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Objective. To investigate the expression of Yin-Yang-1 (YY1) in esophageal carcinoma (ESCA) and its effect on glutamine
metabolism in ESCA. Methods. The expression and roles of YY1 in ESCA were investigated using a series of bioinformatics
databases and tools. The expression of YY1 between ESCA tissues with the corresponding adjacent tissues was validated using
real-time PCR, western blot, and immunohistochemical staining method. Furthermore, the effects of YY1 on ESCC cell
proliferation and migration were examined. The correlation between the YY1 and glutamine metabolism was evaluated by
western blot. Results. YY1 gene was highly conserved in evolution and upregulated in ESCA tissues and ESCC cell lines
(ECA109 and TE-1). In addition, YY1 may affect the level of immune cell infiltration and promote tumor cell immune escape.
Functional enrichment analysis found that YY1 involved in many biological processes, such as cell division and glutathione
and glutamine metabolism. After siRNA knockdown of YY1 in ECA109 and TE-1, the proliferation and the migration of
ECA109 and TE-1 were suppressed. The glutamine consumption and glutamate production were significantly decreased. The
protein expression of alanine-, serine-, cysteine-preferring transporter 2 (ASCT2), glutaminase (GLS), and glutamate
dehydrogenase (GLUD1) was significantly downregulated. Conclusion. YY1 is highly expressed in ESCA and may promote
glutamine metabolism of ESCC cells, indicating it may be as a diagnostic biomarker for ESCA.

1. Introduction

Esophageal carcinoma (ESCA) is one of the most common
cancers in the world, ranking seventh in morbidity and sixth
in mortality among all cancers [1]. More than 500,000 peo-
ple die from ESCA each year, accounting for 5.3% of all
cancer-related deaths worldwide. In addition, it also shows
significant geographical differences. China has the highest
morbidity and mortality of ESCA in the world [2], while
North Sichuan is one of the areas with high incidence of
ESCA in China [3]. ESCA is mainly divided into two patho-

logical types: esophageal squamous cell carcinoma (ESCC)
and esophageal adenocarcinoma (EAC). At present, endos-
copy and surgery are often used in the early stage of ESCA,
while the treatment of advanced ESCA with radiotherapy,
neoadjuvant chemotherapy, and esophagectomy is done
according to the actual situation [4]. Many studies have
found that there are a variety of gene mutations in ESCA,
including TP53, NOTCH1, NOTCH2, and CCND1, which
may be used as a diagnostic biomarker for patients with
ESCA [5–7]. But these are no specific diagnostic indexes,
the early diagnosis rate of ESCA patients is low. Moreover,
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the middle and late ESCA are more invasive and easier to
relapse and metastasize distally [8]. These characteristics
make the follow-up treatment and prognosis of ESCA not
ideal. The 5-year survival rate of ESCA with local metastasis
and distant metastasis is 25.1% and 4.8%, respectively [9].
The incidence of ESCA is high in the world and increasing
year by year [10]. Therefore, the exposition of the carcino-
genic effect of ESCA and the identification of new biomark-
ers or therapeutic targets may be very useful for optimizing
the current treatment of ESCA.

Transcription factor Yin-Yang-1 (YY1) [11] is a multi-
functional zinc finger protein of the yin-yang family, which
has a highly conserved C2H2 zinc finger transcription factor
in all vertebrates. YY1 is widely expressed in human tissues
and participates in the regulation of a variety of molecular
mechanisms, including transcriptional regulation and epige-
netic modification [12]. YY1 can regulate the transcription
of gene expression and participates in embryonic develop-
ment, cell proliferation and differentiation [13]. Studies have
found that YY1 is highly expressed in many cancers, partici-
pates in the regulation of tumor proliferation and growth,
and plays a dual role in inhibiting or promoting tumor pro-
gression [12]. For example, YY1 inhibits tumor proliferation
in colon cancer and breast cancer [14] but promotes tumor
growth in melanoma, non-Hodgkin Lymphomas [15], and
prostate cancer [12]. The expression of YY1 is significantly
increased in colon cancer and subjected to O-GlcNAcylation
modifications, which increases the stability and transcriptional
activity of YY1, thus promoting tumor proliferation [16]. In
addition, YY1 regulates the upregulation of metabolite
transporter expression, which in turn promotes the survival
and proliferation of colon cancer cells [17]. The signal
pathways related to lung cancer progression can upregulate
the expression of YY1 in lung cancer, while the overexpres-
sion of YY1 can lead to cancer progression by positively
regulating the expression of many oncogenes [18]. YY1
has been shown to inhibit tumor suppressor and thus pro-
mote the proliferation of prostate cancer cells [19]. Recent
studies have shown that YY1 is also involved in tumor met-
abolic reediting. YY1 can regulate glucose uptake, pentose
phosphate pathway, and lipid metabolism of tumor cells
by regulating peroxisome proliferator-activated receptor
gamma coactivator-1 β (PGC-1β) [20], a key enzyme of
lipid metabolism, and glucose-6-phosphatedehydrogenase
(G6PD) [21], which regulates the key rate-limiting enzymes
of glucose metabolism, that leads to metabolic reprogram-
ming of tumor cells to promote tumor cell growth and
metabolism. During tumorigenesis, the change of glutamine
metabolism is also a characteristic of abnormal tumor
metabolism [22]. Glutamine metabolism can provide energy
and biological macromolecular materials to meet the needs
of rapid growth and proliferation of tumor cells and play
an important role in the maintenance of intracellular redox
homeostasis and intracellular signal transduction. As we
know, glutamine metabolism plays a regulatory role in the
occurrence and development of tumor [23]. Abnormal glu-
tamine metabolism mediated by oncogenes in tumor cells
has become a new way of energy supply after glucose and
fatty acid metabolism [24]. However, whether YY1 is

