from six open-source databases as follows: 1) CTD
TABLE 1 | Physicochemical properties of luteolin evaluated by Molinspiration.

Compound %ABS miLogP TPSA (Å) n-atoms MW n-ON n-OHNH n-violations n-rotb MV

Standard criteria <5 <500 <10 <5 ≤1 ≤10
Luteolin 70.66 1.97 111.12 21 286.24 6 4 0 1 232.07
Jan
uary 2022 | Volume
 12 | Article
%ABS, percentage of absorption; miLogP, logarithm of partition coefficient between n-octanol and water; TPSA, topological polar surface area; n-atoms, number of atoms; MW,molecular
weight; n-ON, number of hydrogen bond acceptors; n-OHNH, number of hydrogen bond donors; n violations, number of Lipinski’s rule-of-five violation; n-rotb, number of rotatable bonds;
MV, molecular volume.
TABLE 2 | Bioactivity scores of luteolin based on Molinspiration cheminformatics.

Compound GPCR ligand Ion channel modulator Kinase inhibitor Nuclear receptor ligand Protease inhibitor Enzyme inhibitor

Luteolin −0.02 −0.07 0.26 0.39 −0.22 0.28
Bioactivity score of >0 represented promising activity, bioactivity score between −5.00 and 0.00 represented moderate activity, and bioactivity score of ≤5.0 represented no activity.
769011
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(36,036), 2) DisGeNET (2,096), 3) GeneCards (7,686), 4) OMIM
(185), 5) TTD (149), and 6) NCBI Gene (1,000). A total of 38,710
targe t genes were ach ieved a f te r the remova l o f
duplications (Figure 2C).

Finally, we received 538 common target genes between
COVID-19, asthma, and luteolin, which were analyzed by the
Venn diagram tool and Microsoft Excel (Figure 2D). The 538
target genes were used to further screen the hub target genes to
construct the PPI network for luteolin against COVID-19/
asthma comorbidity.

PPI Network Analysis
The interaction network between 538 common target genes was
analyzed to screen the hub targets for luteolin against COVID-
19/asthma comorbidity. The targets with degree values greater
than the median were chosen as the hub targets, and the results
showed that the median degree value was 34 and the targets with
degree values greater than 34 were regarded as hub targets. Thus,
a total of 264 hub targets were identified and the PPI network
was constructed by the STRING 11.0b database and visualized by
Cytoscape 3.7.2 software as shown in Figure 4. The nodes and
edges, respectively, represented targets and interactions between
targets, and there were 264 nodes and 8,967 edges in the PPI
network of hub targets. In particular, the sizes and color shades
Frontiers in Immunology | www.frontiersin.org 6
of nodes presented positive correlation with degree values,
indicating that a node with a darker color and larger shape
plays a more important role in fighting COVID-19/asthma
comorbidity. As seen in Figure 4, the top 6 targets with the
highest degree values were TP53 (degree = 272), AKT1 (degree =
260), ALB (degree = 258), IL-6 (degree = 241), TNF (degree =
218), and VEGFA (degree = 218). Consequently, TP53, AKT1,
ALB, IL-6, TNF, and VEGFA as the crucial players for luteolin to
treat COVID-19/asthma comorbidity were further used to
perform molecular docking with luteolin.

GO Enrichment Analysis
To further explore the biological functions of luteolin against
COVID-19/asthma comorbidity, hub targets were submitted to
g:Profiler for GO enrichment analysis. A total of 2,118 GO terms
were obtained consisting of 1,838 BP terms, 110 CC terms, and
170 MF terms as shown in Figure 5A. The top 30 terms of BP,
CC, and MF were ranked by adjusted P-value and the
enrichment condition of TP53, AKT1, ALB, IL-6, TNF, and
VEGFA are shown in Figures 5B–D. BP enrichment analysis
mainly contained cellular response to chemical stimulus;
response to chemical, immune process; response to oxygen-
containing compound; and so on. CC enrichment analysis
mainly contained cytosol, membrane raft, membrane microdomain,
A B

C D

FIGURE 2 | (A) The number of target genes related to luteolin from eight open-source databases. (B) The number of target genes related to COVID-19 from eight
open-source databases. (C) The number of asthma-related target genes from seven open-source databases. (D) Venn diagram depicting common target genes
between COVID-19, asthma, and luteolin.
January 2022 | Volume 12 | Article 769011
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and so on. MF enrichment analysis mainly contained enzyme
binding, identical protein binding, protein kinase activity, and so
on. The results of GO terms suggested that luteolin may regulate the
cell cycle process, immune response, oxidative stress, virus defense,
and inflammatory response via the cytosol, membrane raft, and
Frontiers in Immunology | www.frontiersin.org 7
membrane microdomain to perform its therapeutic effects against
COVID-19/asthma comorbidity.

