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Abstract: Severe burns represent an important challenge for patients and medical teams. They lead
to profound metabolic alterations, trigger a systemic inflammatory response, crush the immune
defense, impair the function of the heart, lungs, kidneys, liver, etc. The metabolism is shifted towards
a hypermetabolic state, and this situation might persist for years after the burn, having deleterious
consequences for the patient’s health. Severely burned patients lack energy substrates and react in
order to produce and maintain augmented levels of glucose, which is the fuel “ready to use” by
cells. In this paper, we discuss biological substances that induce a hyperglycemic response, concur
to insulin resistance, and determine cell disturbance after a severe burn. We also focus on the most
effective agents that provide pharmacological modulations of the changes in glucose metabolism.
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1. Introduction

Burns represent one of the most severe forms of trauma and also are a major public
health problem [1,2]. Annually, about 300 million patients are affected by burns, the fourth
most frequent kind of trauma after traffic accidents, violent incidents, and falls [3]. Severe
burns involve more than 30–40% of the total body surface area (TBSA) and affect the entire
human body (all its systems), inducing long hospitalization and increasing mortality [4].
In the past decade, several studies demonstrated that burns affecting only 10% of the TBSA
might induce alterations similar to those developed after burns involving more than 30%
of the TBSA [5].

Severely burned patients react with a systemic inflammatory response and a hyper-
metabolic response. The systemic inflammatory response is totally disproportionate and
abnormal [6]. It begins in the first hours after the burn trauma [6,7] and persists for about
one month and a half [8]. In severe burns, the inflammatory response is triggered by the ini-
tial trauma, but subsequently, it might be reinitiated several times by surgical debridement
of the burn wound, by septic complications, by sleep deprivation, or by exposure to a cold
environment [9]. In such situations, when the inflammatory response cannot be mitigated,
it induces multiple organ failure and even death [10]. From the biochemical point of view,
the systemic inflammatory pathway intersects with the trajectory leading to a hyperme-
tabolic state, [11] having some common hallmarks: elevated levels of acute-phase proteins,
cytokines, and chemokines [5], such as tumor necrosis factor-α (TNFα), interleukin 1β
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(IL-1β), interleukin 6 (IL-6), insulin-like growth factor 1 (IGF-1) [12], increased serum levels
of catecholamines, etc. Unlike the inflammatory response which usually persists for only
5–6 weeks after the initial insult, the hypermetabolic state in severe burns can persist for
up to 36 months [12].

The amplitude of the inflammatory and metabolic responses of patients depends on
the burn depth and percentage of the TBSA affected by the burn [5], etiology of the burn
and presence of an inhalation injury [6], presence of other traumatic injuries, preexistent
health conditions of the patient, comorbidities, previous medication, age of the patient,
time elapsed from the moment of the acute event till presentation to the hospital etc. [9].

The hypermetabolic state is generated by severe energy deprivation at the cellular
level. In order to satisfy the huge energetic need, at a certain moment after the burn, the
metabolism shifts towards increased glycolysis, glycogenolysis, gluconeogenesis, lipolysis,
proteolysis [5].

Among the most prominent metabolic alterations are persistent hyperglycemia and
insulin resistance [12,13] which greatly contribute to increased morbidity and mortality of
severe burns [4,14].

2. Glucose Metabolism in Burns

Glucose metabolism regulation is quite strict in normal conditions [15]. After food
intake, glucose serum levels increase. Circulating glucose is transported into cells, where
glucose may be used as a source of energy (glycolysis, oxidative phosphorylation) or
stored (glycogenesis, lipogenesis). In specific situations, the excess of glucose may be
used in thermogenesis [15]. When glucose serum levels decrease (fasting, starvation),
glycogenolysis accompanies the switch of metabolism towards using fats and eventually
proteins for glucose synthesis (gluconeogenesis) and energy production [16–18].

After severe burns, patient’s metabolic status and glucose metabolism go through
significant changes. In burns involving more than 20% of the TBSA, the metabolic response
has been described as having two phases: the “ebb” phase and the “flow” phase [19–21].

In the “ebb” phase, which lasts the first 2–4 days post-burn, the metabolic rate is
reduced, the circulating blood volume, cardiac output, and tissue perfusion are decreased,
and the oxygen consumption drops [9,19–21]. It partially superposes on the so-called burn
shock phase, which is typical for severe burns and looks initially like any hypovolemic
shock:

- decreased plasma volume due to extravasation into the burn wound and later into
normal tissues because of vasodilation, increased blood flow, increased vascular
permeability (produced by histamine, prostaglandin E2, prostacyclin, thromboxane
A2, thromboxane B2, bradykinin, serotonin, reactive oxygen species (ROS)) [22–24];

- decreased cardiac output determined by the reduced preload and the circulating
myocardial depressant factor [22–24];

- decreased renal filtration rate with decreased urine output (caused by reduced perfu-
sion of the kidneys) [22–24];

- increased systemic vascular resistance which accentuates the tendency to reduce tissue
perfusion [22–24].

The key metabolic change in this phase is represented by reduced metabolic rate or
“hypometabolism” [19]. It is believed that severe mitochondrial dysfunction and accen-
tuated endoplasmic reticulum stress generate an important decrease of all the metabolic
processes at the cell level [20].

Some of the factors that produce hemodynamic and inflammatory reactions (cate-
cholamines, IL-1, ROS, etc.) initiate metabolic changes, too, in the “ebb” phase. These
factors (and others) continue to act and progressively amplify the subsequent metabolic
changes in the “flow” phase [4].

The “flow” phase is initiated, amplified and maintained by the continuing action of
stress hormones (cortisol, catecholamines, glucagon) and cytokines (TNFα, IL-1β, IL-6) [9].
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Therefore, towards the fifth day, the patient reaches an inflammatory hyperdynamic
and hypermetabolic state called the “flow” phase [18,25].

This phase is characterized by:

- tachycardia and increased blood pressure due to the action of catecholamines and
stimulation of the sympathetic nervous system [25];

- peripheral insulin resistance [18];
- increased glycolysis [5];
- augmented glycogenolysis [5];
- accentuated gluconeogenesis [5];
- elevated lipolysis [5];
- persistent proteolysis [5].

Most authors consider these acute modifications an “adaptive response” [18] that
aims at covering the severely increased energy requirements and maintaining the body
temperature which contributes to survival in the short term.

The consequences are:

- increased thermogenesis [13];
- increased resting energy expenditure (REE) [13];
- muscle wasting with decreased lean body mass [26].

However, if the hypermetabolic response and its consequences persist, as is the case
with severe burns, patients become exhausted and lose their ability to respond [9]. They
develop multiple organ dysfunction which may lead to death [10].

The alterations in metabolic status/glucose metabolism impact the wound healing
process, too. Briefly, insulin resistance, increased protein catabolism, and persistent hyper-
glycemia determine:

- immunodeficiency and increased risk of systemic and/or burn wound infections;
- delayed wound healing;
- poor quality scars;
- complicated graft taking.