involved in the regulation of glutamine metabolism remains
to be further discussed.

The purpose of this study was to analyze the expression
and function of YY1 in ESCA and its relationship with clin-
icopathological parameters based on the TCGA database.
The possible molecular mechanism of YY1 in ESCA was dis-
cussed from the aspects of gene mutation, immune cell infil-
tration, and functional annotation analysis. Finally, the
effects of YY1 on cell proliferation and glutamine metabo-
lism of ESCC cell lines (ECA109 and TE-1) were analyzed,
and its potential molecular mechanism was discussed to pro-
vide a theoretical basis for ESCA to develop new clinical
therapeutic strategies.

2. Materials and Methods

2.1. Clinical Specimen. 31 cases of pathologically confirmed
ESCA tissues and matched paracancerous tissues were col-
lected from the Department of Cardiothoracic surgery of
the Affiliated Hospital of North Sichuan Medical College.
The study is in line with the Helsinki Declaration, approved
by the Medical Ethics Society of the Affiliated Hospital of
North Sichuan Medical College, and all sampled patients
have informed consent.

2.2. Expression and Clinicopathological Analysis of YY1.
TIMER (https://cistrome.shinyapps.io/timer/) [25] is a sys-
tematic database that uses microarrays to calculate gene
expression characteristics. In this study, the mRNA expres-
sions of YY1 in pancancer tissues with their corresponding
adjacent normal control samples were analyzed by the
TIMER database. UALCAN (http://ualcan.path.uab.edu)
[26] uses TCGA level 3 RNA-seq and clinical data from 33
cancer types. In this study, the mRNA expressions of YY1
of ESCA tissues and normal tissues were analyzed in the
TCGA-ESCA dataset. Meanwhile, the association between
the mRNA expression of YY1 in ESCA tissues with their
clinicopathologic parameters such as individual cancer
stages, patient’s race, nodal metastasis status, patient’s age,
TP53 mutation status, and tumor histology were analyzed
by the UALCAN database.

2.3. Diagnostic Analysis. The expression data and mRNA
expression profiles of ESCA patients were downloaded from
the TCGA database, including 11 samples of normal esoph-
ageal tissues and 162 ESCA tissues (Workflow type: HTSeq-
FPKM). The clinical characteristic data of patients with
ESCA from TCGA was also collected. The ROC curve
(receive operating characteristic curve) was plotted using
R. The cut-off value of the YY1 expression was determined
by the middle bit value.

2.4. cBioPortal Analysis. cBioPortal (https://www.cbioportal
.org/) [27] has multidimensional cancer genomics datasets.
The cBioPortal was used to explore, visualize, and analyze
genetic alterations analysis and survival analysis of YY1 in
the esophageal carcinoma (TCGA, Firehose legacy) dataset.
The genomic profiles were consisted of mutations and puta-
tive copy number alterations (CNA).
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2.5. Immune Infiltration Analysis. In this study, TIMER was
used to explore the correlation between the expression level
of YY1 and the abundance of immune cell infiltration and
evaluate the effect of YY1 gene somatic cell copy number
change (SCNAs) on immune cell infiltration. Furthermore,
GEPIA2 (http://gepia2.cancer-pku.cn/#index) [28] is an
interactive web that includes 9,736 tumors and 8,587 normal
samples from TCGA and the GTEx projects. We analyzed
the association of YY1 expression with gene biomarkers of
immune cell in ESCA tumor, ESCA normal, and GTEx via
GEPIA2. The association of YY1 expression with immune
subtype and ESCA-related chemokines was investigated
using TISIDB (http://cis.hku.hk/TISIDB/) [29].

2.6. YY1-Related Gene Enrichment Analysis. LinkedOmics
(http://www.linkedomics.org/) [30] is a web-based platform
for analyzing 32 TCGA cancer-associated multidimensional
datasets. The TCGA ESCA dataset was used to analyze the
YY1-related expression gene. The volcano plots and heat
maps were explored statistically using Spearman’s correla-
tion coefficient. Furthermore, the biological functions of
these genes were classified by DAVID analysis tool
(https://david.ncifcrf.gov/) [31]. The biological process
(BP), molecular function (MF), cellular component (CC),
and KEGG pathway were selected as analysis items.