Pathway Enrichment Analysis
A total of 691 pathway terms were recognized consisting of 157
KEGG pathways, 266 Reactome pathways, and 268 Wiki
pathways as shown in Figure 6A. The top 30 pathways were
ranked by adjusted P-value and the enrichment condition of
TP53, AKT1, ALB, IL-6, TNF, and VEGFA are presented in
Figures 6B–D. KEGG pathways were mainly involved in the
Toll-like receptor signaling pathway, AGE–RAGE signaling
pathway in diabetic complications, human cytomegalovirus
infection, IL-17 signaling pathway, and so on. Reactome
pathways were significantly enriched in the AGE–RAGE
signaling pathway, TNF signaling pathway, signaling by
interleukins, cytokine signaling in immune system, IL-4 and
IL-13 signaling, and so on. Wiki pathways predominantly
included the AGE/RAGE pathway, MAPK signaling pathway,
gastrin signaling pathway, oncostatin M signaling pathway, and
so on. The enriched pathways of luteolin against COVID-19/
asthma comorbidity were strongly associated with inflammation,
immune response, regulation of vascular circulation, hypoxia,
cell growth, and cell cycle process.

Virus-Associated GO and Pathway Terms
Enriched by the Hub Targets
Surprisingly, we found that three GO terms, namely, response to
virus, cellular response to virus, and defense response to virus,
were significantly enriched. Additionally, eight KEGG terms and
four Wiki terms were significantly enriched including
coronaviruses, Ebola virus pathway, human cytomegalovirus
infection, herpes simplex virus, and so on. The above results
suggest that luteolin may perform a broad antiviral effect through
regulating these GO and pathways terms related to targets as
exhibited in Table 3.

Binding Activities of Luteolin to COVID-19/
Asthma-Related Targets
The results showed that luteolin had good binding activities (all
binding energy < 0 and all RMSD < 2) with COVID-19 and the
top 6 hub targets as shown in Table 4. Regarding COVID-19-
associated target proteins, luteolin had the best binding activity
with S-RBD and also showed promising affinities with Mpro,
TMPRSS2, ACE2, CD147, and S-protein. Among the top 6 hub
targets of luteolin against COVID-19/asthma comorbidity
predicted by the PPI network, the results showed that binding
activity of luteolin with TNF was the best, and AKT1, ALB, TP53,
IL-6, and VEGFA performed compact binding patterns with
luteolin, but secondary to TNF.

Luteolin and ACE2 protein formed hydrogen bonds at the
amino acid residues Gln 81, Gln 101, and Asn 194. It was shown
that luteolin was linked to Ser 436 of the TMPRSS2 protein by
hydrogen bonding. Luteolin was also attached to Asn 343 and
Asp 364 of RBD protein by hydrogen bonds and Phe 374 of RBD
protein via p–H bonds. Similarly, luteolin was connected to Ser
144, Leu 141, and Cys 145 of Mpro protein through hydrogen
A

