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Abstract

Rho-GTPases are master regulators of polarity establishment and cell morphology. Positive

feedback enables concentration of Rho-GTPases into clusters at the cell cortex, from where

they regulate the cytoskeleton. Different cell types reproducibly generate either one (e.g. the

front of a migrating cell) or several clusters (e.g. the multiple dendrites of a neuron), but the

mechanistic basis for unipolar or multipolar outcomes is unclear. The design principles of

Rho-GTPase circuits are captured by two-component reaction-diffusion models based on

conserved aspects of Rho-GTPase biochemistry. Some such models display rapid winner-

takes-all competition between clusters, yielding a unipolar outcome. Other models allow

prolonged co-existence of clusters. We investigate the behavior of a simple class of models

and show that while the timescale of competition varies enormously depending on model

parameters, a single factor explains a large majority of this variation. The dominant factor

concerns the degree to which the maximal active GTPase concentration in a cluster

approaches a “saturation point” determined by model parameters. We suggest that both sat-

uration and the effect of saturation on competition reflect fundamental properties of the Rho-

GTPase polarity machinery, regardless of the specific feedback mechanism, which predict

whether the system will generate unipolar or multipolar outcomes.

Author summary

Cell morphology is a critical determinant of cell function, and the conserved Rho-family

GTPases (Cdc42, Rac, Rho, or Rop in plants) are key regulators of cell morphology. Rho-

GTPases self-organize by concentrating into clusters at the cortex, and several mathemati-

cal models have been proposed that capture the essential features of such pattern forma-

tion. However, it has been unclear how such systems reliably generate either a single cluster

(unipolar outcome) or multiple clusters (multipolar outcome). In this paper, we show

that a broad class of models for Rho-GTPase polarization all exhibit the ability to switch

between a regime in which rapid winner-takes-all competition between clusters yields uni-

polar outcomes and a regime in which competition is so slow that multipolar outcomes
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occur at biologically relevant timescales. We find that the switch in model behavior follows

a surprisingly simple rule, and elucidate the fundamental principles that underpin that rule.

Our theoretical study explains how the same biochemical system can robustly yield unipo-

lar or multipolar outcomes, and makes experimentally testable predictions.

Introduction

Complex cell morphologies arise, in part, through the specialization of cortical domains (e.g.,

the apical and basal domains of epithelial cells, or the front and back of migratory cells). Elabo-

ration of such domains involves the local accumulation of active Rho-family GTPases, which

regulate cytoskeletal elements to promote specific downstream events, such as vesicle traffick-

ing, membrane deformation, or directed growth [1–3]. For some cells, it is vital to establish a

single specialized domain (e.g. the front of a migrating cell), whereas others require the estab-

lishment of multiple domains simultaneously (e.g. the dendrites of a neuron) [4, 5]. The mech-

anistic basis for specifying uni- or multi-polar outcomes remains elusive.

Rho-family GTPases switch between GTP-bound active and GDP-bound inactive forms

(Fig 1A). Active GTPases are tethered to the inner surface of the plasma membrane, where dif-

fusion is slow. In contrast, inactive GTPases are preferentially bound by guanine nucleotide

dissociation inhibitors (GDIs), which extract the bound GTPase to the cytoplasm, where their

diffusion is comparatively fast. Activated GTPases can promote local activation of cytosolic

GTPases via positive feedback. This generates a membrane domain with concentrated active

GTPase, concomitantly depleting the cytosolic GTPase pool (Fig 1B). Synthesis and degrada-

tion of GTPases occurs on a slow timescale compared to activation and inactivation (for exam-

ple, in budding yeast the Rho-GTPase Cdc42 polarizes within 2 minutes but has a half-life of

more than 20 hours) [6–8]. Thus, the general dynamics of the system can be captured by mass-

conserved activator-substrate (MCAS) models, with a slowly-diffusing activator and a rapidly-

diffusing substrate (Fig 1C) [9–11]. Such models can generate local peaks of activator, reflect-

ing the establishment of a polarized concentration profile of active GTPase (Fig 1D).

Proposed MCAS models differ primarily in the formulation of the positive feedback mecha-

nism. One set of models yields Turing instability [9, 11], where positive feedback is sufficient

to amplify molecular-level fluctuations leading to peak formation. Classically, Turing systems

can generate single or multiple peaks [12, 13], depending on whether the size of the modeled

domain is larger than a characteristic wavelength dependent on the reaction and diffusion

parameters. This has been shown by Linear Stability Analysis (LSA) of the homogeneous

steady state (HSS) [14–16]. However, even when multiple peaks emerge from the homoge-

neous state, most of the peaks in Turing-type MCAS models eventually disappear through a

process called “competition”, leaving a single large peak as the winner [11, 17, 18]. Otsuji et al.

[11] reasoned that competition arose due to mass-conservation, and further suggested that this

might be a general behavior of Turing-type MCAS models. In biological systems, competition-

like behavior was observed during polarity establishment in yeast cells, where it was suggested

to underlie the growth of only one bud per cell cycle [7, 17, 18].

Another set of models relies on bistable reaction kinetics to produce “wave-pinning” behav-

ior [10, 19–21]. Such models can generate membrane domains with separate phases of uni-

form high or low activator concentrations connected by a sharp “wavefront”. The wave front

spreads laterally but eventually stops (gets pinned) due to depletion of the cytoplasmic sub-

strate, forming stable wide “mesa”-like concentration profiles. In the absence of spatial cues,

wave-pinning models can generate multiple mesas when initiated by random fluctuations
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Fig 1. Polarity establishment and competition in mass conserved activator-substrate (MCAS) models. A) Rho-GTPases are tethered to the

plasma membrane by prenylation and positive charges. The inactive GDP-bound form, or “substrate”, is preferentially bound by the GDI, masking

the prenyl group and the positively charged residues, extracting the substrate to the cytoplasm. The active GTP-bound form, or “activator”,

promotes local activation of more substrate, yielding positive feedback. B) Local activation via positive feedback and depletion of the substrate in

the cytosol generates an activator-enriched domain on the cortex. C) The interconversions of Rho-GTPases between active and inactive forms can
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[10]. Studies done on 1-dimensional wave-pinning model show that multiple mesas appear to

be meta-stable [20, 22] and do not readily exhibit competition.

An attractive hypothesis for why some cells are uni-polar and others multi-polar would be

that these behaviors arise from differences in the biochemical mechanisms of positive feed-

back, yielding competition in Turing-type or meta-stability in wave-pinning models. However,

some Turing-type MCAS models appear to switch to multi-polarity when domain size [11, 22]

or protein amount [17] is increased. Thus, it could be that parameter values (protein concen-

tration, catalytic activity, cell size, etc.) rather than regulatory feedback mechanisms dictate

whether uni- and multi- polar outcomes are observed.