2.7. Real-Time PCR. Total RNA was extracted from tissues
and cells using TRIzol (Ambion, Carlsbad, USA). Reverse
transcription was conducted with Transcriptor First-Stand
cDNA Synthesis Kit (Roche, Balser, USA), and cDNA was
collected. Fast SYBR Green Master mix (Takara, Tokyo,
Japan) was used to detect YY1 mRNA expression levels by
real-time PCR with LightCycler 96 system (Roche, Balser,
USA). The reaction conditions of PCR were predenatured
at 95°C for 10min, denatured at 95°C, 30 s at 60°C, 30 s at
72°C, and extended for 30 s. YY1 and β-actin primers (the
sequence is shown in Table S1) were provided by Sangon
Biotech (Shanghai, China). Each experiment was
performed in triplicate. Data are analyzed using the 2-ΔΔCt

method with the normalization to β-actin [20].

2.8. Western Blot. Total proteins were extracted from tissues
or cells using a precooled RIPA buffer containing protease
and phosphatase inhibitors (Beyotime, Shanghai, China).
The protein concentration was determined by BCA protein
concentration determination kit (Thermo Fisher, Massachu-
setts, USA). The same amount of protein samples was sepa-
rated with 10%SDS-PAGE (EpiZyme, Shanghai, China) and
then transferred to the PVDF membrane (Millipore, Biller-
ica, USA). After sealing with 5% skim milk in PBST for
1 h, the membrane and corresponding YY1 antibody (cata-
log number: ET1605-40, dilutions: 1 : 2000, HUABIO, Hang-
zhou, China) were incubated overnight at 4°C. After washing
by PBST, we put the PVDF membrane into the correspond-
ing species diluted secondary antibody (catalog number:
HA1025, dilutions: 1 : 5000, HUABIO, Hangzhou, China)
incubated at room temperature for 1 h. Western blotting
was detected by the imaging system (Vilber, Paris, France)
using the ECL chemiluminescence chromogenic solution

(Millipore, Billerica, USA). GAPDH were selected to be the
loading controls [21].

2.9. Immunohistochemical Staining. The expression of YY1
protein in ESCA tissues was detected strictly according to
the instructions of Zhongshan Jinqiao immunohistochemi-
cal kit (ZSJQ BIO, Beijing, China). The paraffin-embedded
tissue specimens were continuously sliced with a thickness
of about 4μm. The slices were dewaxed with xylene and
dewaxed with gradient ethanol. The slices were placed in
the repair box of citric acid antigen repair buffer and
repaired in the microwave oven. The 8min was boiled over
medium heat, and then, the ceasefire 8min was transferred
to medium and low heat for 7min. The 25min was incu-
bated with hydrogen peroxide solution of 3% hydrogen per-
oxide at room temperature and incubated with light. After
the serum sealed 30min, we add YY1 antibody (catalog
number: ET1605-40, dilutions: 1 : 100, HUABIO, Hangzhou,
China) overnight at 4°C. Then, PBS was washed for 3 times
and the corresponding species second antibody (catalog
number: SV0002, BOSTER, Wuhan, China) was added.
After incubating at room temperature for 50min, the chro-
mogenic agent, hematoxylin restaining, blue return, dehy-
dration, transparent, and neutral resin seal were used [32].

2.10. Transient Cell Transfection. Small interfering RNAs
(siRNA) directed against YY1 (siRNA-YY1-1 and siRNA-
YY1-2) and negative control RNAs (siRNA-NC) were syn-
thesized by Ribobio (Ribobio, Guangzhou, China). ESCC
cell lines (ECA109 and TE-1) in the logarithmic growth
phase were counted and inoculated in six-well plate with 5
× 105 cells per well. Transfection was carried out when the
cell density was 50%-60%. Cells were transfected with plas-
mids by Lipofectamine 2000 reagent (Invitrogen, Waltham,
MA) according to the manufacturer’s protocol. Cells were
harvested after 48 hours for immunoblot analysis and func-
tional study. The siRNA sequences were shown in Table S1
[19].

2.11. Cell Proliferation Assay. ECA109 and TE-1 cells in the
logarithmic phase were digested with trypsin to prepare
single-cell suspension, and the concentration was adjusted
to 5 × 104/mL. After 24h of culture, 100μL cell suspension
was inoculated into 96-well plate, negative control hole and
blank hole were set up at the same time, and 4 parallel
groups were set up, with 3 multiple holes and one blank hole
in each group, and continued culture for 0 h, 24 h, 48 h, and
72 h. A group of cells were taken out at each time point and
10μL CCK8 reagent was added to each hole. After incubat-
ing in the cell incubator for 2 h, the absorbance (A) at the
450 nm wavelength was measured [33].