B

C

D

FIGURE 3 | Volcano plots of differentially expressed genes (DEGs) for
asthma and COVID-19 patients. The abscissa represented log2FC and the
ordinate indicated the −log10 (adjusted P-value) of the genes. The red and
blue points, respectively, represented the upregulated and downregulated
genes with the criteria of adjusted P-value <0.05 and |log2FC| >1. (A) DEGs
from GSE74986 were collected from 74 asthma patients and 12 healthy
controls. (B) DEGs from GSE76262 were obtained from 118 asthma patients
and 21 healthy donors. (C) DEGs from GSE152641 originated from 62
COVID-19 patients and 24 healthy controls. (D) DEGs from GSE171110 were
obtained from 44 COVID-19 patients and 10 healthy donors.
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bonds and Asn 142, Glu 166, of Mpro protein by p–H bonds.
Luteolin formed a hydrophobic interaction with Gln A804 and
Asn A801 of S-protein. The Pro 152 of TP53 protein, the Arg
B182 of IL-6 protein, and Ala C156, Ile C154, and Phe C152 of
TNF protein formed hydrogen bonds with luteolin. The AKT1
protein not only formed hydrogen bonds with luteolin at Met
A227 but also formed p–H bonds with it at Val A164. Luteolin
was connected to Pro 99 of VEGFA protein by hydrogen bonds
and connected to Lys 101 through p-cation bonds. Luteolin and
ALB protein constituted hydrophobic interaction at Ala 291 and
Leu 238 (Figures 7A–L).
DISCUSSION

We acquired 264 hub targets of luteolin against COVID-19/
asthma comorbidity. GO analysis predicted that luteolin has the
potential to regulate the cell cycle process, immune response,
oxidative stress, inflammatory response, and virus defense to
perform its therapeutic effects. Pathway analysis suggested that
luteolin may regulate the Toll-like receptor signaling pathway,
MAPK signaling pathway, TNF signaling pathway, and so on to
combat COVID-19/asthma comorbidity. Moreover, molecular
docking verified that luteolin and the top 6 genes and proteins
related to COVID-19/asthma comorbidity showed good binding
activities. Therefore, the findings illustrate that luteolin with
Frontiers in Immunology | www.frontiersin.org 8
promising drug likeness and biological activities has great
potential to become a beneficial therapeutic approach for
COVID-19/asthma comorbidity.

The Ideal Physicochemical Properties and
Bioactivity of Luteolin
It is well accepted that a compound that complies with the
Lipinski’s rule of five tends to have favorable pharmacokinetic
properties and further improves the possibility of evolving into a
drug candidate (65, 66). TPSA comprises intestinal absorption,
bioavailability, permeabilization of Caco-2, and blood–brain
barrier penetration, and TPSA value of oral drugs should not
exceed 140 Å (37, 62–64). It is considered that a compound with
physicochemical properties of TPSA value of ≤140 Å and n-rotb
≤10 has a bigger potential to show good oral bioavailability (37).
In addition, %ABS value in light of the formula %ABS = 109 −
[0.345 × TPSA] is considered to penetrate the cell membranes
well when the %ABS value ranges from 57.95% to 78.98% (38,
67). To sum up, in-silico drug likeness and ADME (including
absorption, distribution, metabolism, and excretion) are
evaluated according to the following aspects: Lipinski’s rule of
five, TPSA, and %ABS. The results showed that luteolin fitted
with the criteria of milogP = 1.97 < 5, MW = 286.24 < 500 Da, n-
ON = 6 < 10, and n-OHNH = 4 < 5 without violation of the
simplified Lipinski’s rule of five. Furthermore, the value of TPSA
at 111.12 Å < 140 Å and %ABS at 70.66 that ranged from 57.95%
FIGURE 4 | PPI network for hub targets of luteolin against COVID-19/asthma comorbidity. The nodes and edges, respectively, represented hub targets and
interactions between targets. The sizes and color shades of nodes presented a positive correlation with degree values, and a node with a brighter color and larger
shape played a more important role in fighting COVID-19/asthma comorbidity.
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FIGURE 5 | Gene Ontology enrichment analysis results of luteolin against COVID-19/asthma comorbidity. (A) The results of biological process (BP), cellular
component (CC), and molecular function (MF) enrichment analyses. The abscissa indicated the kind of GO enrichment analyses, while the ordinate represented the
−log10 (adjusted P-value) of the terms. The red, orange, and green points, respectively, represented the MF, BP, and CC enrichment analyses terms. (B) Identification result
of BP terms according to adjusted P-value. (C) Identification result of CC terms according to adjusted P-value. (D) Identification result of MF terms according to adjusted P-value.
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FIGURE 6 | Biological pathway enrichment analysis results of luteolin against COVID-19/asthma comorbidity. (A) The results of KEGG, Wiki, and Reactome pathway
enrichment analyses. The abscissa indicated the kind of biological pathway enrichment analysis, while the ordinate represented the −log10 (adjusted P-value) of the
terms. The purple, dark blue, and light blue points, respectively, represented the KEGG, Reactome, and Wiki pathway enrichment analyses terms. (B) KEGG
pathway enrichment analysis identification result according to adjusted P-value. (C) Wiki pathway enrichment analyses identification result according to adjusted P-
value. (D) Reactome pathway enrichment analysis identification result according to adjusted P-value.
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to 78.98% were at the range of ideal oral bioavailability. These
results reveal that luteolin theoretically would not have caveats
about drug likeness and ADME.