All these contribute to increased hospital stay, augmented mortality, and the need for
close follow-up of the survivors of major burns after hospital discharge [27]. The specific
alterations in the “ebb” phase and in the “flow” phase are summarized for a view at a
glance in Table 1:

Table 1. Specific alterations in the “ebb” phase and in the “flow” phase in severely burned patients.

“Ebb Phase” “Flow Phase”

Plasma volume decreased increased

Vascular resistance increased increased

Renal filtration decreased decreased

Cardiac output decreased increased

Tissue perfusion decreased decreased

Metabolism hypometabolism hypermetabolism

Mitochondrial dysfunction initiated accentuated

Endoplasmic reticulum stress initiated accentuated

Glycolysis ecreased increased

Proteolysis decreased increased

Lipolysis decreased increased



Int. J. Mol. Sci. 2021, 22, 5159 4 of 24

Table 1. Cont.

“Ebb Phase” “Flow Phase”

Thermogenesis decreased increased

Resting energy expenditure decreased increased

Insulin resistance no yes

2.1. The Key Role of Proinflammatory Cytokines in Hypermetabolic Response

Several proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), inter-
leukin 1β (IL-1β), and interleukin 6 (IL-6), play a key role in the pathogenesis of the
systemic inflammatory response and the hypermetabolic state of severely burned patients
by being involved in alterations of all kinds of metabolism, including glucose metabolism.

2.1.1. Tumor Necrosis Factorα

Tumor necrosis factor-α (TNFα), a well-known inflammatory cytokine, is produced by
macrophages/monocytes during the systemic inflammatory response which accompanies
a severe burn [28,29]. The levels of this biomarker of inflammation that binds to specific
receptors which activate the NF-κB-dependent signaling pathway are increased only in the
acute phase post-burn [18,30]. Moreover, the levels of TNFα and of its receptors correlate
with the severity of the burn [29].

Apart from its role in inflammation and apoptosis, TNFα stimulates formation of
ROS (Reactive Oxygen Species) and increases the rate of lipolysis in burns [31,32]. These
two last actions have consequences upon glucose metabolism, too. By stimulating the
formation of ROS, TNFα might indirectly interfere with glycolysis and oxidative phospho-
rylation because ROS from the mitochondria can cause dysregulation in glycolysis and
vice versa [33].

Moreover, by increasing lipolysis, TNFα increases the release of free fatty acids
(FFAs) [34] which influence glucose metabolism and induce insulin resistance. TNFα
is not only an acute-phase inflammatory cytokine, but also an adipose tissue-secreted
cytokine [35] produced by adipocytes and cells of the vascular stroma of the adipose
tissue [35] and acts upon the transcription process in the fat tissue and in the liver [36].
In the adipose tissue, TNFα inhibits expression of the genes that have a role in the up-
take and storage of circulating glucose and FFAs, having an inhibitor consequence upon
lipogenesis [36]. Furthermore, it stimulates lipolysis by activating the mitogen-activated
protein kinase module (MAP kinase module) [34]. TNFα activates two of the three protein
kinases that form the MAP kinase signaling module: extracellular signal-related kinase
(ERK) and the mitogen-activated protein kinase (MAPK) [34]. These kinases enter the
nucleus and influence transcription of specific genes, including those controlling the cell
glucose uptake [30].

In the liver, TNFα blocks expression of the genes involved in glucose uptake and in the
oxidation of fatty acids. On the other hand, it amplifies expression of the genes that control
lipogenesis, stimulating the synthesis of fatty acids and cholesterol [36]. In addition, it has
been proven that TNFα induces insulin resistance by interfering with insulin signaling directly
and indirectly [37]. Directly, TNFα prevents Tyr (Tyrosine) phosphorylation of IRS-1 (insulin
receptor substrate-1) and promotes Ser (Serine) phosphorylation of IRS-1. These actions
blunt the transmission of the insulin signal towards intracellular signaling pathways [37,38].
Indirectly, by increasing the lipolysis, TNFα increases the intracellular fatty acids and the
circulating levels of FFAs which stimulate the Ser phosphorylation of IRS-1, the result being
restrained insulin signaling [39]. Therefore, in burns, aside from being a proinflammatory
cytokine, TNFα contributes to insulin resistance and increases the level of blood glucose and
of FFAs, which are indicators of a hypermetabolic state (Figure 1).
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Figure 1. The inflammatory state in the "flow" phase of severe burns. Monocytes and macrophages secrete the tumor necrosis
factor-α (TNFα), leading to overproduction of reactive oxygen species (ROS) and inhibition of lipogenesis. Moreover,
increased TNFα levels lead to mitogen activation of the protein kinase (MAPK), resulting in increased lipolysis and the
release of a higher amount of free fatty saturated acids (FFAs). IL-6 is released by T lymphocytes and macrophages,
blocking insulin receptor substrates 1 and 2 (IRS-1, IRS-2). Immune system cells stimulate the release of IL-1β by the NLRP3

inflammasome. The augmented release of all three proinflammatory cytokines contributes to insulin resistance. “ ” shows

an increase; “ ” indicates an inhibitory effect.

2.1.2. Interleukin 1β (IL-1β)

Interleukin 1β is an important proinflammatory cytokine which is produced within
immune system cells (especially in monocytes, macrophages, and dendritic cells), though
not only there, in response to infections and trauma [40]. Various pathogens carry associ-
ated molecular patterns (PAMPs) which stimulate the production of pro-IL-1β by activating
pattern recognition receptors (PRRs) [40,41]. Pro-IL-1β is activated by caspase-1 which is
secreted in an inactive form (pro-caspase-1) and autoactivates itself after its recruitment to
high-molecular-weight complexes called inflammasomes [42].

Inflammasomes are activated by pathogens, PAMPs, or DAMPs (disease-associated
molecular patterns) or by “environmental irritants.” The best characterized inflammasome
until now is called the NLRP3 inflammasome due to its node-like receptor domain [42]. It
appears that this inflammasome is activated in burns by ROS (which result from mitochon-
drial disfunction) and by increased levels of saturated fatty acids [43].

Apart from its role in inflammation, IL-1β appears to be connected to hyperglycemia
by acting upon the spinal cord, upon the sympathetic nervous system, and upon hypotha-
lamus [44–46]. IL-1β levels are elevated in chronic pain and induce hyperglycemia by
stimulating the glucocorticoid system [44] and the stress axis [40,41]. Such effects were
demonstrated in experiments on mice, but not in humans [44–46].

2.1.3. Interleukin 6 (IL-6)

The IL-6 level increases early in burn patients, being produced by activated macrophages
and T lymphocytes, and induces both proinflammatory and anti-inflammatory effects [47].
Persistently higher levels of IL-6 are associated with an increased risk of infection and
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death [11,48]. Administration of IL-6 to healthy subjects induces a metabolic response
similar to the "hypercatabolic state” described in severely burned patients: elevated serum
concentrations of glucose and FFAs and increased resting energy expenditure [49]. It has
been hypothesized that the hypermetabolic effect of IL-6 is a consequence of its action on
the liver, with the induction of an acute phase response [18]. The liver produces acute-phase
proteins such as C-reactive proteins, serum amyloid A, haptoglobin, fibrinogen, protease
inhibitors, transport proteins, etc. [50].