2.12. Clone Formation. Five hundred cells in the logarithmic
growth phase were seeded in each well of a 6-well plate in
triplicate and cultured under normal conditions for 14 days.
After the cloning was completed, the cells were washed with
PBS for 3 times, fixed 30-60min with 1mL of 4% parafor-
maldehyde in each well, and then stained with 0.1% crystal
violet, and the colonies were counted by microscope [34].
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2.13. Wound Healing Assay.We use a sterile ruler and the tip
of the skin marker to draw a straight width line on the cell-
covered plate. The cells were washed with PBS and cultured
in serum-free medium. After 48 hours, we observe the width
of the line using a microscope. Three random views were
taken and quantified under the microscope [34].

2.14. Detection of Glutamine and Glutamate. ECA109 and
TE-1 cells in the logarithmic phase were inoculated into
six-well plates, respectively. Cells and culture supernatant
were collected for detection the next day. Cell lysates were
detected using a glutamine kit (Solarbio, Beijing, China).
The protein concentration was determined by the BCA
method, and the glutamine content of unit protein was
determined by the BCA method. Culture supernatant and
cell lysate were collected, and glutamate detection kit (Nan-
jing Jiacheng Institute of Biological Engineering, Nanjing,
China) was used for glutamate detection. The content of glu-
tamate was calculated using the measured value of cell-free
control medium as the initial concentration. These experi-
ments were repeated at least three times.

2.15. Statistical Analysis. SPSS19.0 statistical software and
GraphPad Prism 8.0 software (GraphPad, San Diego CA,
USA) were used for statistical analysis and image drawing.
The measurement data were expressed as mean ± standard
deviation (X ± S). T-test was used for pairwise comparison,
and analysis of variance was used for multigroup compari-
son. P < 0:05 was considered to indicate a statistically signif-
icant difference.

3. Results

3.1. Gene Expression and Clinical Diagnostic Efficacy of YY1.
Firstly, the expression of YY1 mRNA in 31 tumors was ana-
lyzed by TIMER. The results showed that the expression
level of YY1 was significantly increased in 14 tumors, includ-
ing ESCA, gastric cancer, and liver cancer (Figure 1(a)). Sec-
ondly, the mRNA expression levels of YY1 in ESCA and
adjacent normal tissues were statistically analyzed by online
analysis of UALCAN. The results showed that the expres-
sion level of YY1 in ESCA tissues was significantly higher
than that in normal tissues (P < 0:001) (Figure 1(b)). In
order to evaluate the diagnostic value of YY1, we used the
expression data of TCGA-ESCA to draw the receiver operat-
ing characteristic (ROC) curve to predict the survival rates of
ESCA patients. The results showed that the area under the
ROC curve of YY1 was 0.873 (Figures 1(c), P < 0:05). It
demonstrated that YY1 had good diagnostic efficacy for
ESCA patients.

3.2. Association of mRNA Expression of YY1 with
Clinicopathological Features of ESCA Patients. The relation-
ship between YY1 mRNA expression and clinicopathologi-
cal parameters in patients with ESCA was analyzed by
UALCAN, based on individual cancer stages, patient’s race,
nodal metastasis status, patient’s age, patient’s smoking
habits, TP53 mutation status, and tumor histology. As
shown in Figure 2, the expression level of YY1 mRNA in
ESCA patients was significantly higher than that in the nor-
mal control group (P < 0:05). mRNA expressions of YY1
were remarkably correlated with cancer stages. Compared
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Figure 1: The expression of YY1 in ESCA and its relationship with prognosis of ESCA patients. (a) Expression of YY1 in different tumors.
(b) Expression of YY1 in ESCA based on sample types. (c) The diagnostic value of YY1 in ESCA patients was demonstrated by ROC curve.
(d) The mRNA expression of YY1 in ESCC cell line and normal esophageal epithelial cell line. (e) The mRNA expression of YY1 in 31 pairs
of ESCC cancer tissues and matched adjacent tissues. (f) The protein expression of YY1 in ESCA cancer tissues and matched adjacent
tissues. (g) Representative IHC images of YY1 staining in ESCC tumor or adjacent tissues (scale bar, 100 μm; magnification, 100x and
200x). (h) IHC scores of YY1 in ESCA cancer tissues and matched adjacent tissues. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. ROC:
receiver operating characteristic; AUC: area under curve; A: adjacent tissue; T: tumor tissue.
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to normal tissues, the mRNA expression of YY1 was signif-
icantly higher in stage 1, stage 2, stage 3, and stage 4
(Figure 2(a)). In different races, the expression of YY1 in
ESCA tissues was higher than that in normal paracancerous
tissues (Figure 2(b)). Then, we analyzed the relationship
mRNA expression of YY1 with nodal metastasis status of
ESCA patients. As shown in Figure 3(c), mRNA expressions
of YY1 were significantly related to nodal metastasis status
compared with normal tissues. In addition, we also found
that the mRNA expression level of YY1 in ESCA tissues
was significantly higher than that in normal paracancerous
tissues in different ages, smoking habits, TP53 mutations,
and tumor histology (Figures 2(d)–2(g)).

3.3. Verification of YY1 Expression in ESCA. The expression
of YY1 in normal esophageal epithelial cells HET-1A and
ESCC cell lines ECA109 and TE-1 was detected by real-
time PCR. The results showed that the expression level of
YY1 in ESCC cell lines ECA109, TE-1, and KYSE150 was
significantly upregulated compared with HET-1A (P < 0:05)
(Figure 1(d)).