Studies reveal that luteolin can be absorbed with plasma
concentrations reaching the highest peak level at 1.1 h and the
oral bioavailability reaches 26% ± 6% (68, 69). Luteolin and
glycosylated forms may be converted into sulfated, methylated,
and/or glucuronidated metabolites through phase II metabolism
and then enter into the systemic circulation or return to the small
intestine by enterohepatic cycling (70). The solubility of the
luteolin–phospholipid complex in water is about 2.5 times higher
and has bioavailability improvement compared with luteolin,
indicating that transformation of luteolin delivery can increase
the absorption (71).

A molecular compound with a bioactivity value of >0.00 has a
great possibility to exert great biological activity, while a
bioactivity score between −0.50 and 0.00 is considered to
moderately perform biological activity and bioactivity value of
≤0.50 is perceived as poor biological activity (37, 39, 63, 64). The
results of bioactivity analysis showed that the pharmacological
effects of luteolin theoretically involve several mechanisms,
including excellent interactions with kinase inhibitor, nuclear
receptor ligand, and enzyme inhibitor and moderate interactions
with GPCR ligands, ion channel modulator, and protease
inhibitor. The above results illustrate that luteolin is expected
Frontiers in Immunology | www.frontiersin.org 11
to perform pharmacological effects via the five mechanisms listed
above with relatively good biological activity scores.

Luteolin Might Trigger Hub Targets
to Fight Against COVID-19/
Asthma Comorbidity
We first obtained 538 common targets of the luteolin and the
COVID-19/asthma, and 264 targets with degree values greater
than the median at 34 in the PPI network were selected as the
hub targets. Moreover, we chose the top 6 targets in the PPI
network and critical proteins related to COVID-19 to perform
molecular docking with luteolin. The top 6 target genes included
TP53 > AKT1 > ALB > IL-6 > TNF > VEGFA, and the other
relatively hub targets comprised CASP3, IL-4, MAPK3, EGFR,
MAPK1, MAPK8, STAT3, IL-10, CXCL8, IL-1b, IL-17A, ACE,
and so on.

SARS-CoV-2 infection may induce lymphocyte apoptosis by
promoting the activation of TP53 to regulate immune
inflammatory response (72, 73). ACE2 can affect TP53
expression in lung endothelial cells and TP53 binding site
deletions lead to the increase in promoter activity of ACE2 (74,
75). A study collects blood samples and finds that the expression
of TP53 increases in COVID-19 patients compared with
healthy controls, although it is not statistically significant (73).
Alternatively, TP53 methylation is strongly related to the severity
TABLE 3 | Virus-related GO and pathway enrichment analyses terms.

Source Term ID Term name Adjusted P-value −Log10 (adjusted P-value) Count

GO : BP GO:0009615 Response to virus 6.27 × 10−8 7.20 26
GO : BP GO:0098586 Cellular response to virus 3.63 × 10−5 4.44 11
GO : BP GO:0051607 Defense response to virus 4.84 × 10−3 2.32 16
KEGG KEGG:05167 Kaposi sarcoma-associated herpesvirus infection 6.55 × 10−35 34.18 54
KEGG KEGG:05163 Human cytomegalovirus infection 2.48 × 10−31 30.61 54
KEGG KEGG:05169 Epstein–Barr virus infection 1.51 × 10−26 25.82 47
KEGG KEGG:05166 Human T-cell leukemia virus 1 infection 9.53 × 10−24 23.02 46
KEGG KEGG:05171 Coronavirus disease—COVID-19 1.26 × 10−19 18.90 43
KEGG KEGG:05170 Human immunodeficiency virus 1 infection 1.59 × 10−18 17.80 40
KEGG KEGG:05165 Human papillomavirus infection 5.42 × 10−15 14.27 45
KEGG KEGG:05168 Herpes simplex virus 1 infection 7.63 × 10−4 3.12 35
Wiki WP : WP4864 Host–pathogen interaction of human coronaviruses—apoptosis 4.23 × 10−12 11.37 13
Wiki WP : WP4877 Host–pathogen interaction of human coronaviruses—MAPK signaling 7.07 × 10−10 9.15 14
Wiki WP : WP4880 Host–pathogen interaction of human coronaviruses—interferon induction 6.36 × 10−8 7.20 12
Wiki WP : WP4217 Ebola virus pathway on host 2.33 × 10−6 5.63 20
Jan
uary 2022 | Volume 12 | Article 7
TABLE 4 | Molecular docking results of luteolin with targets.