Here, we investigate the transient multi-peak scenario, and show that the different models

discussed are all capable of generating unipolar or multipolar outcomes. The switch between

these outcomes is primarily dictated by a “saturation rule” that is general to MCAS models:

Every biologically relevant model in this category has an innate saturation point that sets the

maximum local Rho-GTPase concentration. When peaks form such that peak concentrations

are well below this saturation point, competition is effective and multi-polar conditions resolve

rapidly to a uni-polar steady state. However, if the GTPase concentration in two or more peaks

approaches the saturation point, then competition becomes ineffective, and the peaks become

meta-stable. Because the saturation rule does not depend on the specifics of the biochemical

reactions, our results yield general and testable predictions.

Results

MCAS models can produce spatially restricted GTPase enriched domains

Two-species MCAS systems consist of two partial differential equations (PDEs), governing the

dynamics of a slowly diffusing activator (GTP-bound GTPase at the membrane) u, and a rap-

idly diffusing substrate (GDP-bound GTPase in the cytoplasm) v. In one spatial dimension,

these systems take the general form:

@u
@t
¼ Du

@
2u
@x2
þ Fðu; vÞ ð1aÞ

@v
@t
¼ Dv

@
2v
@x2
� Fðu; vÞ ð1bÞ

where the dynamics of u and v are governed by a diffusion term and a reaction term, F(u, v)

(For the dimensionless version, see Supporting Information section 1). To reflect the different

compartments (membrane and cytoplasm) populated by the different species, the diffusion

constant of u, Du, is typically two orders of magnitude smaller than Dv, so that u spreads much

more slowly than v. F(u, v) describes the biochemical interconversions between u and v.

Fðu; vÞ ¼ f ðuÞv � gðuÞu ð2Þ

be modeled as a system of two reaction-diffusion equations governing the dynamics of the slowly-diffusing activator u and the rapidly-diffusing

substrate v. The model conserves mass: generation of u is precisely matched by consumption of v (and vice versa) in the reaction term F(u, v). D)

MCAS models generate peaks in the profile of u, representing concentrated active Rho-GTPase on the membrane. E) Turing-type models (Eq 4)

can generate narrow peaks of different heights, while wave-pinning models (Eq 5) can generate wide mesas of different widths, when total Rho-

GTPase content M increases. M = 4, 6, 10 for Turing-type model and M = 30, 40, 50 for wave-pinning model. F) When two peaks of unequal size

form in Turing-type models, they compete rapidly and resolve to a single peak, which would lead to unipolar outgrowth (arrow), whereas two

mesas of unequal size in Wave-pinning models are meta-stable, which would lead to multi-polar outgrowth (arrow). Parameter values are

a = 1μm2, b = 1s−1 and Du = 0.01μm2s−1, Dv = 1μm2s−1 for both models, and k = 1μm2 for wave-pinning model. All models were simulated on

domain size L = 10μm.

https://doi.org/10.1371/journal.pcbi.1006095.g001
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For GTPases, the inactive form of the GTPase v is converted to the active form u through

the action of guanine nucleotide exchange factors (GEFs) f(u), while u is converted to v
through the action of GTPase activating proteins (GAPs) g(u). The functions f(u) and g(u) take

into account potential positive feedback mediated by the active GTPase. Because the inactive

GTPase is not thought to participate in biochemical reactions other than as a substrate to pro-

duce active GTPase, under the assumption of mass action kinetics v appears only in the activa-

tion term. As the model assumes only the exchange between u and v, but not synthesis or

degradation of either, the system is mass-conserved, so that the total abundance of the GTPase

M =
R

(u + v)dx is a constant over time.

Generation of a GTPase-enriched domain in MCAS models occurs through positive feed-

back leading to local accumulation of the activator, u, and concomitant depletion of the sub-

strate, v. Locally depleted v is quickly resupplied from the whole cytoplasm due to its high

mobility, resulting in a global depletion of v. This reduces the net rate, F(u, v), at which fresh

u is generated (Eq 2), impeding further growth of the u-enriched domain, and the system

reaches a steady state. At steady state, reaction and diffusion must be balanced for u and v:

0 ¼ Du
@

2u
@x2
þ Fðu; vÞ ð3aÞ

0 ¼ Dv
@

2v
@x2
� Fðu; vÞ ð3bÞ

Given a total protein content M, these equations govern the steady state peak shape u(x) and

substrate level v(x) for a single peak in an MCAS model (Further discussed in Supporting

Information section 2).

Positive feedback can occur through f(u) (i.e. active GTPase locally stimulates GEF activity)

or g(u) (i.e. active GTPase locally inhibits GAP activity). Examples of feedback via GEF activa-

tion include the simple Turing-type model f(u) = au2, g(u) = b, Goryachev’s simplified model

f(u) = au2 + cu, g(u) = b [9], and Mori’s wave-pinning model f ðuÞ ¼ au2

1þku2 ; gðuÞ ¼ b [10].

Examples of feedback via GAP inhibition include f ðuÞ;¼ 1; gðuÞ ¼ b
ð1þuÞ2

, which resembles

model I in [11]. To illustrate the behaviors of different MCAS models, we simulated examples

of Turing-type and wave-pinning MCAS models:

Fðu; vÞ ¼ au2v � bu ð4Þ

Fðu; vÞ ¼
au2

1þ ku2
v � bu ð5Þ

With the appropriate choice of parameters, the Turing-type model (Eq 4) yields a peak

given any spatial perturbation of the homogeneous steady state, while the wave-pinning model

(Eq 5) requires a supra-threshold perturbation to destabilize the homogeneous state. The

Turing-type model typically yields a narrow peak at steady state, while the wave-pinning

model typically yields a wide mesa (Fig 1E). Simulations with greater total amounts of GTPase

M yield higher peaks in the Turing-type model, but broader mesas (with the same peak height)

in the wave-pinning model (Fig 1E), and simulations initiated with two unequal peaks yield

rapid competition in the Turing-type model but apparent co-existence in the wave-pinning

model (Fig 1F). These behaviors are all consistent with previous reports [10, 11, 20, 21]; to

understand why they yield different outcomes we first revisit the basis for competition.
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Competition between peaks arises from a difference in the ability of

unequal peaks to recruit cytoplasmic GTPase

When two unequal peaks are present in the same domain, each peak recruits GTPase from the

cytoplasm, thereby globally depleting cytoplasmic GTPase until cytoplasmic concentration

reaches a quasi-steady state. As exchange of GTPase between each peak and the cytoplasm is

dynamic, the two peaks are now effectively recruiting GTPase from one another. If the larger

peak (the one that contains more GTPase) recruits GTPase more effectively, it will grow at the

expense of the smaller peak, eventually yielding a uni-polar outcome (Fig 2A, scenario 1). If

instead, the smaller peak recruits GTPase more effectively, then it will grow while the larger

peak shrinks, eventually yielding two equal peaks, as observed in some more complex models

[17] (Fig 2A, scenario 2). If two unequal peaks recruit GTPase equally, then the two unequal

peaks would simply coexist (Fig 2A, scenario 3).

