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Abstract

Plain Language Summary

Background Hepatocellular carcinoma (HCC), a leading cause of cancer-related deaths
globally, poses significant challenges in early detection. Improved diagnostic accuracy can
drastically influence patient outcomes, emphasizing the need for innovative, non-invasive
biomarkers.

Methods: This study utilized a cohort of 402 participants, including healthy controls, chronic
hepatitis patients, and HCC patients from Bangladesh, to evaluate DNA methylation
signatures in peripheral blood mononuclear cells (PBMC). We performed targeted next-
generation sequencing on selected genes previously identified to assess their methylation
dynamics. The development of M8 and M4 scores was based on these dynamics, using
Receiver Operating Characteristic (ROC) analysis to determine their effectiveness in
detecting early-stage HCC alongside existing markers such as epiLiver and alpha-
fetoprotein (AFP).

Results: Integration of M8 and M4 scores with epiLiver and AFP significantly enhances
diagnostic sensitivity for early-stage HCC. The M4-+epiLiver score achieves a sensitivity of
79.4% in Stage A HCC, while combining M4 with AFP increases sensitivity to 88.2-95.7%
across all stages, indicating a superior diagnostic performance compared to each marker
used alone.

Conclusions: Our study confirms that combining gene methylation profiles with established
diagnostic markers substantially improves the sensitivity of detecting early-stage HCC. This
integrated diagnostic approach holds promise for advancing non-invasive cancer
diagnostics, potentially leading to earlier treatment interventions and improved survival
rates for high-risk patients.

Hepatocellular carcinoma (HCC) is the most common primary liver cancer
and a leading cause of cancer-related deaths worldwide, presenting sig-
nificant challenges in early detection'”. Traditional diagnostic methods,
such as ultrasonography, CT, and MR, often lack sensitivity for early-stage
HCC, while biopsies carry risks and discomfort*”. Alpha-fetoprotein (AFP),

stage HCC".

Liver cancer is one of the top causes of cancer
death worldwide, and finding it early is crucial
for successful treatment. This research
focuses on using a simple blood test to look
for specific DNA changes that signal the early
stages of liver cancer. We tested this method
on a diverse group of people from
Bangladesh, including those already at high
risk for liver cancer due to chronic liver
infections. By combining this new blood test
with other existing tests, we were able to
detect liver cancer more accurately and earlier
than by using traditional methods alone. This
approach could make it easier and less
invasive to find liver cancer early, offering a
better chance for effective treatment and a
hopeful prognosis for those at risk.

a commonly used serological marker, lacks satisfactory sensitivity in early-

Examining cancer-specific DNA methylation markers in Circulating
tumor DNA (ctDNA) is currently proposed as a preferred method for early
detection, but this method faces limitations such as low abundance and
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technical complexity, which hinders its effectiveness in early cancer
detection®"’. Highly sensitive techniques required to handle ctDNA add
technical complexity. ctDNA is usually fragmented, and the process of
bisulfite conversion for DNA methylation markers further complicates
analyses due to its harsh conditions, which can lead to DNA degradation'".
Recent advances suggest that enzymatic conversion might mitigate these
limitations by preserving the quality and quantity of c¢fDNA, offering a
promising alternative for methylation analysis'>". This underscores the
need for other robust and accessible diagnostic options. Peripheral blood
mononuclear cells (PBMCs) provide a stable and abundant source of DNA,
potentially carrying methylation signatures indicative of early-stage HCC.

Our recent research’ identified five DNA methylation biomarkers in
plasma cell-free DNA (plasma-cfDNA) that are highly sensitive and specific
for detecting HCC. While effective, these biomarkers demonstrate reduced
sensitivity at the early stages of the disease, particularly at a 100% specificity
threshold. The technical complexities associated with bisulfite conversion of
plasma-cfDNA further complicate their use, prompting us to explore more
feasible diagnostic alternatives. This includes combining plasma cfDNA
with PBMCs to enhance early detection.