Number Target protein PDB ID RMSD Binding energy (kcal/mol)

A S 6VSB 0.55 −5.10
B RBD 6W41 0.43 −7.60
C ACE2 1R42 0.34 −6.00
D Mpro 6LU7 0.71 −7.30
E TMPRSS2 7MEQ 0.50 −6.90
F CD147 3B5H 0.00 −5.20
G TP53 6GGA 0.00 −7.60
H AKT1 3CQW 0.18 −8.30
I ALB 2BX8 0.00 −8.30
J IL-6 1ALU 0.85 −6.20
K TNF 6OP0 0.04 −8.90
L VEGFA 3QTK 1.39 −5.10
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FIGURE 7 | The docking model of luteolin with COVID-19 and the identified top 6 critical targets. (A) Docking result of luteolin and S-protein. (B) Docking result of
luteolin and RBD protein. (C) Docking result of luteolin and ACE2 protein. (D) Docking result of luteolin and Mpro protein. (E) Docking result of luteolin and TMPRSS2
protein. (F) Docking result of luteolin and CD147 protein. (G) Docking result of luteolin and TP53 protein. (H) Docking result of luteolin and AKT1 protein. (I) Docking result of
luteolin and ALB protein. (J) Docking result of luteolin and IL-6 protein. (K) Docking result of luteolin and TNF protein. (L) Docking result of luteolin and VEGFA protein.
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of asthma and the genetic polymorphism of TP53 contributes to
asthma susceptibility (76, 77). Overexpressed AKT1 facilitates
viral protein synthesis and AKT1 silencing contributes to viral
RNA expression reduction, inhibition of viral capsid protein
synthesis, and virus release (78, 79). Consistent with our
prediction, a study confirms that inhibition of AKT1 reduces
viral yields in Huh7 cells infected by SARS-CoV-2 (80).
AKT1 promotes the airway myocyte hypertrophy and is
observed to be activated in asthmatic subjects, which might
lead to airway smooth muscle hyperplasia involved in asthma
exacerbations (81, 82). Additionally, AKT1 is involved in
regulating the immune function and activated phenotype of
macrophages by regulating innate immunity, and AKT1
activation intensifies inflammation and metabolism-related
responses (83, 84). ALB is an important protein for
maintaining nutrition of the body and a normal nutritional
status is an essential element for the immune system to fight
against infection and inflammation (85). A low level of ALB is
closely related to poor survival of COVID-19, and asthmatic
children show decreased ALB compared with healthy control
involved in increased FeNO (86, 87). The levels of VEGFA
involved in coagulopathy and thrombosis are significantly
elevated, indicating that the condition of hypoxemia and
inflammation exist in COVID-19 patients (88, 89). It is well
known that inhibition of VEGF helps to improve abnormal
angiogenesis and vascular leakage to reduce airway vascular
remodeling and airway mucus density in asthma (90).
Apoptosis has been considered as an important defense against
inflammation involved in antiviral and anti-asthma effects, and
the level of CASP3 represents the degree of caspase-dependent
apoptosis (91, 92).