To understand how these considerations play out for different peaks, we need to know

whether the larger peak recruits more GTPase. To assess how much GTPase would be

recruited to a specific peak, consider first the Turing-type model (Eq 4) in the limit Dv!1.

This model combines a quadratic (in u) activation term with a linear inactivation term (Fig

2B). Thus, for a fixed value of v, there are two values of u at which activation and inactivation

balance each other precisely (i.e. fixed points of the net reaction curve F(u, v) in Fig 2C,

denoted as umin and umid). Given the concentration profile of a peak (Fig 2D, upper panel),

F(u, v) determines whether any given location on the membrane will gain GTPase from the

cytoplasm or lose GTPase to the cytoplasm (Fig 2D, lower panel). At the trough in Fig 2D

(umin), u approaches the lower fixed point of F(u, v), yielding no net gain or loss of GTPase.

On the lower flanks of the peak, u values lie between umin and umid, and inactivation outpaces

activation, so there is a net loss of u (Fig 2B, 2C and 2D). When u rises above umid, up until the

top of the peak (umax), there is net recruitment of GTPase from the cytoplasm (Fig 2B, 2C and

2D). At steady state, diffusion from the center of the peak to the flanks balances these flows of

GTPase, requiring a narrow peak (where negative @2u
@x2 counteracts net recruitment at the center:

Eq 3) (Fig 2D).

At steady state, the net loss from the region between umin and umid (blue area in Fig 2B and

2C) must be balanced by the net recruitment from the region between umid and umax (red area

in Fig 2B and 2C) (For analytical support of this argument, see Supporting Information section

2. This is also referred to as the wave-pinning condition in [10]). If we started from a steady

state peak and increased M, umax would increase and the red area would become larger. To

reach a steady state, v would have to decrease, weakening the influence of the activation term

in F(u, v) (Fig 2E), and equalizing the red and the blue areas at steady state (though each area

would end up larger than for the initial peak). Another way to understand this is the following

argument: If we added more inactive GTPase to the depleted cytoplasm beneath an existing

steady state peak, the activation rate (linear in v) would increase, causing the peak to grow and

depleting inactive GTPase. When v gets back down to its starting steady state level, the peak

will be larger, so both the activation and inactivation rates will be larger. However, the activa-

tion rate will dominate due to the non-linear positive feedback, causing further depletion of

v until the net rates balance. Thus, for any F(u, v) that encodes a non-linear positive feedback,

a larger peak will recruit cytoplasmic GTPase more strongly and cause a more severe cyto-

plasmic depletion.

Now consider a scenario in which two unequal peaks are present in the same domain.

Both peaks would grow until cytoplasmic v becomes sufficiently depleted. In the limit where

Dv!1, v is spatially homogeneous, so the same net reaction applies to both peaks, but the

peaks will have a different umax (Fig 2F). The overall recruitment or loss of GTPase for each
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Fig 2. The basis for competition. A) Possible outcomes when there are two unequal clusters of Rho-GTPase in the same cell. Scenario 1: competition

occurs if larger clusters recruit GTPase more efficiently than smaller clusters. Scenario 2: equalization occurs if smaller clusters recruit GTPase more

efficiently than larger clusters. Scenario 3: co-existence occurs if both clusters recruit GTPase equally well. B-F: Turing-type model with Dv!1. B)

Rate balance plot: activation and inactivation rates are balanced at two fixed points of F(u, v). Filled circle indicates stable fixed point, and empty circle

indicates unstable fixed point. C) Net activation (shaded red) and net inactivation (shaded blue) from the trough (umin) to the top (umax) of the peak

must be balanced at steady state in 1D. This determines the peak height (umax). D) Net activation at the center of the peak is balanced by diffusion,

which drives GTPase towards the flanks, where there is net inactivation. The activation curve and net reaction curves were plotted given v at steady state

in B, C, and D. E) If total GTPase content M is raised, the model generates higher peaks (larger umax), accompanied by more severely depleted v, which

lowers F(u, v) such that the blue and red shaded areas are once again balanced. F) When two peaks are present, they share the same v and hence the

same F(u, v) curve. The larger peak will always have excess net activation, and the smaller peak will always have excess net inactivation, so competition

is inevitable. Parameter values used: a = 1μm2, b = 1s−1 and Du = 0.01μm2s−1, Dv =1. All models were simulated on domain size L = 10μm.

https://doi.org/10.1371/journal.pcbi.1006095.g002
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peak u(x) is given by:
Z

Fðu; vÞdx ð6Þ

The more GTPase there is in the larger peak compared with the smaller one, the larger the dif-

ference in “recruitment power” between them (Fig 2F). Thus, in a scenario with unequal peaks

in the same domain, the larger peak experiences a net gain of GTPase, while the smaller peak

experiences a net loss, further exacerbating the inequality between the two peaks until the

smaller peak is eliminated. The Turing model (Eq 4) with Dv!1 always competes to yield a

uni-polar endpoint (scenario 1 in Fig 2A).

The argument above requires only mass-conservation and non-linear positive feedback,

which is a core requirement for polarization in general [12]. Therefore, it would seem that all

MCAS models should compete, regardless of the specific F(u, v). To verify this, we generated

steady states with two symmetric peaks in a domain, and performed linear stability analysis to

show that such steady states are unstable (Supporting Information section 3). Perturbations

that destabilize the steady state yield either competition between the peaks or merging of the

peaks. Here we focus on competition. Our analysis in the limit of Dv!1 indicates that given

sufficient time, two peaks will always compete to produce a single peak. This result does not

depend on the form of F(u, v).