In healthy human subjects, IL-6 has an increasing effect upon glucose metabolism
in skeletal muscles by amplifying glucose transport in muscle cells, glycogenogenesis,
and glucose oxidation [51]. It has been proven that the elevated uptake of glucose in
human skeletal muscle cells by IL-6 is not a consequence of insulin-stimulated glucose
transport [51]. Moreover, the insulin signaling pathway might not be influenced at all by
IL-6 in human skeletal muscles in basal conditions [51].

In the liver, as well as in skeletal muscles, IL-6 activates multiple signaling pathways,
such as the MAPK pathway, the PI3K (phosphoinositide 3-kinase) pathway, and the STAT1
and STAT3 (signal transducer and activator of transcription) pathways [50]. Activation
of the PI3K pathway determines activation of the AKT (serine/threonine protein kinase)
that phosphorylates GSK3 (glycogen synthase kinase 3) and inactivates it. Consequently,
there is an increase in the cellular uptake of glucose and glycogen synthesis, which lead
to a decrease of blood sugar levels [52]. STAT3 determines the upregulation of SOCS3
(suppressor of cytokine signaling 3), which inhibits the phosphorylation of insulin substrate
receptors 1 and 2, thus preventing the insulin-mediated activation of PKB (protein kinase
B) or AKT [50]. Therefore, STAT pathway activation acts as a negative feedback loop upon
PKB (AKT) activation by IL-6 [53].

In severe burns, IL-6 contributes to insulin resistance in the liver and skeletal muscles,
acting upon insulin receptor substrates [11]. The increased resting energy expenditure in
these patients might be partially explained by the direct action of IL-6 upon the central ner-
vous system [54]. This interleukin exerts its action in the brain through trans-signaling [55],
the capacity of IL-6 to act upon the cells that do not express the membrane-bound IL-6
receptor [56].

2.2. Stress Crosstalk from Burns to Glucose Metabolism
2.2.1. Catecholamines

In severe burns, catecholamine levels increase in the circulating blood early after the
trauma and induce a hyperdynamic circulatory state and a hypercatabolic state [13] charac-
terized by elevated blood pressure, resting energy expenditure and glycogenolysis, and
decreased glycogenesis [13,57,58]. They influence the lipid and protein metabolism, too [13].
Moreover, high levels of circulating epinephrine and norepinephrine persist for up to 18–24
months after the acute event and contribute to the so-called chronic shock, characterized,
among other things, by long periods of insulin resistance and hyperglycemia [12,59].

Epinephrine has major metabolic effects, especially on the adipose tissue, liver, and
muscles, which, together with the respiratory, cardiovascular, renal, ocular, digestive tract,
skeletal muscle, adipose tissue effects, appear after the catecholamines bind to adrenergic
receptors [60,61]. These are tissue-specific and cell-specific effects [62]. The adrenergic
receptors (α1,2 and β1,2,3) are members of the class of G protein-coupled receptors (which
contains more than 800 members) [63]. G protein-coupled receptors (GPCR) are character-
ized by a generic structure: each receptor is a transmembrane single-chain polypeptide
with a characteristic spatial conformation that looks like a cylinder with an extracellular
domain (where the ligand binds) and an intracellular domain (that binds to or is already
coupled with a G protein). The catecholamine molecule (for instance, adrenaline) is a
ligand for the adrenergic receptors and, after ligation, it determines a change in the spatial
conformation of the aforementioned receptor and activates the G protein [63].

G proteins are regulatory proteins—they are heterotrimeric GTP-binding proteins
(guanosine triphosphate-binding proteins) [64]. G proteins are characterized by GPRC and
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plasma membrane proteins specificity [63]. Each G protein is composed of three subunits:
α, β, and γ. The α subunit is bound to GDP (guanosine diphosphate) in the unstimulated
(basal) state; the GDP-αβγ heterotrimer loses GDP in the activated state; GTP binds the
α subunit that changes its conformation; GTP-α subunit dissociates from the βγ subunit;
each of them acts on various substrates, having specific effects. Consequently, cAMP (cyclic
adenosine monophosphate) (a secondary messenger) or Ca2+ (a common intracellular
mediator) concentrations change in the cytosol [62].

Typically, the GTP-α subunit stimulates the adenylyl cyclase (AC), resulting increased
synthesis of cAMP from ATP. This synthesized cAMP activates protein kinase A (PKA),
which increases the phosphorylation of glycogen phosphorylase b kinase (GPKb) to its
active a form (GPKa) (Figure 2). GPK is activated by glucagon, too, which is another
hormone with increased levels in burns [65]. GPK mobilizes the glycogen in the liver and
muscles (glycogen breakdown) and increases the glycolysis, leading to hyperglycemia. The
glycogen phosphorylase b kinases in the liver and muscles are isoenzymes [66,67].

Figure 2. Stress hormones in severe burns. The released catecholamines bind to the β receptor (a G protein-coupled receptor
(GPCR)), leading to adenyl cyclase (AC) activation; further, the second messenger, cyclic adenosine monophosphate
(cAMP), is formed by adenosine triphosphate hydrolysis (ATP), leading to protein kinase B (PKB) activation. PKA
phosphorylates glycogen phosphorylase b kinase (GPKb) to its active form, GPKa, conducing to an increased level of
glucose and lactate. Moreover, PKA stimulates phosphorylation of the CREB (cAMP response element-binding protein),
promoting gluconeogenesis. PKA indirectly activates the adipocyte triglyceride lipase (ATGL) after the phosphorylation of
perilipin and hormone-sensitive lipase (HSL), with the release of diacylglycerol (DAG), monoacylglycerol (MAG), glycerol,
and FFAs. In α-pancreatic cells, adrenaline stimulates the release of glucagon which activates cAMP and inhibits the
mammalian target of rapamycin (mTOR). Cortisol binds to glucocorticoid-responsive elements (GREs) that enter the nucleus

and promote gene transcription of the key enzymes from gluconeogenesis and glyceroneogenesis. “ ” marks an increase;

“ ” shows an inhibitory effect; “ ” indicates stimulatory effects.