The activation of MAPK family members and MAPK–STAT3
axis leads to overexpression of inflammatory factors including
IL-1b , TNF-a , and IL-6 (93). TNF is an important
proinflammatory cytokine involved in the immune process,
and highly expressed IL-6 leads to an increase in neutrophils
and a decrease in lymphocytes, which makes the inflammatory
response more severe and thus takes an important position in
inducing the cytokine storm (94). SARS-CoV-2 is proven to
promote IL-6, TNF, and IL-10 expression by stimulation
of macrophages or spleen or lymph nodes via binding to
ACE2, resulting in a decrease in lymphocytopenia involved
in the immune imbalance and cytokine storm (95, 96).
Transcriptional analysis confirms that CXCL8 levels
significantly show an upward trend in COVID-19 patients,
which triggers the recruitment of neutrophils to aggravate the
inflammatory injury (73). Researches show that the levels of IL-
17, IL-1b, TNF‐a, IL-6, and IL-4 significantly increase in
COVID-19 patients compared with non-COVID-19 patients or
healthy people, and IL-17, IL-1, and TNF have great dependence
on Th17 adaptive immune response triggering the inflammation
cascades in COVID-19 (26, 94, 97, 98). Asthma is characterized
by chronic inflammatory infiltration caused by inflammatory
cells and immune cells, and inhibition of TNF-a, IL-1b, IL-17,
IL-4, and IL-6 contributes to improving asthma (99).
Furthermore, biomarkers of MAPK family members and JAK/
Frontiers in Immunology | www.frontiersin.org 13
STAT signaling pathways show a significant upward trend in
asthma patients (100).

Surprisingly, a study proves that luteolin significantly inhibits
the expression of TP53 (101). Another study confirm that
luteolin can block AKT signaling to balance immune response
and reduce inflammatory injury to improve prognosis during
COVID-19/asthma comorbidity (102). Research reveal that
luteolin interacts with kinds of amino acid residues of
subdomain IIA making the ALB structure more stable (103).
Moreover, luteolin has been shown to perform promising anti-
inflammatory and immune regulatory effects through decreasing
the expression of IL-1b, IL-6, MAPK family, TNF-a, STAT3, and
IL-17 (104–106). Furthermore, molecular docking confirmed
that luteolin showed ideal binding activities with hub targets
including TP53, AKT1, ALB, IL-6, TNF, and VEGFA. These
binding results reveal that luteolin may likely bring TP53, AKT1,
ALB, IL-6, TNF, and VEGFA to target COVID-19/asthma
comorbidity. ACE2 and CD147 are the dominant receptors for
viral entrance into host cells and TMPRSS2 is the main non-
endosomal pathway for viruses to enter the cells (107). We found
that luteolin can efficiently bind to ACE2, Mpro, S, S-RBD,
TMPRSS2, and CD147, suggesting that luteolin may directly
target the novel coronavirus to perform antiviral function. To
summarize, we believe that luteolin has the great potential to
help increase the treatment effect of present clinical antiviral
approaches and immunotherapy to treat the lethal COVID-19 or
COVID-19/asthma comorbidity.

The Critical Mechanisms for Luteolin to
Combat COVID-19/Asthma Comorbidity
The GO results showed that BP was enriched in virus defense,
defense and regulation of inflammation, immune responses,
oxidative stress, cell growth, and cell replication. On the one
hand, the MF results revealed that luteolin may perform
pharmacological treatment for COVID-19/asthma comorbidity
through interaction with multiple proteases, signaling receptor,
nuclear receptor, small molecule, and ribonucleotide. The results
of MF were consistent with the biological activity scores
prediction, further indicating that luteolin may hold great
potential to exert a therapeutic function for COVID-19 and
the duration of asthma via a diversity of mechanisms. We further
confirmed that anti-COVID-19 and anti-asthma effects
performed by luteolin were mainly directed through
immunomodulatory, antioxidant, antiviral, and anti-
inflammatory signaling pathways, including Toll-like receptor
signaling pathway, MAPK signaling pathway, PD-L1 expression
and PD-1 checkpoint pathway in cancer, TNF signaling pathway,
apoptosis, PI3K–AKT signaling pathway, EGFR tyrosine kinase
inhibitor resistance, ErbB signaling pathway, HIF-1 signaling
pathway, AGE/RAGE signaling pathway, and so on.