Competition slows down dramatically due to saturation

If competition (scenario 1 in Fig 2A) applies to all MCAS models, then why did we not observe

competition in simulations of the Wave-pinning model (Fig 1G)? In contrast to the Turing-

type model (Eq 4), the reaction term of the Wave-pinning model (Eq 5) has saturable positive

feedback, introducing a third fixed point in F(u, v) (Fig 3A). When the total protein content in

the system is small, umax does not approach this fixed point (Fig 3B). Under these conditions,

narrow peaks compete with each other to yield a uni-polar outcome, as with the Turing-type

model (Fig 3C). But when protein content of the peak is increased, umax approaches the third

fixed point, and the reaction rate F(u, v) at the top of the peak approaches zero (Fig 3B). To sat-

isfy the steady-state condition (Eq 3a), @
2u
@x2 must also approach zero. In other words, the top of

the peak must broaden to become a wide mesa. Once this occurs, increasing M only negligibly

increases umax, and instead of developing higher peaks the model develops broader mesas with

comparable umax (Fig 3B). As umax saturates in these peaks, we shall call this maximum value

the “saturation point” (usat) of the model.

When umax approached the saturation point usat, simulations with two saturated mesas did

not show obvious competition (Fig 3D). Applying a drastic perturbation in which 50% of the

GTPase in one mesa was transferred to the other led to a rapid adjustment with both mesas

returning to an almost identical umax but with different widths, after which the unequal mesas

co-existed for prolonged simulation times (Fig 3E) (Note that the two peaks did not “equalize”:

they retained unequal total GTPase content.) Thus, the same model can yield rapid competi-

tion or competition so slow as to yield prolonged co-existence, simply as a result of varying the

total amount of GTPase in the system.

To investigate more broadly how model parameters might influence the timescale of com-

petition between peaks, we simulated competition between two unequal peaks in the Wave-

pinning model, in the limit with Dv!1. If we start with a two-peak steady state and noise,

the two peaks will eventually resolve to one, given sufficient time. As a measure of competition

time that should be insensitive to the precise degree of the noise, we tracked the time it took

for unequal peaks with active GTPase content ratio 3:2 to evolve to a content ratio of 99:1.
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Parameter changes caused dramatic changes in competition times, color coded on a log scale

in Fig 4A. Notably, increasing M always led to slower competition (Fig 4A, left panel). As dis-

cussed above, increasing GTPase content causes umax to approach the saturation point. Defin-

ing a saturation index in terms of how closely umax at the two-peak steady state approached the

saturation point ((usat − umax)/usat), we found that the effects of varying parameters on the sat-

uration index closely paralleled the parameter effects on the timescale of competition (Fig 4A,

right panel). A similar congruence was observed using peak width as a different measure of

how closely the system approaches saturation (Fig S5B in S1 Text). These findings suggest that

a large majority of the variation in competition times can be explained simply by the degree to

which peaks in the model approach the saturation point.

Fig 3. Wave-pinning models can generate coexisting clusters due to saturation. A) The wave-pinning model has a saturable activation term,

introducing a third fixed point in F(u, v). Dashed line indicates usat. Circles indicate stable (filled) and unstable (empty) fixed points. B) As total GTPase

levels M increase, the peaks get higher until umax reaches the saturation point (the third fixed point), after which peaks broaden into mesas. C) With

M = 40, two identical peaks were perturbed by 1% at t = 0s. The resulting competition led to a single-peak steady state within 100s. D) With M = 200,

the same 1% perturbation did not result in noticeable competition in 10000s. E) Starting from the same two-peak steady state as in D, we introduced a

large 50% perturbation. The two mesas quickly evolved back to the original umax, and then persisted for 10000s. k = 0.01μm2. Other parameters same as

Fig 2.

https://doi.org/10.1371/journal.pcbi.1006095.g003
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If we plot competition time against umax normalized to the saturation point, all of the simu-

lations with different parameter values display one of two clearly distinct behaviors (Fig 4B).

Parameter changes can alter GTPase content in the peaks (Fig 4A and 4B, point 1 vs 2), the

saturation point (point 3 vs 4), or the shapes of the peaks (point 5 vs 6). In all cases, whenever

umax is not close to saturation, competition occurs rapidly. Conversely, as umax approaches the

saturation point, competition slows sharply and the two-peak situation becomes meta-stable,

resembling the co-existence scenario 3 in Fig 2A.

Fig 4. Saturation is a major contributor to differences in competition times. A) Competition time and saturation are tightly correlated. Competition

time (s) is shown in color (note log scale). Saturation index is defined here as (usat − umax)/usat, and colored in inverse log scale (smaller saturation index

indicates peaks are closer to saturation). Basal parameters: a = 1μm2s−1, b = 1s−1, k = 0.01μm2 and Du = 0.01μm2s−1, Dv =1, M = 40, L = 20μm. Each

color plot represents a 15-fold parameter variation from 0.2× to 3× of the basal parameter value. White regions indicate parts of parameter space where

polarized states collapse to homogeneous states. Numbered red dots correspond to the simulations illustrated in the inset of panel B). B) Each of the

simulations performed for panel A) is plotted as one dot. Competition time (vertical axis) is plotted against peak height umax normalized to the

saturation point usat for that simulation (horizontal axis). Inset graphs indicate starting conditions for the selected simulations with parameters

indicated by red dots in A). C) When two mesas coexist, they share the same F(u, v) curve and almost the same umax. Thus, the wider peak has a

negligible recruitment advantage over the narrower one.

https://doi.org/10.1371/journal.pcbi.1006095.g004
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The basis for the drastically slowed competition in simulations with peaks close to satura-

tion can be intuitively understood in terms of each peak’s “recruitment power” (Eq 6). When

peaks approach saturation, unequal peaks differ in width but have almost identical umax and

hence only a negligible difference in recruitment power (Fig 4C). In the saturated regions of

peaks, F = 0, so these areas do not directly contribute to overall recruitment. For that reason,

the extra GTPase in a broader peak does not give it a significant advantage over the narrower

peak, and the driving force for competition is negligible.

Analysis of the eigenvalues from linear stability analysis of this system shows that the time-

scale of competition slows exponentially as the peaks increase in width by saturation. This con-

clusion, again, is general to all MCAS models and can be applied to all formulations F(u, v)

that allow a third fixed point (Supporting Information section 4, Fig. S5A).

Local cytoplasmic depletion also leads to saturation and slow competition

When cytoplasmic diffusion is finite (Dv<1), a saturation point emerges even if there is no

explicit saturation in the reaction term. With finite Dv, increasing M in the Turing-type model

(Eq 4) yields saturated mesas that become broader as M increases (Fig 5A), similar to that seen

with the wave-pinning model (Eq 5).