Most metabolic effects of catecholamines are due to the activation of β-adrenergic re-
ceptors. In severe burns, the effect of catecholamines inhibiting oxidative phosphorylation
and promoting the anaerobic glycolysis in muscles is enhanced. Finally, catecholamines
increase circulating levels of glucose and lactate [62].
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Indirect metabolic effects result from the action of catecholamines upon the pancreas:
stimulation of β2 receptors enhances the production of insulin, while stimulation of α2
receptors reduces the production of insulin and the global effect is inhibition of insulin
secretion [68]. By stimulating the β adrenergic receptors of the α-pancreatic cells, cate-
cholamines increase glucagon secretion [69]. Another indirect influence of catecholamines
on glucose metabolism in severe burns (which represent a major stress) is the stimulation of
β receptors in the adipose tissue. The activity of PKA increases through the signaling path-
way involving adenylyl cyclase activation followed by increased synthesis of cAMP [62],
consequently phosphorylating the regulatory protein perilipin and the hormone-sensitive
lipase (HSL) [70,71]. Furthermore, PKA indirectly activates the adipocyte triglyceride lipase
(ATGL) [72,73]. After PKA phosphorylates perilipin-1 in adipocytes, CGI-58 (a coactivator
also known as α/β-hydrolase domain-containing protein 5, ABHD5) is liberated from
perilipin-1 and activates the ATGL [74]. The consequence is increased lipolysis: triacylglyc-
erol (TAG) is hydrolyzed to diacylglycerol (DAG), monoacylglycerol (MAG), glycerol, and
FFAs. All these products act as energy substrates and signaling molecules [75].

The β adrenergic/cAMP pathway impairs cell glucose uptake through insulin sig-
naling by inhibiting mTOR (mammalian target of rapamycin) complexes (mTORC1 and
mTORC2) and needs the presence of lipolysis products [76]. Thus, the increase of cAMP in
fat cells due to β adrenergic stimulation surge (in severe burns) determines an inhibition
of the PI3K/AKT/mTOR pathway, which is the insulin signaling pathway that mediates
cell glucose uptake [76]. Furthermore, lipolysis products produce a complex dissociation
of mTORC1 and mTORC2 which results in inhibition of this signaling pathway, hence
blocking the insulin action of increasing glucose uptake into fat cells and other types of
cells [76].

The elevated levels of circulating catecholamines are essential for acute stress response,
but when these increased levels persist for months and even years, as it happens in severe
burns, the effects upon the patient are deleterious [77].

2.2.2. Cortisol

Cortisol (a glucocorticoid hormone produced by adrenal glands) is another well-
known “stress hormone.” Its levels increase abruptly in severe burns and may persist for up
to three years post-burn [12]. Cortisol has a low molecular mass and a lipophilic structure
(it is derived from cholesterol), so it easily passes through the plasma cell membrane
and gets into the cytosol, where the majority of glucocorticoid receptors (GRs) are, in an
inactive form, bound by specific proteins [78]. After ligand binding, GRs lose the associated
proteins and the activated cortisol–GR complexes enter the nucleus, where they bind to
glucocorticoid-responsive elements (GREs) [79] (Figure 2). The result is the activation
or inhibition of transcription of specific genes that codify the synthesis of regulatory
proteins [80]. These are called genomic effects of cortisol and develop progressively [81].

There are also non-genomic effects of cortisol that develop rapidly (seconds, minutes).
These are usually anti-inflammatory and immunosuppressive effects [80,82,83]. In stress
situations, including severe burns, cortisol actions on glucose metabolism aim at furnishing
glucose as an energy substrate for vital organs: the heart and the brain.

In hepatocytes, cortisol stimulates gluconeogenesis from glycerol and amino acids
and also enhances glyceroneogenesis by increasing the expression of the gene encoding the
PEPCK (phosphoenolpyruvate carboxykinase), a limiting factor of the rate of both of the
aforementioned pathways [84,85].

In adipocytes, cortisol suppresses expression of the gene encoding the PEPCK, reduc-
ing glyceroneogenesis, which determines a decrease in fatty acids recycling and an increase
in FFAs in circulating blood. Another effect of cortisol upon adipocytes is direct activation
of lipolysis, which also contributes to an increase of FFAs and of glycerol, too, the latter
being used for gluconeogenesis in hepatocytes [86].

In skeletal muscles, the main glucose consumer, cortisol inhibits glucose uptake and
glycolysis and also obstructs glycogen synthesis through inhibition of insulin signaling
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and inhibition of activity of the glycogen synthase [87–89]. Furthermore, cortisol facilitates
the glycogenolysis promoted by catecholamines [87]. The inhibition of glucose uptake is
due to the fact that cortisol decreases the insulin-induced translocation of GLUT4 (glucose
transporter type 4) to the cell membrane [89,90]. Moreover, by enhancing proteolysis in
the muscle and glutamine synthesis, cortisol activity results in providing amino acids for
gluconeogenesis [91].

The elevated levels of catecholamines, glucagon, and cortisol determine increased
cycling of glucose and FFAs [92]. These processes are energy consumers and contribute
to a greater energy expenditure, which is one of the characteristics of the hypermetabolic
state of patients with severe burns.

2.3. How Glucagon and Insulin Modulate Glucose Metabolism in Burns
2.3.1. Glucagon

Just like catecholamines, glucagon is elevated in situations of stress [93], including
in severe burns. This pancreatic hormone produces hyperglycemia directly and exerts
indirect actions on glucose metabolism through stimulation of lipolysis [94] and proteoly-
sis [95]. At high concentrations, it increases both glucose uptake and lipolysis in human
adipocytes [94,96,97]. In the liver, glucagon stimulates glycogenolysis and promotes gluco-
neogenesis [98]. Moreover, it is a ligand for class B GPCRs, which are mainly distributed in
the liver and kidneys. These receptors are less expressed in the heart, pancreas, digestive
tract, spleen, adipose tissue, cerebral cortex and are not expressed at all in muscles [99].
Glucagon receptor stimulation determines activation of adenylyl cyclase with consequent
accumulation of cAMP and calcium in the cytosol. The increased cAMP activates PKA,
leading to activation (through phosphorylation) of the GPK (glycogen phosphorylase
kinase) which amplifies the breakdown of glycogen (glycogenolysis) in the liver [66,67]
and increases the production of glucose-6-phosphate (G6P), further converted into glucose.
Another effect of increased PKA activity (by glucagon) is the stimulation of phosphoryla-
tion of the CREB (cAMP response element-binding protein) with subsequent upregulation
of the PEPCK transcription, thus stimulating an initial step of gluconeogenesis in the
liver, namely, the conversion of oxaloacetate into phosphoenolpyruvate [100–102]. Hence,
increased levels of glucagon in severe burns determine increased gluconeogenesis.

Glucagon decreases the consumption of glucose in the liver by inhibiting glycolysis
through (1) inhibiting phosphofructokinase-1 (PFK-1) by reducing the levels of fructose-
2,6-bisphosphate [103] and through (2) inhibition of the pyruvate kinase [104]. Glucagon’s
actions concur towards increasing the blood levels of glucose as the prime source of energy
in severe burns.

2.3.2. Insulin

Insulin, a hormone produced by β-pancreatic cells, has anabolic effects upon glucose,
lipid, protein, and energy metabolism [67].

Molecular Mechanisms of Insulin Action

The biological actions of insulin begin when it binds to its receptor, an integral gly-
coprotein composed of two subunits, α and β. The α subunit presents extracellular
localization and represents the binding site for insulin, while β subunit is formed by a
transmembrane domain and an intracellular tyrosine kinase domain activated by autophos-
phorylation. The two subunits are linked by disulfide bridges [105].