HCC’s relationship with the immune system is well-documented, with
the disease known to induce identifiable changes in the host’s immune
system, supporting the use of PBMCs for diagnosis' . Unlike ctDNA,
PBMCs’ stable and ample DNA content simplifies the technical process of
developing and validating molecular markers for HCC detection and
staging.

In a previous study™, we analyzed the methylome of a diverse group of
participants, including healthy individuals and patients with chronic
hepatitis B, C, and various stages of HCC. This study identified distinct
changes in the DNA methylation patterns of PBMCs and T cells, effectively
differentiating early-stage HCC from controls and chronic hepatitis cases.
These methylation disparities became more pronounced with the pro-
gression of cancer. We successfully identified and validated several
methylation markers in PBMCs and T cells that are effective in detecting
early stages of HCC.

Among the genes scrutinized, STAPI and AHNAK emerged as pro-
mising candidates for further validation owing to their potential biomarker
properties. Their significance was later affirmed in two additional patient
cohorts from Beijing, thereby underlining the potential utility of these
methylation markers in early HCC detection™.

STAPI (Signal Transducing Adaptor Protein 1) and AHNAK (Neu-
roblast Differentiation-associated Protein) have been previously implicated
in various biological processes relevant to cancer’'. STAPI was reported to
recruit signaling pathway-related proteins involved in the B cell receptor
signal transduction pathways responsible for immune regulation, poten-
tially playing a role in tumorigenesis and immune responses”. AHNAK
functions as a tumor suppressor in breast cancer by inhibiting cell growth via
potentiation of the TGFp (Transforming Growth Factor Beta) signaling
pathway, which regulates cell growth, differentiation, and immune
response” and also lung tumor development™.

Building on these preliminary findings, we expanded our investigation
to encompass a more extensive panel of genes. This selection was informed
by their significance and stage-dependency, as evidenced in our previous
study, which showed promise in further preliminary analyses. This panel
includes NBPF3 (Neuroblastoma Breakpoint Family, member 3). Although
direct connections between NBPF3 and cancer have not been conclusively
established, other members of the NBPF gene family have been implicated in
oncogenesis, suggesting a potential, yet unconfirmed, role for NBPF3 in
cancer development™,

GLRX2 (Glutaredoxin 2) plays a central role in mitochondrial redox
regulation”. It is involved in response to oxidative stress and redox signaling
in mitochondria®™. GLRX2 functions as a glutathione-dependent oxidor-
eductase that is activated by oxidative stress”’. GLRX2 facilitates the main-
tenance of mitochondrial redox homeostasis, protects cells from oxidative
damage, and inhibits mitochondrially mediated apoptosis®. While GLRX2’s
primary role is in redox homeostasis, it might indirectly influence immune

responses due to its antioxidative function. Its potential involvement in
cancer stems from the redox balance’s significance in DNA protection and
tumor cell survival. Among the genes included in our panel for
further investigation are RNMTLIP1 (RNA Methyltransferase Like 1
Pseudogene 1), VMPI (Vacuole Membrane Protein 1) and MAPILC3B2
(Microtubule Associated Protein 1 Light Chain 3 Beta 2). We also study
cg0943517, located in an open sea region, far from any known genes.

This validation study embarks on a meticulous evaluation of an
expanded 8-gene methylation marker panel in a well-characterized, inde-
pendent cohort of 402 subjects spanning the spectrum of CHB and HCC
(stage 0/A to D). By employing bisulfite next-generation sequencing for in-
depth analyses, we aim to examine the clinical utility of these markers in
HCC early detection and staging. This pivotal step seeks to facilitate timely
therapeutic interventions and enhance patient prognoses through a more
comprehensive understanding of methylation markers.

Although early detection of cancer could save lives, it is not generally
employed as a public health measure since currently approved tests have a
high rate of false positives and false negatives. Motivated by the aspiration to
ease the diagnostic journey for HCC patients, often burdened by invasive
procedures, we deliberately opt for a non-invasive blood-based assay. By
leveraging the methylation signature in PBMCs, this study endeavors to
introduce a novel, minimally invasive avenue for HCC detection and
monitoring. The ensuing analysis aims to inch closer to a clinically viable,
blood-based methylation assay for HCC, positioned to significantly aug-
ment current diagnostic and monitoring paradigms. Of particular interest is
discovering a test that has a very high NPV and high sensitivity for early
stages, which is currently unavailable.