To understand this behavior, recall that at steady state, (Eq 3) must hold. Adding (Eq 3a)

and (Eq 3b), integrating and enforcing the periodic boundary condition yields a linear rela-

tionship between u and v, regardless of the reaction term:

vss ¼ �
Du

Dv
uss þ q ð7Þ

where q is a constant over space that is depleted globally over time analogous to v in the

Dv!1 limit. This reflects the fact that in addition to global substrate depletion, activation

due to positive feedback depletes v locally under a peak of u, creating a “dip” in the concentra-

tion of the cytoplasmic GTPase v that corresponds to the peak of u in a linear manner (Fig 5B).

Local depletion results in an emergent saturation effect, because substituting Eq 7 into the

reaction term of the Turing type model (Eq 4) gives:

Fðuss; qÞ ¼ au2
ss �

Du

Dv
uss þ q

� �

� buss ð8Þ

This new reaction term F(u, q) is a cubic in u, and can have three fixed points (Fig 5C). The

upper fixed point reflects the u concentration at which local depletion of v precisely balances

the net recruitment of u, yielding an emergent saturation point. Thus, even when there is no

saturation inherent in the reaction term of the model, local depletion of v under the peak acts

to limit local production of u, introducing a saturation effect. Given sufficient total mass M,

umax approaches this saturation point, resulting in a saturated mesa for reasons described

above with the wave-pinning model (Fig 5D). In this case, it is possible to derive a simple

expression for the saturation point (For details, see Supporting Information section 2):

usat ¼

ffiffiffiffiffiffiffiffiffiffi
2bDv

aDu

s

ð9Þ

As with saturation due to the wave-pinning reaction term, saturation by local depletion also

slowed competition dramatically, leading to meta-stable peaks (Fig 5E). Exploration of a wide

parameter range indicated that as with saturation via the reaction term, saturation due to local

depletion of substrate is also a dominant contributor to the timescale of competition (Fig 5F).
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Fig 5. Local substrate depletion leads to saturation and slow competition. A) Turing-type model with Dv<1 displays a transition between

unsaturated peaks and saturated mesas with increased M. B) Local depletion of v in the cytoplasm beneath the peak results in a linear relationship

between the concentration profile of v and u. Inset indicates u profile. C) The effect of local depletion transforms the reaction term of the Turing-type

model from a quadratic F(u, v) to a cubic F(u, q), yielding a third fixed point. D) The cubic reaction term F(u, q) results in a behavior similar to that of

the wave-pinning model: When M is low, q is high, and the peak is sharp; when M increases, depletion of cytoplasmic substrate makes F(u, q) drop, and

umax eventually approaches a saturation point. E) Peaks saturated by local depletion are meta-stable. F) Saturation index correlates with competition

timescale. Simulations and display as in Fig 4A and 4B. Parameter variations in a vs b and Du vs Dv consist of 30 × 30 simulations each of 0.1× to 3× of

the basal parameter values. Parameter variations in M vs L consists of 15x15 simulations of 0.2× to 3× basal parameter values. Basal parameters are as in

Fig 4A, except that Dv = 1μm2s−1. Graph shows all simulations plotted as in Fig 4B, with illustrative simulations corresponding to numbered red dots.
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When Dv<1, two unequal peaks no longer “see” the same level of substrate, v. Instead,

the local v rapidly reaches a quasi steady-state with each peak (Fig 5G). When two unsaturated

peaks coexist, the higher peak has a stronger recruitment power for reasons discussed in Fig

2F. This drives a greater depletion and hence lower baseline of v under the higher peak, gener-

ating a cytoplasmic v gradient that drives a flow of GTPase towards the higher peak, and hence

competition (Fig 5G). In contrast, when two unequal but saturated peaks coexist, they have

similar recruitment power, so there is a negligible cytoplasmic gradient, and competition

occurs on a dramatically slower timescale.

Effect of increasing distance between peaks

During competition, GTPase is transferred from the “losing” peak to the “winning” peak

through the cytoplasm. Thus, increased distance between the peaks or a decreased diffusion

constant in the cytoplasm would be expected to slow the transfer and hence slow competition

(an effect not seen when Dv!1). To assess how effective increased distance could be in slow-

ing competition, we initially considered the effect of increasing cell size while keeping overall

GTPase concentration constant (Fig 6, gray line). Competition slowed dramatically as domain

size L was increased, but this does not distinguish whether increasing distance between peaks

or increasing total GTPase content M (moving the peaks closer to saturation) is responsible

for the slowing of competition. Increasing L without changing M resulted in GTPase dilution

and hence smaller peaks that competed more rapidly despite the increased distance between

peaks (Fig 6, blue line). To maintain equivalent peaks, we increased L while adding the exact

amount of GTPase required to fill the cytoplasm in the extended domain so that the amount

G) When Dv is finite, the basal cytoplasmic substrate concentration underneath each peak (shown in dashed lines) quickly reaches a quasi-steady state

with the recruitment power of the peak. The stronger the recruitment power of the peak, the lower the basal cytoplasmic substrate level. This creates a

cytoplasmic gradient when two peaks have different recruitment power, resulting in a cytoplasmic flux towards the larger peak. The gradient becomes

negligible when both peaks are saturated, resulting in meta-stable peaks.

https://doi.org/10.1371/journal.pcbi.1006095.g005

Fig 6. Effect of domain size on competition time. Effect of expanding the domain size on competition time. Gray: overall concentration was held

constant as L increases (proportional increase of total protein content in the system M; peaks saturate). Blue: overall protein content constant (peaks

shrink to feed the larger cytoplasm). Red: protein content in the peaks is maintained constant (identical peak shape).

https://doi.org/10.1371/journal.pcbi.1006095.g006
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of GTPase in the peaks remained constant. This scenario allowed us to quantify the effect of

increasing distance between peaks without confounding changes in peak size. The result was

that competition became slower in a sub-linear manner with distance (Fig 6, red line). Thus,

distance between peaks can slow competition, but does so in a much more gradual manner

than the approach to saturation.

Other MCAS models also link competition timescale to saturation

Our analysis has focused on specific illustrative models, but many other forms of F(u, v) in Eq 2

can also support polarization. For example, positive feedback strength may vary, yielding differ-

ent exponents for the activation term (e.g. f(u) = u1.2 with weak feedback, or f(u) = u3 with

strong feedback). Or, positive feedback may operate by reducing inactivation rather than by

increasing activation (e.g. f(u) = 1, g(u) = u/(1 + u2)). Or, positive feedback may be accompanied

by negative feedback, as proposed for the yeast polarity circuit [17, 23] (e.g. f(u) = u2 − cu3). As

local cytoplasmic depletion is a universal mechanism of saturation, we would expect that com-

petition time slows down as the system approaches saturation in all of these models. Indeed, all

of these variations displayed a saturation point, leading to a transition from unsaturated to satu-

rated peaks as M was increased. And in each case, the change in peak shape was accompanied

by a dramatic slowing of competition (Fig 7A–7E). This suggests that our findings are broadly

applicable to MCAS models.