After the binding of insulin to its receptor with tyrosine kinase intrinsic activity,
α-subunit suffers conformational changes and its catalytic function is activated, lead-
ing to autophosphorylation of Tyr residues from the β-subunit in the cytosolic region.
Different adaptor proteins, such as IRS family members (IRS-1 and IRS-2), recognize auto-
phosphorylated Tyr residues and activate two major signaling pathways, PI3K/AKT/mTOR
involved in its metabolic actions (glucose transport, glycogen and protein synthesis, adi-
pogenesis) and the mitogen-activated protein kinases/Ras pathway (MAPK/Ras) that



Int. J. Mol. Sci. 2021, 22, 5159 10 of 24

regulates gene expression and insulin-associated mitogenic effects (gene expression, prolif-
eration, differentiation, cell growth) [105–107].

Six IRS isoforms are known (IRS-1–6), where IRS-1 and IRS-2 mediate most of the
metabolic effects of IR activation. IRS proteins present an NH2-terminal pleckstrin ho-
mology (PH) and PTB (phosphotyrosine-binding) domains and long COOH-terminal tails
with tyrosine and serine/threonine (Ser/Thr) phosphorylation sites. After binding of the
IRS PTB domain to IR pTyr972, IR phosphorylates multiple IRS Tyr residues, leading to
downstream signaling effectors which propagate and amplify the insulin response [108].

IRS proteins have more than seventy COOH-terminal serine/threonine phosphory-
lation sites, so they affect IRS activity and protein stability [108]. IRS phosphorylation is
considered to be the major mechanism by which several stimuli cause insulin resistance.
Tyrosine-phosphorylated residues from IRS proteins recruit PI3K heterodimers which
contain a regulatory p85 subunit and a catalytic p110 subunit, an essential node in insulin
signaling [108]. In the liver, glucose is released through GLUT2 (glucose transporter type
2), while GLUT4 (glucose transporter type 4) mediates glucose uptake in muscles and the
adipose tissue [109].

In the liver, AKT triggers insulin effects, such as glycogen synthesis and the sup-
pression of gluconeogenesis [110]. Moreover, activated AKT can regulate transcription of
the target genes from gluconeogenesis (PEPCK and G6Pase) via Foxo-1 [110]. Foxo-1 is a
transcription factor that increases the expression of key gluconeogenesis enzymes, while
its upregulation leads to the increased conversion of incoming substrates in the liver to
glucose. Normally, in the liver, Foxo-1 is retained in the cytoplasm in an inactive form by
the action of AKT after its phosphorylation [109].

AKT presents three isoforms (1, 2, 3), the AKT 2 isoform having an important role in
insulin metabolic actions, especially in muscles and the adipose tissue, where its activation
(by phosphorylation) leads to glucose uptake [105,109]. The IR is regulated by phospho-
tyrosine phosphatase (PTP) which dephosphorylates Tyr residues, reducing its activity.
Moreover, PTP-1B is an essential component of insulin action-regulating mechanisms [105].
Another molecular mechanism involved in IR regulation is phosphorylation of Ser/Thr
residues from the β subunit. Alterations at these levels have been detected to be associated
with insulin resistance in both humans and rodents [105,109].

Studies regarding PTP-1B roles carried out on knockout mice revealed that this enzyme
augments insulin sensitivity and enhances receptor Tyr phosphorylation and is impervious to
the development of obesity and insulin resistance induced by high-fat diets [105,111–114].

PKC (protein kinase C) phosphorylates the β subunit of IRS in different intracellular
regions. Several Ser/Thr kinases, such as PKA, c-Jun amino-terminal kinase (JNK), and
p38-kDa mitogen-activated protein kinase phosphorylate the IRS and decrease its activity
because they may affect receptor conformation or access to Tyr residues [105]. JNK, mTOR,
ERK1/2, SIK-2, and different PKC isoforms phosphorylate more than 70 potential phospho-
rylation sites from 230 IRS-located Ser/Thr residues [105,115]. This is the key mechanism
of insulin signaling inhibition that affects IRS Tyr phosphorylation and triggers decreased
PI3K activity, promoting its degradation [105,116,117].

It is well-known that insulin levels rapidly increase in severe burns [118,119] in a pro-
cess called post-burn hyperinsulinemia [12]. Despite the increased levels of insulin, burned
patients have persistent hyperglycemia [12,113,120]. In trauma (such as severe burns),
cells lose their sensitivity to the insulin’s action, a situation described as post-traumatic
insulin resistance [121]. In these patients, hyperglycemia, which seems to accentuate insulin
resistance, does not parallel the hyperinsulinemia, which persists much longer after the
normalization of plasma glucose levels [12].

Hyperglycemia in the acute phase after the burn “satisfies” the increased energetic
substrate demand for healing. Indeed, after an initially decreased glucose uptake in normal
skin and soft tissue and in the burn area, there is a persistently increased glucose uptake in
such tissues [122]. Adipose tissue [123], skeletal muscles [119], and the liver [92] manifest
insulin resistance with insufficient cellular glucose uptake, which further accentuates and
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maintains the hyperglycemia [92]. Persistent hyperglycemia is linked to higher muscle
protein catabolism, poor wound healing, greater skin graft loss, increased length of hospi-
talization, more frequent infections, and higher mortality [27,124–126]. It also enhances the
release of inflammatory cytokines (TNFα, IL-1β, IL-6, etc.) by macrophages, monocytes,
and adipocytes [127]. These cytokines, together with cortisol, catecholamines, FFAs, and
hyperglycemia accentuate and maintain the insulin resistance.

In severe burns, cells suffer because of a major energy substrate deficit, which triggers
(1) increased secretion of stress hormones (catecholamines, cortisol, glucagon) to mobilize
glucose from glycogen and augment gluconeogenesis; (2) increased production of insulin.
It appears that hormones like catecholamines and inflammatory cytokines such as TNFα
and IL-1β attenuate or “blunt” pancreatic insulin secretion, so the β cells of the pancreas
produce less insulin than needed due to the cellular energy depletion specific to severe
burns [128]; this phenomenon might be explained by the “damage” to β cells produced by
stress hormones and/or inflammatory cytokines [129] or by alteration of GLUT2 expression
in β cells induced by hyperglycemia and increased FFA levels [129,130], which are common
traits in the hypermetabolic state of severely burned patients. In human β-pancreatic cells,
there are three glucose transporters, GLUT1, GLUT2 and GLUT3, [131,132], with glucose
entering human β-pancreatic cells primarily via GLUT1 [132]. In rodents, it seems that
GLUT2 is the most important glucose transporter concerning glucose uptake in β cells
as the first step in glucose-stimulated insulin secretion [133]. The surface expression of
GLUT2 depends on its interaction with a lectin that binds a specific N-glycan. Hyper-
glycemia and increased FFAs inhibit the activity of glycosyltransferase, which determines
the lack of complex GLUT2 N-glycan formation. Consequently, GLUT2 are internalized,
impairing the glucose-stimulated insulin secretion [134]. Therefore, post-burn, insulin
secretion is augmented (causing hyperinsulinemia), but less than one would expect in such
a hypermetabolic state [135].