To further verify the mRNA expression of YY1 in ESCA,
the expression of YY1 in 31 pairs of ESCA tissues and adja-
cent tissues was detected by real-time PCR and immunohis-
tochemical staining. It was found that the expression levels
of YY1 mRNA (Figure 1(e)) and protein (Figures 1(g) and
1(h)) in ESCA tissues were significantly higher than those
in adjacent tissues. The protein expression of YY1 in 8 pairs
of ESCA cancer tissues and adjacent tissues was detected by
western blot. It was found that the expression level of YY1
protein in ESCA tissues was significantly higher than that
in paracancerous tissues (Figure 1(f)). Based on the above
results, we found that YY1 is abnormally high expression
in ESCA, suggesting that YY1 may play an important role
in the occurrence and development of ESCA.

3.4. YY1 Gene Alteration of ESCA. We used the cBioPortal
tool to determine the type and frequency of YY1 alteration
in ESCA based on the DNA sequencing data of ESCA
patients. We found that 10% of the ESCA cases had YY1
gene mutation (Figure 3(a)), of which 7.4% had mRNA
upregulation, 1.6% had missense mutation, 5% had deletion
mutation, and 0.5% had deep deletion mutation.

In addition, there was a significant correlation between
YY1 gene mutation and disease-free survival (DFS) in ESCA
patients (Figure 3(c)). The DFS of samples with YY1 gene
alterations was significantly lower than that of samples with-
out YY1 gene alterations (P < 0:05). However, there was no
significant correlation between YY1 gene mutation and
disease-specific survival (DSS), overall survival (OS), and
progress-free survival (PFS) in patients with ESCA
(Figures 3(d)–3(f), P < 0:05). The above results suggest that
the prognosis of ESCA patients with YY1 gene mutation
was worse.

3.5. YY1 and Immune Infiltration. In order to deepen the
understanding of YY1 and immune gene crosstalk, we
studied whether the expression level of YY1 was related to
immune infiltration in ESCA by TIMER. The results showed
that the expression of YY1 was significantly correlated
with tumor purity (P = 2:90E − 05) and neutrophil
(P = 1:27E − 02) in Figure 4(a). In order to further study
the correlation between YY1 expression and immune rec-
ognition cells, we analyzed the correlation between YY1
and immune markers through the GEPIA2 database. As
shown in Table 1, a variety of immune cells including T
cell (general), B cell, CD8+ T cell, T cell exhaustion,
Th17, Tfh, Th1, neutrophils, natural killer cell, Th2, and
Mast cells were detected. The results showed that the
expression of GATA3, STAT6, IL13, BCL6, and STAT3
were positively correlated with the expression of YY1 in
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Figure 2: Analysis results of expression of YY1 in ESCA subgroups. (a–g) Box plot shows the mRNA expression of YY1 in normal
individuals or in ESCA individual cancer stages, patient’s race, nodal metastasis status, patient’s age, patient’s smoking habits, TP53
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ESCA, while the expression of CD8A, CD8B, CD2, CD3E,
CD19, CD79A, KIR2DL1, KIR2DL4, CCR7, T-bet, STAT4,
IL17A, PD-1, CTLA4, TPSB2, TPSAB1, MS4A2, and HDC
were negatively correlated with the expression of YY1. At
the same time, Th17 markers (STAT3), natural killer cell
markers (KIR3DL1), and Th2 markers (STAT6 and
STAT5A) were positively correlated with the expression
of YY1 in normal tissues of patients with ESCA. The
CNV level of YY1 also affected the infiltration level of B
cells and CD4+ T cells in ESCA, and there was a signifi-
cant correlation between them (Figure 4(b), P < 0:05).
YY1 expression was significant associated with immune
subtypes. Figure S1 shows the association between YY1
and ESCA-related chemokines; YY1 was negatively
correlated with the ESCA-related chemokines including
CCL2, CCL5, CCL11, CCL14, CCL15, CCL17, CCL19,
CCL20, CCL22, CCL25, CCL28, CXCL1, CXCL2, CXCL3,
CXCL6, CXCL9, CXCL11, CXCL12, CXCL13, CXCL16,
and CXCL17 (P < 0:05). Moreover, YY1 was positively
correlated with the ESCA-related chemokines including
CCL7, CCL26, CXCL14, and XCL1 (Figure S1, P < 0:05).