The only counterexample we have encountered so far is model II from [11], where

Fðu; vÞ ¼ a1ðuþ vÞ
Du

Dv
uþ v

� �

ðuþ vÞ � a2

� �

ð10Þ

Unlike other reaction terms based on mass action kinetics (Eq 2), this reaction term is not

dependent on v, but rather on the combined concentration of u and v. Thus, activation in this

model is no longer restricted by v depletion as in the other models mentioned above, and v can

assume negative values when u is high, avoiding saturation (Fig 7F). This eliminates the effect

of local depletion: When v is substituted with �
Du
Dv

uþ q, F(u, q) is a curve lacking a third fixed

point (and hence lacking saturation). However, as concentrations of u or v cannot be negative

in cells, this model is not physiologically relevant.

Competition on a 2-dimensional membrane

To simplify the analysis, the discussion above focused on competition between peaks in 1D.

The conclusions that differences in recruitment power drive competition and that a peak’s

recruitment power saturates as peaks become larger both hold in 2D as well as 1D (Supporting

Information section 6). However, simulations show that saturated mesas compete on faster

timescales in 2D than in 1D (Fig 8A). As discussed below, this is due to a second driving force

for competition that depends on the 2D curvature of the peaks.

In wave-pinning models, the edges of growing 1D mesas resemble traveling wave-fronts

([10]). The speed of the traveling wave, c0, depends on the abundance of cytoplasmic substrate,

v (Fig 8B). As more v is converted to u, cytoplasmic v is depleted until c0 drops to zero, at

which point the wave is pinned, forming a steady state peak. However, in 2D, a circular wave

spreading as a peak grows will have a speed less than c0, because diffusive spreading of u from

the front to activate neighboring membrane is diluted by the geometry of the wave front (Fig

8B). Previously developed theory ([24–26]) indicates that in this context the wave speed c is

dependent on the curvature of the wavefront, κ:

c ¼ c0ðvÞ � kDu ð11Þ
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For a circular peak of radius R, k ¼ 1

R. Thus, smaller peaks with high curvature spread more

slowly than otherwise similar larger peaks.

For a situation in which unequal circular mesas coexist in 2D, these considerations show

that even if c0 and v are the same for both peaks, the difference in peak curvature suffices to

give the larger peak an advantage over the smaller one (Supporting Information section 7).

Each peak grows or shrinks depending on whether c0 is larger or smaller than
Du
R . As peaks

initially develop, v is high enough that both peaks can grow, but as v becomes depleted, c0

decreases until the smaller peak transitions to shrinking (Fig 8C). This liberates more v so

that the larger peak can continue to grow until it is the only peak present. Thus, in 2D there

are two drivers of competition between unequal peaks: a difference in recruitment power

between peaks of different height, and a difference in curvature between peaks of different

radii. Unlike in 1D, the latter can drive competition even for saturated peaks with negligible

difference in peak height.

Although saturated mesas are able to compete in 2D, simulation results suggest that such

competition is slow relative to that between unsaturated peaks (Fig 8A). To systematically

Fig 7. Other MCAS models also link competition timescale to saturation. Competition time increase dramatically with increased total protein

content (M) in other MCAS models. Insets: peak shape upon reaching saturation. Red dashed lines indicate saturation point. A) weak positive feedback,

F(u, v) = u1.2v − u; B) strong positive feedback, F(u, v) = u3v − u; C) additional negative feedback F(u, v) = (u2 − 0.01u4)v − u; D) Goryachev’s simplified

model F(u, v) = (u2 + u)v − u [9]; E) Otsuji’s model 1 F(u, v) = a1v − a1(u + v)/[a2(u + v) + 1]2 with the original parameters described in [11]. In each

instance, competition time slows down dramatically as peaks saturate. F) In Otsuji’s model 2 with the original parameters, F(u, v) = a1(u + v)[(Du/Dvu +

v)(u + v) − a2] [11], saturation is avoided by allowing negative values of u or v.

https://doi.org/10.1371/journal.pcbi.1006095.g007
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compare competition rates for different peaks, we calculated the net flux of GTPase from the

losing peak to the winning peak, expressed as mole GTPase per second. As the flux changes

over the course of competition, we chose the point at which the winning peak had 60% and the

losing peak had 40% of the total GTPase in the peaks. We first consider the limit where Dv is

infinite, and use the wave-pinning model to generate saturated or unsaturated peaks. We kept

all parameters including total GTPase M constant and varied the parameter k (Eq 5) to gener-

ate peaks of different shapes but similar GTPase content (Fig 9A). This revealed that competi-

tion fluxes were much larger for peaks that were far from saturation than for saturated peaks

(Fig 9B). For saturated peaks, the fluxes matched those predicted for curvature-driven compe-

tition (see Supporting Information section 7) (Fig 9B, red line). However, when peaks were no

longer in the saturated regime, the fluxes diverged from the prediction for curvature-driven

competition, and were approximately proportional to the differences in peak height (Fig 9B,

green line). These results indicate that when peaks are saturated, competition is driven by cur-

vature, whereas when peaks are not saturated, competition fluxes become significantly larger

and competition is primarily driven by difference in peak height, as in 1D.

Similar results were obtained simulating Turing-type models with finite cytoplasmic diffu-

sion, where saturation emerges as a consequence of local v depletion. As in 1D, competing

peaks far from saturation generated a significant cytoplasmic gradient of v driving large fluxes

Fig 8. Competition in 2D can be driven by differences in peak curvature. A) In 2D, saturated mesas compete faster than they would in 1D, but slower

than unsaturated peaks. B) Left: In the 1D wave-pinning model assuming infinite Dv, the velocity of the traveling wave front is a function of v. Right: In

2D, the velocity is also dependent on the radius of the mesa, because GTPase diffusing across the wavefront becomes diluted in a manner dependent on

the curvature of the wavefront. C) When two unequal mesas coexist in 2D, they share the same cytoplasmic v and therefore have the same c0, but

because of the the difference in radii, the larger mesa will expand at the expense of the smaller, leading to competition.

https://doi.org/10.1371/journal.pcbi.1006095.g008
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of GTPase, while saturated mesas did not (Fig 9C). These observations suggest that although

peak curvature contributes to competition in 2D, it provides a relatively weak driving force.