The issue of insulin resistance has been largely debated and there are many factors to
this process characterized by an inappropriate response of cells to insulin receptor binding.
In severe burns, development of insulin resistance accentuates the hypercatabolic status of
the patient.

Insulin Resistance—Signaling Pathway

From the molecular point of view, insulin resistance means disruption in the cas-
cade insulin receptor–tyrosine kinase–GLUT4 translocation [136]. “Stress-induced insulin
resistance may in part be due to phosphorylation-based negative-feedback, which may
uncouple the insulin receptor or insulin receptor-associated proteins from its downstream
signaling pathways” [125]. From the total insulin-stimulated glucose uptake, only 10%
occurs in the adipose tissue and the liver, while the largest part occurs in skeletal muscles,
the main glucose consumer [137].

Adipose tissue products, such as non-esterified fatty acids (NEFAs), glycerol, hor-
mones (leptin and adiponectin), and proinflammatory cytokines, are involved in insulin
resistance development [138]. In muscles, retinol binding protein 4 (RBP4) reduces the
phosphatidylinositol-3-OH-kinase activity, and in the liver, it enhances the expression of
the glucogenic enzyme PEPCK, leading to insulin resistance [138,139].

Moreover, adipocyte-derived factors, such as the increased release of TNFα, IL-6,
monocyte chemoattractant protein 1 (MCP-1), and additional products of macrophages, and
other cells that populate the adipose tissue are involved in insulin resistance [138,140,141].
TNFα and IL-6, through classical receptor-mediated processes, stimulate both the JNK
and the IκB kinase-β (IKK-β)/(NF-κB) pathways, leading to upregulation of inflammation
mediators, and further to insulin resistance [138,140,141] (Figure 3). Key enzymes from
glycolysis (pyruvate dehydrogenase, phosphofructokinase, and hexokinase) are inhibited
by increased intracellular NEFA levels because these fatty acids may be in competition
with glucose for substrate oxidation [138,142].
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Figure 3. Insulin resistance in severe burns. Severe burns are characterized by hyperglycemia, which further promotes
oxidative stress (OS) by increased production of reactive oxygen species (ROS), activating the JNK and IκB kinase-β (IKK-
β)/(NF-κB) pathways, and increased production of proinflammatory cytokines. After the binding of insulin to its receptor,
receptor autophosphorylation takes place, and members of the insulin receptor substrate (IRS) family are phosphorylated
on Ser/Thr and Tyr residues. Phosphoinositide 3-kinase (PI3K) further activates protein kinase B or AKT, promoting GLUT
translocation to the cell membrane, protein and glycogen synthesis, and adipogenesis. Severe burns are characterized by
lipolysis, determining an increased production of free fatty saturated acids (FFAs) and ceramides, which have an inhibitory
effect on the PI3K/AKT/mTOR signaling pathway, hence inducing insulin resistance. “ ” shows an inhibitory effect.

Fatty acid metabolism imbalance leads to increased intracellular levels of DAG, coen-
zyme A, fatty acyl coenzyme A, and ceramides, which further activate a serine/threonine
kinase cascade and generate Ser/Thr phosphorylation of IRS-1 and IRS-2, resulting in a
reduced ability of these molecules to activate PI3K [138,143]. DAG and ceramides activate
inflammatory messengers such as PKCδ and induce impairment of the insulin signaling
pathway by inhibition of IRS-1 Ser phosphorylation [138,144]. Increased levels of FFAs
phosphorylate Ser residues from IRS proteins, decrease IRS Tyr phosphorylation, leading
to impairment of downstream effectors [145]. Amino acids, mTOR, p70S6 kinase, hyper-
insulinemia, JNK, stress, hyperlipidemia, inflammation, TNFα, obesity, mitochondrial
dysfunction, hyperglycemia, and DAG cause IRS-1 Ser phosphorylation [106]. These molec-
ular perturbations lead to the reduction of AKT phosphorylation and glucose transport
into the cells [106,138,144].

Studies performed on insulin-resistant rodent models demonstrated Ser hyperphos-
phorylation of IRS-1 on Ser302, Ser307, Ser612, and Ser632 [106,146–151]. At the same time,
in vitro studies are in concordance with in vivo studies and confirm that Ser phosphoryla-
tion conduces to the dissociation between the insulin receptor/IRS-1 and/or IRS-1/PI3K,
preventing PI3K activation or increasing the degradation of IRS-1 [151–154]. Other factors
such as endoplasmic reticulum stress, OS, aging, and hypoxia induce insulin resistance as
well [155–158].
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3. Current Clinical Strategies in Managing Metabolism Status/Glucose Metabolism
after Severe Burns
3.1. Maintaining the Core Temperature of the Patient

The ambient temperature is important in the operating theater, during the surgical
debridement, and in the intensive care unit where the patient is lodged. Hypothermia
represents a stress and induces shivering in order to increase the body temperature. The
immediate consequence is abrupt augmentation of the basal metabolic rate (BMR) [159].
The heat loss is increased during the change of dressings and during surgical excision. In
order to prevent that, the ambient temperature must be higher for severely burned patients
than for other types of patients [160].

On the other hand, excessive warmness in the intensive care room determines an
increase of the core temperature of the patient, with subsequent increased perspiration and
dehydration.

In order to prevent the increase of the BMR and, at the same time, to prevent the excessive
water loss, it has been demonstrated to be optimal to maintain a core temperature of the
patient above 37.5 ◦C [159] by ensuring an ambient temperature between 29–32 ◦C [160].

3.2. Sedation and Pain Control

Sedation and pain control are needed during surgery, garments change, on ward, and
during physical therapy [161]. Uncontrolled pain of a burned patient represents an acute
and extremely unpleasant sensation which also generates unwanted consequences such
as persistent anxiety, posttraumatic stress, delayed wound healing, lack of compliance
of the patient with the treatment and physical therapy, as well as increased rest energy
expenditure [162].

For dressings change, ketamine is the preferred drug for intravenous analgesia and
sedation [163]. The day-by-day control of severe pain is obtained with opioids associated
with dexmedetomidine (a sedative drug) [161]. This association permits reduction of the
dose of opioids and prevents the phenomenon of tolerance [164].

In order to reduce anxiety, it is recommended to administer benzodiazepine on a daily
basis [165]. Meanwhile, for chronic pain treatment, synthetic opioids are favored, the best
results so far being obtained with methadone [161]. Neuropathic pain is controlled with
gabapentin [166].

3.3. Nutritional Support

There are two targets in the nutrition of severely burned patients, to provide enough
nutrients in order to satisfy the increased caloric and protein requirements and to prevent
the damage of the intestinal mucosa with subsequently augmented bacterial translocation
from the gut to the blood. The caloric requirements in severe burns are dramatically
increased [167] due to the hypermetabolic state [168]. The most accurate method to calculate
the caloric need of a patient is indirect calorimetry, which is very difficult to use on a daily
basis in burned patients [169]. This is why different formulas that approximate the caloric
requirements were introduced: Curreri, Benedict, Toronto, Galveston, etc., none of them
being perfect [168]. Prevention of the damage of the intestinal mucosa and bacterial
translocation is achieved through early enteral feeding [170] usually done initially through
jejunostomy and later through normal oral feeding.