3.6. YY1 Coexpression Networks in ESCA. In order to under-
stand the biological significance of YY1 in ESCA, we ana-
lyzed the genes related to YY1 in TCGA-ESCA data by
LinkedOmics. As shown by Figure 5(a), a total of 2075 genes
are represented by dark red dots, which indicate a significant
positive correlation with YY1 and green represents a nega-
tive correlation. A total description of the coexpressed genes
was detailed in Table S2. The first 50 significant gene sets
were displayed by heat map to determine the correlation
between these genes and YY1 (Figures 5(b) and 5(c)). The
results showed that YY1 had an extensive effect on

transcriptome. DAVID analysis showed that these genes
were mainly involved in 22 biological processes
(Figure 5(d)), such as glutathione metabolic process
(GO: 0006749), lipoprotein metabolic process (GO:
0042157), and glycerophospholipid biosynthetic process
(GO: 0046474). There were mainly located in 15 cellular
components (Figure 5(e)), such as mitochondrion (GO:
0005739), nucleoplasm (GO: 0005654), and intracellular
(GO: 0005622). There were mainly involved in the
regulation of 21 molecular functions (Figure 5(f)), such as
gamma-glutamyl transferase activity (GO: 0003840),
glutathione hydrolase activity (GO: 0036374), and cytidine
deaminase activity (GO: 0004126). KEGG pathway
enrichment analysis showed that these genes were mainly
enriched in nine pathways (Figure 5(g)), such as pathways
in cancer (hsa05200), glutathione metabolism (hsa00480),
and glycosphingolipid biosynthesis-globo series (hsa00603).
A total description of the functional enrichment analysis of
YY1-related genes was detailed in Table S3. The above
results suggest that YY1 plays an important role in the
glutamine metabolism.

3.7. YY1 Promotes the Proliferation and the Migration of
ECA109 and TE-1 Cells. In order to explore the effect of
YY1 on the proliferation and the migration of ESCC cell line,
we knocked down YY1 in ECA109 and TE-1 to detect its
effect on the proliferation of ESCC cell lines. After siRNA-
YY1-1 and siRNA-YY1-2 were transfected into ECA109
and TE-1, the results of western blot showed that YY1
protein in ECA109 and TE-1 cells decreased significantly,
indicating that YY1 knockdown was successful and could
be used in follow-up experiment (Figures 6(c) and 6(d)).
CCK8 assay and clone formation showed that cell
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Figure 3: Genetic alteration and prognosis of YY1 in ESCA (cBioPortal). (a) The oncoPrint of YY1 alterations in ESCA. (b) The mutation
sites of YY1 in ESCA. (c–f) Survival analyses of genetic alteration of YY1 in ESCA.
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proliferation was inhibited in the YY1 knockdown group
(Figures 6(a), 6(b), and 7(a)). Wound healing assay showed
that cell migration was inhibited in the YY1 knockdown
group (Figures 7(b) and 7(c)).

3.8. YY1 Participates in the Regulation of Glutamine
Metabolism. Through the previous functional analysis, we
found that YY1 may be involved in glutamine metabolism

process. So, we knocked down YY1 in ECA109 and TE-1
to detect its effect on glutamine metabolism. Downexpres-
sion of YY1 expression significantly decreased the amount
of glutamine uptake and glutamate production ECA109
and TE-1 (Figures 6(e)–6(h), P < 0:05). After siRNA knock-
down of YY1 in ECA109 and TE-1, the protein expression
levels of ASCT2, GLS, and GLUD1were significantly down-
regulated (Figures 6(c) and 6(d)). These results suggest that
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YY1 may promote the occurrence of glutamine metabolism
in ESCA cells and then participate in the tumorigenesis of
ESCA.

4. Discussion

The incidence of ESCA ranks third among malignant
tumors of digestive system and seventh among all common
cancers [1]. Because the onset of ESCA is hidden, the tumor
is usually diagnosed at an advanced stage. Despite the inten-
sive multimode therapy of surgery, radiotherapy, and che-
motherapy, the prognosis of advanced ESCA is still poor,

and its 5-year survival rate is low, which is due to its late
diagnosis and rapid metastasis [35]. Thus, it is of high
importance to identify more specific and sensitive biomark-
ers and understand the pathogenetic mechanisms of ESCA
and is very helpful for clinicians to choose suitable treat-
ments for ESCA patients. It is estimated that more than
7% of vertebrate genes contain YY1 binding sites, indicating
that YY1 has a wide range of regulatory effects on a number
of basic biological processes that includes cell cycle [36], cell
development [37], and cell proliferation [38]. In addition to
its regulatory role in normal biological processes, YY1 may
also have the potential to act as an initiator of tumorigenesis.

Table 1: The association of YY1 expression and immune markers in GEPIA2.

Description Gene markers
ESCA

Tumor Normal GTEX
R P R P R P

CD8+ T cell
CD8A -0.11 0.15 0.16 0.6 0.15 0.00019

CD8B -0.17 0.018 0.0096 0.98 0.15 9:80E − 05

T cell (general)
CD2 -0.2 0.0069 0.12 0.7 0.17 8:90E − 06
CD3E -0.24 0.0013 0.13 0.67 0.16 2:80E − 05