The dominant factor for competition timescale is still the difference in recruitment power,

which decreases rapidly as peaks approach saturation.

Discussion

A “saturation rule” underlies the difference between uni- and multi-

polarity

Since Turing’s landmark 1952 paper [13], the power of two-component reaction-diffusion

models to generate a variety of spatial patterns has fascinated mathematical biologists. Early

models with slowly-diffusing activators and rapidly-diffusing substrates formed activator

peaks with a spacing dictated by a characteristic wavelength [12]. However, addition of a con-

straint specifying that the total mass of activator and substrate in the system be conserved led

to the finding that some such MCAS systems evolved over time from multipolar to unipolar

outcomes with a single peak of activator [9, 11, 17, 18]. Our results suggest that all MCAS mod-

els would, given sufficient time, yield unipolar outcomes.

Fig 9. Comparison of competition fluxes driven by differences in peak height or peak curvature in 2D. A) Peaks with 60% and 40% protein content

were obtained from simulations of the wave-pinning model (Eq 5) using different values of the parameter k. Inset: normalized to umax. Parameter

values: L = 10 μm; a = b = 1 s−1; Du = 0.01 μm2s−1; k as labeled by color. B) Simulating competition between the peaks illustrated in A), the net protein

transfer (gray line) tracks closely with the differences in peak height when peaks are not saturated (green line, normalized to the flux at k = 10−10). As

peaks approach saturation (region expanded in the inset), competition fluxes no longer track with the difference in peak height, and instead approach

the fluxes predicted by curvature-driven competition (red line, see Supporting Information section 7). Fluxes driven by differences in peak height are

much larger than those driven by differences in peak curvature. C) The Turing-type model Eq 4 was simulated in 2D with finite cytoplasmic diffusion

yielding emergent saturation. As in 1D, unsaturated peaks generate a steeper cytoplasmic GTPase gradient than saturated mesas, yielding much faster

competition.

https://doi.org/10.1371/journal.pcbi.1006095.g009
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Earlier studies on MCAS systems emphasized that different models can display different

behaviors, including Turing instability and wave-pinning dynamics. However, as illustrated

here, there is not a categorical distinction between model types. Our results, like recent reports

[15, 27, 28], show that a bistable model that yields classical wave-pinning behavior in one

parameter regime can also exhibit Turing instability with different parameters. We further

show that even a model without explicit bistability conferred by the reaction term will exhibit

saturation in a similar way as bistable systems saturate to a fixed point due to local cytoplasmic

depletion (see Supporting Information section 5).

In the parameter regimes examined by previous studies, Turing-type model peaks displayed

rapid competition, while wave-pinning model peaks coexisted, suggesting that competition

might be linked to model architecture ([22, 29]). The propensity of a model to develop uni- or

multi-polar profiles has been analyzed by assessing the stability of the homogeneous steady

state ([16]), but because competition between peaks occurs far from the homogeneous steady

state, those analyses could not predict the outcome of competition. Here, we examined the lin-

ear stability of the two-peak steady state, and found that all two-peak states in MCAS models

are unstable to competition. That is, the larger peak will always grow at the expense of the

smaller (scenario 1 in Fig 2A), for all biologically relevant MCAS models.

Although competition will always yield a single-peak outcome given sufficient time, the

timescale of competition can vary enormously. Our findings lead us to propose that whether

competition yields uni-polar or multi-polar outcomes in a biologically relevant time frame

depends primarily on a remarkably simple “saturation rule”. We show that each MCAS model

encodes a parameter-dependent saturation point, such that the peak activator concentration

saturates at a polarized steady state. As the peak activator concentration approaches the satura-

tion point, the difference in peak height between unequal peaks decreases dramatically, leading

to much slower competition and effective coexistence between peaks (scenario 3 in Fig 2A).

Varying parameters affects the timing of competition predominantly by affecting the degree

to which competing peaks approach the saturation point. Other factors like domain size and

wavefront curvature in 2D also influence the dynamics of competition (see below), though to a

much lesser degree. Thus, the major novel conclusions from our analysis are that all MCAS

models share an ability to saturate, and that the outcome of competition between GTPase clus-

ters depends primarily on whether the model parameters allow the peak GTPase concentra-

tions to approach saturation.

Competition driven by geometry

In models restricted to one spatial dimension, competition slows exponentially as peaks

approach saturation, effectively yielding meta-stable multipolar states. However, on a 2D

membrane, a fundamentally different driver of competition emerges in this regime, dependent

on the curvature of the wavefront separating regions of high versus low activator concentra-

tion. Although much slower than competition between peaks of different activator concentra-

tion, this curvature-driven competition allows broader peaks to expand at the expense of

narrower peaks. This behavior is similar to that observed in a separate but related class of

phase separation models explored by Gamba and colleagues [30–32]. In these models, an

activator (for example PIP3) can be generated from a substrate (PIP2) and vice versa by the

action of regulatory enzymes. Due to positive feedback, a membrane develops patches with

high PIP3 and low PIP2 concentration in a membrane with high PIP2 and low PIP3 concentra-

tion. Unlike with the MCAS systems discussed here, the local sum of PIP3 and PIP2 concentra-

tion is assumed to be constant. Such systems display a coarsening behavior analogous to the

competition between peaks in MCAS systems, and a physical analogy has been drawn to the
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process of precipitation from supersaturated solution [32]. As with curvature-driven competi-

tion in MCAS models, this coarsening is driven by a geometry-dependent “surface tension”

feature that makes smaller patches of PIP3 prone to dissolve while larger patches grow. Com-

parison of the kinetics of competition in a phase separation model compared to a MCAS

model suggested that, as for the curvature-driven competition we analyzed, competition in the

phase separation system was very slow relative to that in an unsaturated MCAS system [29].

Biological implications of the saturation rule

The models considered in this report represent a drastically simplified system compared to

any biological system. Two simplifying assumptions are particularly noteworthy. First, because

polarization phenomena often employ stable proteins and occur on rapid timescales compared

to cell growth, MCAS models assume a constant domain size and a constant protein amount.

This may not always apply. Second, we modeled two-component systems, whereas all known

polarity systems have multiple components. More realistic multi-component models of the

budding yeast polarity circuit exist [7, 9, 18, 23] and preliminary simulations indicate that they

too behave according to the saturation rule. However, adding additional components can yield

emergent behaviors not seen in the two-component systems [33, 34]. Thus, predictions of the

saturation rule will need to be tested experimentally to assess whether the insights derived

from simple MCAS models are translatable to biological systems.