In conclusion, the general principle of nutritional support in severe burns consists
in rapid conversion (as soon as digestive tolerance develops) from parenteral nutrition
to enteral nutrition [168] and low-fat (25%), high-carbohydrate (55%), and moderate-
protein diets (20–25%) [171–173]. The nutritional formula used must include supplements
with vitamins A, C, D, E, folic acid [174], and trace elements of zinc, copper, selenium,
manganese, and iron [175,176].
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3.4. Early Excision of Burn Wounds

The early and preferable total excision of burn wounds followed by coverage of the
defects (grafts, skin substitutes, flaps, etc.) [177–179] is the mainstay in the treatment of
burns [180].

Early excision and coverage of burn wounds reduce the systemic inflammatory re-
sponse, mitigate the development of the hypermetabolic state, reduce water, ion, and
protein loss, reduce the rate of septic complications and the hospitalization period, and
decrease mortality by at least 20% [177,180].

Total excision of burn wounds is limited by two factors: blood loss and hypother-
mia [159]. Blood is lost from the excised areas and from the donor areas. In order to reduce
massive blood loss, an alternative to total excision and skin grafting is represented by early
staged excision and skin grafting or excision and covering with skin substitutes [178,179].
The strategy of excision and coverage should be adapted to each and every patient accord-
ingly to the severity of the burn, associated morbidities, experience of the burn team, and
experience of the intensive care team.

3.5. Physical Exercise

Early and continued physical exercise is mandatory in patients with severe burns [181].
Physical exercise improves the cardiorespiratory function [182], contributes to restoring
of the lean body mass, and increases the function of skeletal muscles [183]. The physical
exercise should start during hospitalization and continue after the patient is discharged for
years [184].

The rehabilitative program is to be adapted to the specific needs of each burned patient
and must be performed under qualified supervision.

3.6. Psychological Support

Burn trauma and the entire process of treatment have a deep impact on the patients’
mental health. There is a demonstrated causative connection between burn injuries and
depression, anxiety, posttraumatic stress disorder, poor body image, sleep disorders, sub-
stance abuse, psychotic episodes, etc. [185].

This is why the victims of major burns and their families need qualified psychological
support [185].

4. Pharmacologic Modulation of Glucose Metabolism in Burns

There is in fact a pharmacologic modulation of the hypermetabolic status of severely
burned patients. Drugs represent a tool that improves the survival rates in severe burns,
especially when used together with other therapeutical measures enumerated above.

Many drugs have been used to modulate glucose metabolism in burns, but only few
proved to be efficient and are currently in use.

4.1. Insulin Therapy

The conventional (or submaximal) insulin therapy aims to decrease blood glucose
levels, not at fasting levels (euglycemia), but around 130–150 mg/dL [186], in order to
minimize the risk and frequency of hypoglycemic episodes [187]. It was proved that
conventional insulin therapy decreases proteolysis and dramatically increases skeletal
muscle protein synthesis (by about 400%) [188], preventing muscle mass loss in burns [187].

Intensive insulin therapy (IIT) aims to maintain blood glucose levels at fasting lev-
els, but has an increased frequency of hypoglycemic events and was proven to increase
mortality in non-burned ICU (intensive care unit) patients [189]. On the other hand, in
severely burned pediatric patients, IIT lowers the mortality [190]. Beside the beneficial
effects on the glycemia, insulin therapy increases the synthesis of fatty acids, decreases the
production of some proinflammatory cytokines [124], reduces the hepatomegaly, decreases
liver enzymes’ levels [124], and ameliorates the mitochondrial function [191].
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Thus, insulin therapy remains one of the pillars in controlling glucose metabolism al-
terations in burns [190], but needs appropriate monitoring of glycemia [192], hypoglycemia
being the main drawback in IIT in burns [188,192]. However, there are drugs that, when
administered together with insulin therapy, permit the usage of reduced doses of insulin
in burned patients. There are two favorable outcomes of such combinations of insulin
with other medicines: reducing the incidence of hypoglycemia during insulin therapy and
achieving euglycemia with lower insulin doses [193].

4.2. Fenofibrate

Fenofibrate is a lipolysis agonist that acts as a ligand for the peroxisome proliferator-
activated receptor-α (PPARα) which, when activated, determines the induction of genes
that encode enzymes of CYP4 (cytochrome P450 family) that are responsible for fatty
acids oxidation and other enzymes responsible for the hydroxylation of saturated and
unsaturated fatty acids [194]. The main effect is the reduction of serum triglycerides.
Meanwhile, fenofibrate also reduces insulin resistance [194,195]. Therefore, the association
of these two drugs permits the use of decreased insulin doses, thus diminishing the risk of
hypoglycemic episodes [193].

4.3. Glucagon-Like Peptide-1 (GLP-1) and Analogs

Endogenous GLP-1 is a gut hormone (derived from preproglucagon) that tunes the
secretion of insulin accordingly to the ingestion of carbohydrates [196]. It stimulates insulin
secretion, inhibits glucagon secretion and gastric motility (consequently delaying gastric
emptying), and decreases food intake, inflammation, and apoptosis [196].

It was proved that exenatide, a synthetic GLP-1 analog, decreases the need for doses
of exogenous insulin to control glycemia in burned children [197], while also having the
advantage of administration by subcutaneous injection once a week.

4.4. Metformin

Metformin is a biguanide hypoglycemic agent that limits the hepatic gluconeogenesis,
increases insulin sensitivity and peripheric glucose uptake (this action is considered ar-
guable by other authors), increases nonoxidative glucose metabolism and hepatic oxidation
of fatty acids, and reduces lipogenesis [198]. However, it appears to have little or no
effect on glucose levels in euglycemic patients. In addition, although metformin decreases
the gluconeogenesis, it does not reduce the protein breakdown in skeletal muscles, but
increases the rate of protein synthesis [199,200].

In burned patients, this drug is as effective as insulin in lowering the plasmatic glucose
levels and rarely causes hypoglycemia [201]. Meanwhile, it also has the advantage of oral
administration, being useful for long-term glucose control in severely burned patients [201].
Nevertheless, special attention is needed in burned patients with impaired renal function
as metformin may produce/precipitate lactic acidosis because its clearance from the blood
is partially related to the organic cation transporters’ (OCTs) activity: OCT1 is highly
expressed in liver, OCT2—in kidneys, OCT3—in muscles and adipocytes. OCTs mediate
the metformin’s concentration in tissues: in mitochondria, metformin inhibits oxidative
phosphorylation (inhibits complex I of the electron transport chain) [198,202] and increases
the glycolytic flux [203], leading to lactic acidosis [203,204].