B cell
CD19 -0.14 0.053 0.092 0.77 0.088 0.024

CD79A -0.25 0.00051 -0.17 0.58 0.04 0.31

Natural killer cell

KIR2DL1 -0.057 0.44 0.51 0.075 -0.1 0.01

KIR2DL3 -0.049 0.51 0.28 0.35 -0.073 0.063

KIR2DL4 -0.065 0.38 -0.038 0.9 0.078 0.046

KIR3DL1 -0.083 0.27 0.57 0.043 -0.074 0.058

KIR3DL2 -0.0073 0.92 0.0028 0.99 0.023 0.55

KIR3DL3 -0.018 0.81 0.15 0.64 0.035 0.38

KIR2DS4 -0.033 0.66 0.19 0.53 -0.067 0.085

Neutrophils

CD66b 0.022 0.76 0.18 0.57 -0.069 0.076

CD11b 0.084 0.26 0.48 0.099 0.008 0.84

CCR7 -0.23 0.0019 0.21 0.49 0.091 0.02

Th1

T-bet -0.11 0.16 0.15 0.62 0.083 0.034

STAT4 -0.066 0.37 0.49 0.092 -0.12 0.0019

TNF-α(TNF) 0.13 0.07 0.25 0.4 0.058 0.14

Th2

GATA3 0.23 0.0015 0.0.53 0.064 −8:20E − 05 1

STAT6 0.13 0.075 0.65 0.016 0.4 0

STAT5A -0.011 0.88 0.84 0.00034 0.057 0.15

IL13 0.043 0.56 0.31 0.3 -0.12 0.0024

Tfh BCL6 0.36 4:70E − 07 0.55 0.052 0.19 8:30E − 07

Th17
STAT3 0.3 4:90E − 05 0.79 0.0012 0.32 0

IL17A -0.0084 0.91 0.26 0.39 0.11 0.0036

T cell exhaustion

PD-1 (PDCD1) -0.15 0.047 0.2 0.52 0.15 7:90E − 05
CTLA4 -0.027 0.72 0.21 0.49 0.13 0.00068

LAG3 -0.048 0.52 0.33 0.27 -0.07 0.074

TIM-3 0.032 0.67 0.52 0.07 0.013 0.74

Mast cells

TPSB2 -0.18 0.013 0.4 0.17 -0.12 0.0016

TPSAB1 -0.22 0.0034 0.44 0.14 -0.1 0.0077

CPA3 -0.085 0.25 0.49 0.091 -0.048 0.22

MS4A2 -0.051 0.49 0.29 0.34 -0.097 0.013

HDC -0.1 0.18 -0.32 0.29 -0.2 0.0019
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Figure 5: YY1 co-expression genes in ESCA (LinkedOmics). (a) The global YY1 highly correlated genes identified by spearman test in
TCGA-ESCA cohort. Red indicates positively correlated genes and green indicates negatively correlated genes. (b, c): Heat maps showing
top 50 genes positively and negatively correlated with YY1 in ESCA. (d) Top 22 GO terms according to biological processes. (e) The GO
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More and more evidence shows that YY1 transcription fac-
tor has become an important factor affecting the develop-
ment and progression of cancer. The activation or
inactivation of YY1 transcription factor will lead to uncon-
trolled expression of multiple gene sets, thus promoting can-
cer development, cell survival, and proliferation and
inducing tumor angiogenesis [39]. Moreover, it can be used
as a tumor marker for diagnosis and prognosis at the same
time [13]. However, there are relatively few studies on the
role of YY1 in the development of ESCA. Therefore, this
paper firstly analyzes the relationship between its expression
and pathological features, in the hope that it can be used as a
potential biomarker to promote the future evaluation of
treatment results of patients with ESCA. To the best of our
knowledge, our study was the first clarifying the systematic
analysis of YY1 genes in ESCA patients using multiple bioin-
formatics databases. The results showed that mRNA expres-
sion of YY1 in ESCA tissues was significantly higher than in
normal tissues. Furthermore, we investigated the association
between the clinicopathological data and the expression of
YY1 of ESCA patients. The mRNA expression of YY1 was
remarkably correlated with all clinicopathological parame-
ters in ESCA tissues.

To address the expression and function of YY1 in ESCA,
we further detected the expression of YY1 in ESCA tissue.
Because of the high morbidity rate of ESCC in China, we
selected ESCC cell lines (ECA109 and TE1) for further
study. As a tumor suppressor gene, the potential of YY1 as
a valuable biomarker for the development of cancer had
become increasingly known. So far, a great deal of evidence
shows that YY1 played a key role in regulating the prolifer-
ation and development of tumor cells. The expression of
YY1 was upregulated in many cancers, which might play a
regulatory role in the activation, progression, and/or mainte-
nance of malignant tumors in many tumor models and was