Toll-like receptor signaling pathways are identified as key
factors that are responsible for regulating immune defense
mechanisms against pathogenic microorganisms. It is well
recognized that most Toll-like receptor signaling pathways
share similar signal transduction pathways through MyD88-
dependent pathways, which involve NF-kB and JAK/STAT
January 2022 | Volume 12 | Article 769011
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signaling pathways to activate the production of various
cytokines (IL-6, IL-1b, TNF-a, and so on), which is strongly
associated with the progress of asthma and COVID-19 (108–
111). Activation of the PI3K–AKT signaling pathway is
associated with various biological processes, including cell
cycle, apoptosis, metabolism, and angiogenesis (112). It has
been revealed that CD147 activation leads to overexpression of
the PI3K/AKT signaling pathway involved in SARS-CoV-2
endocytosis (107, 113). Suppression of MAPK and PI3K/AKT
signaling pathways helps to regulate the differentiation of T cells to
improve inflammatory response in asthma (114). EGFR, a tyrosine
kinase receptor that is required for the activation and proliferation
of inflammatory cells, is critical for dictating clinical
manifestations in asthma and COVID-19 (115, 116). In-vitro
experiments suggest that the expression of key regulators in
ErbB, MAPK, AKT/mTOR, and TNF signaling pathways related
to cell proliferation, inflammatory response, immune response,
oxidative stress, and apoptosis significantly increases in Huh7 cells
in fec ted by SARS-CoV-2 (80) . However , HIF-1a
expression significantly decreases during SARS-CoV-2 infection,
and the absence of HIF-1a results in increased viral replication
and severe inflammation (117). It is worth noting that the
TNF signaling pathway has a strong association with the HIF-1
signaling pathway, manifested in activating AKT and MAPK
signaling pathways to induce HIF-1a expression (118). AGEs
can elevate the degree of oxidative stress by combining with
RAGE, and RAGE is only highly expressed in the lungs, leading
to the overexpression of proinflammatory mediators and excess
inflammatory responses (119, 120). PD-1, a member of the B7/
CD28 family, triggers a series of intracellular signal transduction
leading to T-cell suppression and exhaustion when binding to PD-
L1 and PD-L2 (121, 122). Specifically, it is confirmed that the
levels of PD-1 significantly increase in COVID-19 patients and
present a positive correlation with COVID-19 severity, and the
study reveals that targeting PD-1 has therapeutic potential in
treating COVID-19 and asthma (121, 122).

Luteolin can exert a broader range of anti-inflammatory and
antioxidant effects and also play a critical role in regulating
immune function and vascular circulation (106, 123). According
to previous findings and the predicted results in our study, the
key molecular mechanisms of luteolin against COVID-19/
asthma comorbidity are summarized as follows. First, luteolin
has broad antiviral activities and can specifically target the
proteins required for COVID-19 infection and may exert an
antiviral effect through multiple mechanisms as the targets
predicted in our study (25, 26). Second, luteolin with potent
anti-inflammatory, immunoregulatory, and antioxidant effects
can inhibit inflammatory cascade to control the “cytokine storm”
through decreasing the expression of various inflammatory
mediators, including IL-1b, IL-6, MAPK family, TNF-a,
STAT3, IL-17, and so on (104–106). Third, luteolin can
improve vascular circulation via decreasing the vascular
inflammation caused by activation of NF-kB and TNF-a and
has the great potential to improve abnormal angiogenesis and
vascular leakage through targeting VEGFA and other relevant
mechanisms (88–90, 123).
Frontiers in Immunology | www.frontiersin.org 14
CONCLUSIONS

In conclusion, the findings from system pharmacology and
bioinformatics analysis emphasized that antiviral, anti-
inflammatory, antioxidant, and immunomodulatory effects and
regulation of blood circulation were identified as crucial targets/
pathways of luteolin against COVID-19/asthma comorbidity.
Furthermore, luteolin with promising physicochemical
properties and bioactivity may be clinically used to treat
COVID-19 or COVID-19/asthma comorbidity based on the
predicted biological processes and pharmacological mechanisms.
Moreover, the potential and critical pharmacological targets of
luteolin against COVID-19/asthma comorbidity provide the
direction for further study, but the predicted results still need to
be rigorously verified. In the next study, we intend to use the new
coronavirus to infect macrophage cell lines and airway epithelial
and alveolar epithelial cells to mimic the state of COVID-19/
asthma comorbidity. Moreover, we will further analyze the
mechanism of luteolin against COVID-19/asthma comorbidities
through proteomics, genomics, metabolomics, and proteomics.
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