The saturation rule suggests several possible pathways by which a single Rho-GTPase mod-

ule can regulate the number of polarity sites. A cell may directly regulate the saturation point

by tweaking the major mechanism of saturation in each system. If saturation is predominantly

due to local depletion of cytoplasmic substrate, then increasing the strength of positive feed-

back (e.g., increased GEF activity) would lead to more severe depletion, a lower saturation

point, and hence slower competition and a multi-polar outcome. Alternatively, if saturation is

predominantly due to an additional negative feedback (Fig 7C), then strengthening the nega-

tive feedback would lead to a lower saturation point, slowing competition and favoring a

multi-polar outcome. The saturation rule thus generates hypotheses specific to each system

that can be tested experimentally.

The most obvious prediction perhaps is that systems should transition between uni- and

multi-polarity regimes as total GTPase contents change: lower levels should yield uni-polarity,

while higher levels sufficient to allow activator concentrations to approach the saturation point

should yield multi-polarity. In the tractable budding yeast Saccharomyces cerevisiae, the master

polarity regulatory GTPase, Cdc42, becomes concentrated at polarity sites, and initial peaks

compete on a 1 minute timescale to leave only one winning peak. However, attempts to assess

whether raising polarity factor concentrations would yield more peaks were complicated by

the fact that overexpression can block polarization [35], presumably because active GTPase

spreads throughout the cell cortex. This phenomenon has been explored in Turing models:

when component concentrations are too high, the system no longer polarizes, but instead

evolves to a stable steady state with high levels of activator uniformly distributed all over the

surface [17].

One way to avoid uniform activation is to increase cell volume as well as total protein con-

tent in parallel, maintaining overall concentrations unchanged, which is analogous to the gray

line in Fig 6. Yeast cells occur naturally as haploids and diploids, and cells with higher ploidy

can be constructed. It is also possible to block cytokinesis, generating larger cells due to failed

cell division. It appears that cell volume and total protein amount scale with ploidy for most

proteins, so that total protein concentrations remain generally unchanged ([36]). If we were to

keep the activator and substrate concentrations at the homogeneous steady state of an MCAS
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model constant, then a model with a larger domain size would provide a larger pool of sub-

strate, allowing greater local enrichment of the activator, so that peak activator concentrations

would approach the saturation point. This predicts that as cells become larger they should

eventually switch from uni- to multi-polarity.

For some filamentous fungi, like Ashbya gossypii, development proceeds through a cell

enlargement process in which a single shared cytoplasm houses more and more nuclei. This

provides a natural system that samples a large range of cell sizes. Cell polarity in A. gossypii is

thought to be governed by the same Cdc42-centered circuit employed in S. cerevisiae, but these

cells transition from always having a single polarity site when they are small (following germi-

nation), to having two (and then more) polarity sites as they grow larger, leading to hyphal

branching [37]. Sporadic septation (division separating parts of a single large cell into two

smaller ones) can restore a single polarity site to the cell, but continued growth then leads to

additional polarity site(s) again. This behavior is consistent with a switch from uni- to multi-

polarity according to the saturation rule. A prediction for this system would be that reducing

total content of polarity proteins should delay the switch from uni-polar to multi-polar behav-

ior, so that it would take a larger cell to initiate a hyphal branch.

Conclusion

We have examined the behavior of a family of simplified mathematical models that capture

key aspects of the behavior of the Rho-GTPases that regulate the formation of cortical domains

in cells. Our analysis suggests that all biologically relevant models of this type (and there are

several varieties) display reproducible transitions in system behavior as parameters vary. In

particular, each model has a saturation point that depends on model parameters. With low

amounts of GTPase, the system forms sharp peaks of active GTPase, but as GTPase levels

increase, the peak GTPase concentration approaches the saturation point and the concentra-

tion profiles broaden into saturated mesas. If there are two or more peaks of GTPase, the peaks

will compete with each other until one emerges as the single stable winner. However, the time

scale of competition slows dramatically as the peaks broaden, so in practice the systems transi-

tion from a situation with rapid cut-throat competition to one in which competition is so lan-

guid that peaks coexist on biologically relevant timescales. Local depletion of the cytoplasmic

substrate provides a mechanism of saturation that is universal to all activator-substrate sys-

tems, so regardless of the specific biochemical feedback mechanism, a cell that polarizes

through local activation and substrate depletion should be able to switch between uni- or

multi-polar outcomes by regulating system parameters. The discovery of this intrinsic property

of the Rho-GTPase system suggests hypotheses testable in the context of various different cell

types.

Methods

Model simulation

Simulations of the MCAS models were done on MATLAB with parameters described in the

main text. One-dimensional simulations were done on domains with fixed spatial resolution

of 500 grid points, except the simulations with large domains, where number of grid points

was increased proportionately. Finite differences were used with the linear diffusion being

treated implicitly and the nonlinear reaction term explicitly in the time stepping. Two-dimen-

sional simulations are computed on 200 × 200 grid points implemented using implicit spectral

methods. For all simulations in the limit Dv!1, the mean of v was taken every time step. All

simulations proceeded with adaptive time stepping according to relative error in the reaction

term. The MATLAB code used for simulations is provided in Source Code Files.

Principles that govern competition or co-existence in Rho-GTPase driven polarization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006095 April 12, 2018 20 / 23

https://doi.org/10.1371/journal.pcbi.1006095


Calculation of competition time

Simulations of competition is generally generated as follows: Two-peak steady states were first

generated by simulating the evolution of the homogeneous steady state with an added sine

wave. Perturbations were then introduced by increasing the amplitude of the concentration

profiles u(x) v(x) at the first peak by a given percentage (e.g. a 20% increase), and decreasing

the amplitude of the second peak by the same percentage (e.g. a 20% decrease). The resulting

two unequal peaks were then allowed to compete.

For simulations used in Figs 4A and 5F, we recorded the measurements of the peak height

(umax) to calculate the saturation index, and the competition time. The steady state umax was

obtained from the two-peak steady state. The two peaks were then perturbed by increasing the

protein content of the left half-domain and decreasing the protein content of the right half-

domain, so that each half has 60% and 40% of the original M, respectively. For more accurate

measurements of the competition time, the two halves were first simulated individually to

their own steady states in isolation. Upon the start of competition, the two half-domain were

allowed to communicate through diffusion, and the competition time was calculated by mea-

suring the resolution time of two unequal peaks from 60% and 40% at the beginning to 99%

and 1%.

Supporting information

S1 Text. Supporting information.

(PDF)

S1 File. MATLAB code.

(ZIP)
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