4.5. Sitagliptin

Sitagliptin is a dipeptidyl peptidase IV (DPP-4) inhibitor. DPP-4 is a serine protease
that inactivates GLP-1 [196]. Inactivating DPP-4 results in the elevation of plasma levels
of active GLP-1, which leads to stimulation of insulin secretion and release after meals,
improved glucose tolerance, and reduced glucagon levels [196,205].

In burned patients, coadministration of sitagliptin and insulin results in decreased
exogenous insulin requirements by an average of 33.9% [206]. The consequence is a
better control of hyperglycemia and fewer episodes of hypoglycemia related to insulin
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administration. It also has the advantage of oral administration and reduced adverse
reactions. On the other hand, as it is excreted mainly through the kidneys, sitagliptin use
requires caution in patients with renal insufficiency.

4.6. Recombinant Human Growth Hormone (rhGH)

Recombinant human growth hormone (rhGH) has important anabolic effects in skele-
tal muscles and in the skin [207]. In pediatric burned patients, it blunts the hyperme-
tabolic response, improves the skeletal muscle protein kinetics, and increases the lean body
mass [208]. Moreover, it seems to have antiapoptotic effects [209]. The major peripheral
effector of rhGH is, just like for the natural growth hormone (GH), insulin-like growth
factor 1 (IGF-1) [200]. The most important drawback of the administration of rhGH in
burns is represented by hyperglycemia [210,211]. Indeed, in adult burned patients, rhGH
determines hyperglycemia and hypermetabolism, and in non-burned critically ill adult
patients, it increases morbidity and mortality by 40% [212].

4.7. Beta Blockers

Catecholamines are primary inducers of the hyperdynamic circulatory state and
hypercatabolic state in severely burned patients [13]. Administration of beta blockers (the
most studied being propranolol) in burns has proven beneficial effects: it decreases the
cardiac workload and reduces tachycardia [213], decreases the hypercatabolic state [214]
by decreasing the excessive thermogenesis and resting energy expenditure, reducing
peripheral lipolysis [214], reducing the fatty infiltration of the liver [215], reducing insulin
resistance and improving glucose metabolism [216], switching the skeletal muscle protein
metabolism from catabolism towards anabolism with a secondary increase of the lean
body mass [213], improving the mitochondrial function, and reducing the endoplasmic
reticulum burn-induced stress [216].

There are studies reporting that non-selective β-blockers (propranolol, atenolol) may
have adverse metabolic effects: blunting the perception of hypoglycemia in patients receiv-
ing insulin treatment (especially in type 1 diabetes mellitus, but not exclusively) [217,218],
increasing plasma triglycerides [218], amplifying insulin resistance [218,219].

On the other hand, β1-selective antagonists (celiprolol, carteolol, nebivolol, carvedilol,
bevantolol) do not blunt the perception of hypoglycemia [217,218] and improve the serum
lipid profile of dyslipidemic patients [218–220].

5. Conclusions and Future Directions

The alterations of glucose metabolism in burns involving more than 30–40% of the
TBSA together with other metabolic changes, cardiovascular alterations, and the systemic
inflammatory response represent a reaction to this extremely severe trauma. This global
reaction ensures the survival of the patient and might be considered, until a certain point, a
“physiological response” to trauma. However, the persistence of hypermetabolism, of the
inflammatory response, of hormonal alterations, and of the increased sympathetic activity
determine severe consequences for the patient, giving rise to severe complications and
finally death.

The characteristic persistent hyperglycemia triggers an increase in free fatty acids and
induces insulin resistance, which in turn accentuates hyperglycemia and contributes to the
augmentation of FFAs. The increased FFAs accentuate insulin resistance, too. Hence, a
pathologic positive feedback is established.

Beside the surgical treatment and the parenteral (and enteral) nutrition, the phar-
macological modulation using associations of insulin and fenofibrate plus β1-selective
antagonists or insulin and sitagliptin plus β1-selective antagonists represents a very ef-
fective tool for decreasing the hyperglycemia of burned patients. The pharmacological
modulation of glucose metabolism and of the systemic inflammatory response represents a
very rewarding field of research in order to prevent physiological exhaustion of the patient
and its unwanted consequences.
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blockers on insulin resistance in patients with diabetes mellitus type 2. Acta Med. Median. 2011, 50, 23–28. [CrossRef]
220. Toda, N. Vasodilating beta-adrenoceptor blockers as cardiovascular therapeutics. Pharmacol. Ther. 2003, 100, 215–234. [CrossRef]

http://doi.org/10.1016/j.burns.2014.10.010
http://doi.org/10.1097/SLA.0000000000001845
http://doi.org/10.1042/bj3480607
http://doi.org/10.1016/j.taap.2008.08.013
http://doi.org/10.1124/mol.63.4.844
http://doi.org/10.1007/s40265-016-0686-9
http://doi.org/10.1016/S0305-4179(00)00164-9
http://doi.org/10.1097/01.sla.0000219676.69331.fd
http://doi.org/10.3390/ijms160612753
http://doi.org/10.1097/00000658-199810000-00001
http://doi.org/10.1016/S0305-4179(98)00113-2
http://doi.org/10.1056/NEJM199909093411102
http://doi.org/10.1097/SLA.0b013e318265427e
http://www.ncbi.nlm.nih.gov/pubmed/22895351
http://doi.org/10.1097/MCO.0b013e3283428df1
http://www.ncbi.nlm.nih.gov/pubmed/21157309
http://doi.org/10.1097/00005373-200110000-00019
http://www.ncbi.nlm.nih.gov/pubmed/11586168
http://doi.org/10.2119/molmed.2011.00277
http://www.ncbi.nlm.nih.gov/pubmed/22396018
http://doi.org/10.2165/00002512-200320010-00002
http://www.ncbi.nlm.nih.gov/pubmed/12513113
http://doi.org/10.1185/03007990903533681
http://doi.org/10.5633/amm.2011.0404
http://doi.org/10.1016/j.pharmthera.2003.09.001

	Introduction 
	Glucose Metabolism in Burns 
	The Key Role of Proinflammatory Cytokines in Hypermetabolic Response 
	Tumor Necrosis Factor 
	Interleukin 1 (IL-1) 
	Interleukin 6 (IL-6) 

	Stress Crosstalk from Burns to Glucose Metabolism 
	Catecholamines 
	Cortisol 

	How Glucagon and Insulin Modulate Glucose Metabolism in Burns 
	Glucagon 
	Insulin 


	Current Clinical Strategies in Managing Metabolism Status/Glucose Metabolism after Severe Burns 
	Maintaining the Core Temperature of the Patient 
	Sedation and Pain Control 
	Nutritional Support 
	Early Excision of Burn Wounds 
	Physical Exercise 
	Psychological Support 

	Pharmacologic Modulation of Glucose Metabolism in Burns 
	Insulin Therapy 
	Fenofibrate 
	Glucagon-Like Peptide-1 (GLP-1) and Analogs 
	Metformin 
	Sitagliptin 
	Recombinant Human Growth Hormone (rhGH) 
	Beta Blockers 

	Conclusions and Future Directions 
	References