associated with poor prognosis [40], including breast cancer,
pancreatic cancer, prostate cancer [41], and colon cancer
[42]. YY1 could promote the cell proliferation of breast can-
cer cells by inhibiting the expression of a cell cycle inhibitor
[43]. YY1 could suppress the invasion and proliferation of
pancreatic cancer cells through MUC4/ErbB2/p38/mef2c-
MEF2C-dependent mechanism [44]. YY1 can also inhibit
the proliferation of pancreatic ductal adenocarcinoma cells
by downregulating the expression of its potential target
genes [45, 46]. YY1 directly banded to the target promoter
region of protooncogene c-Myc on laryngeal carcinoma cells
and inhibited its promoter activity to promote tumor cell
proliferation and migration [47]. The expression of YY1
was increased in endometrioid endometrial carcinoma
(EESCA). But the proliferation and migration of EESCA
cells in vitro and in vivo were significantly inhibited after
siRNA knockdown of YY1. And the overexpression of YY1
promoted the proliferation and growth of EESCA cells
[48]. These results indicated that YY1 played a universal reg-
ulatory role in many biological processes, including prolifer-
ation, metabolism, and development. In order to verify the
expression of YY1 in ESCA, we detected the expression of
YY1 in ESCA tissue and its normal paracancerous tissues,
ESCC cell lines, and esophageal normal epithelial cell line.
We found that the YY1 expression was upregulated in ESCA
tissue and ESCC cell lines. In addition, the proliferation and
the migration of ESCC cells were significantly inhibited after
YY1 knockdown, which indicated that YY1 could promote
the growth and proliferation of ESCC. These research find-
ings revealed YY1 played an oncogenic role in initiation
and progression of ESCC.

Various studies had also shown that YY1 could regulate
the expression of immune cells and participate in tumor cell
immune escape. Kosasih and Bonavida [49] had shown that
YY1 is a necessary transcription factor in the maturation and
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Figure 6: Silencing YY1 inhibited proliferation and glutamine metabolism of ECA109 and TE-1 cells. (a, b): Multiplication assays of
ECA109 and TE-1 cells after siRNA knockdown of YY1. NC: negative control. Data are shown as the mean ± SD of three independent
experiments. (c, d) The protein expressions of ASCT2, GLS, and GLUD1 in ECA109 and TE-1 cells after siRNA knockdown of YY1. (e,
f) Analysis of the concentration of glutamate in ECA109 cells and TE-1 cells after siRNA knockdown of YY1. (g, h) Analysis of the
consumption of glutamine in ECA109 cells and TE-1 cells after siRNA knockdown of YY1. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001; n = 3.
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proliferation of immune cell α β lineage. YY1 could regulate
the expression of Th2 and other immune cells during the
differentiation of T cell subsets. Because YY1 binding sites
often exist in the promoters of genes expressed in germinal
centers, YY1 was also one of the main genes regulating the
development of germinal center B cells [50]. Hays and Bona-
vida [51] found that there are several signal crosstalk path-
ways between YY1 and the expression regulation of
immune cells and regulate the drug resistance of tumor cells
to cellular immunotherapy through these pathways. In this
study, we found that YY1 is significantly related to the abun-
dance of immune cells and significantly related to immune
gene markers and chemokines. These findings strongly sug-
gest that YY1 plays an important role in the immune activity
of the tumor microenvironment.

In order to further explore the molecular function of
YY1 in ESCA, we analyzed the effects of YY1 gene on biolog-
ical process by the DAVID approach, and the results suggest
that glutamine metabolism may promote ESCC progression
by influencing pathways in cancer. Meanwhile, we demon-
strated that the amount of glutamine uptake and glutamate
production were significantly decreased in YY1-
downregulted ESCC cells. Glutamine metabolism was
another important way of energy metabolism in tumor cells
in addition to Warburg effect [52]. In addition to consuming
glucose and energy supply, tumor cells consumed and uti-
lized glutamine in large quantities, which provided a source
of macromolecular substances for maintaining cell biosyn-
thesis, energy metabolism, and cell homeostasis, thus driving
tumor growth and proliferation [53, 54]. ASCT2 can trans-
port extracellular glutamine into cells for biosynthesis [55]
or exported back out of the cell by antiporters in exchange
for other amino acids [56]. GLS could catalyze glutamine
to glutamate, which was the first metabolic enzyme of gluta-
mine and the key rate-limiting enzyme. Tumor cells

increased the metabolism of glutamine by adding GLS, thus
providing energy for the growth of tumor cells [57]. GLUD1
converted glutamate into alpha-ketoglutarate in mitochon-
dria, which provided energy for tricarboxylic acid cycle
and participates in glutamine metabolism [58]. Some studies
had shown that the degree of malignancy of the tumor is
positively correlated with the expression of glutamine
metabolism [59]. Furthermore, we found that ASCT2, GLS,
and GLUD1 showed a downward trend in the knockdown
of YY1 expression cells. This research shows that the down-
regulation of YY1 expression may mediate the regulation of
glutamine metabolism. These results indicated that YY1 may
mediate glutamine metabolism to regulate the development
of ESCA.

5. Conclusion

We found that the expression of YY1 was generally
increased in tumors and participated in a variety of biologi-
cal processes of ESCA. YY1 promoted the proliferation of
ESCC cells and might regulate glutamine metabolism
through ASCT2, GLS, and GLUD1, thus affecting the
growth of ESCC cells. Therefore, this suggested that the
YY1 transcription factor might be a diagnostic marker and
therapeutic target of ESCA.
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