In summary, the current study demonstrates that combining the
M4 score (cumulative score based on the methylation levels of four genes:
MAPILC3B2, NBPE3, RNMTLIP1, and STAP1) with existing diagnostic
tools such as AFP significantly enhances diagnostic sensitivity for early-
stage HCC. Specifically, M4 + AFP achieves a sensitivity of 88.2% in Stage A
and up to 95.7% across all stages. These results underscore the potential of
integrating PBMC methylation markers with current serological and
plasma-based markers to provide a more comprehensive and effective
diagnostic approach for early-stage HCC.

Methods

Clinical study design

This observational study registered under ClinicalTrials.gov ID:
NCT03483922, builds upon our prior work, as detailed in reference (11),
employing the same cohort of 402 participants from the Dhaka area. These
included 49 healthy controls, 51 patients with Chronic Hepatitis B, and 302
patients diagnosed with HCC across stages 0 to D (HCC 0 n=2, HCC A
n =32, HCC B n =286, HCC C n =106, HCC D n = 76). Participants were
compensated, and the study protocol was approved by the Institutional
Review Board (IRB) of ICDDR,B under protocol number PR-18025. This
approval covered both the current study, and the previous study described in
our previously published paper’. All relevant ethical regulations were fol-
lowed, and informed consent was obtained from all participants before their
inclusion in the study.

The exclusion criteria for the study were as follows: unwillingness or
inability to provide informed consent, unwillingness or inability to comply
with the protocol requirements, participation in a different clinical trial
investigating a vaccine, drug, medical device, or medicinal procedure less
than four weeks preceding the current study, planned participation in
another clinical trial during the present study period, known cases of cir-
rhosis, any other known inflammatory diseases (bacterial or viral infection
with the exception of hepatitis B or C), known cases of diabetes, asthma,
autoimmune disease, any other diagnosed cancer, and for healthy controls,
any known inflammatory or infectious diseases including Hepatitis B and
Hepatitis C, any diagnosis of chronic disease, cancer medication use or
drugs of abuse. Furthermore, blood samples from non-HCC patients were
similarly derived at ICDDR,B with exclusion criteria being the diagnosis of
any liver disease, diagnosis of HCC or liver metastasis of other cancers.
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17246.3 + 44977.5
11968.4 + 31972.1
29499.9 + 67562.3

0.13
0.05

0.52
0.54
0.66

0.047
0.0047
0.042

0.069
0.037

0.99
0.99

0.99
Significant difference from the control group was tested by Kruskal-Wallis non-parametric one-way ANOVA and was adjusted by Dunn’s multiple comparisons test. The two HCC (Hepatocellular Carcinoma) stage 0 samples were included for statistics in the HCC A group.

(NA

72/14
85/21
64/12

<0.0003
<0.0004
<0.0005

86 49.12

HCCB

100

49.34
52.45

106

76

HCCC
HCC D

0.001

0.064

Not Available). AFP (Alpha-Fetoprotein) values are given in ng/mL.

For comprehensive demographic details of the participants and other
information regarding this clinical study, refer to Table 1°.

Participants provided informed consent for DNA methylation bio-
marker research. Blood sample collection and PBMC isolation were con-
ducted at ICDDR,B in Dhaka, Bangladesh, before being shipped to HKG
Epitherapeutics for further analysis. The lab team at HKG Epitherapeutics
was blinded to the identity of the samples throughout the analytic proce-
dures. Subsequently, data analysis was carried out in Montreal and shared
with ICDDR,B, who relayed the results to the respective clinical personnel.

Methodological approach for sample allocation for training and
validation cohorts

We randomly allocated 402 samples into training and validation cohorts, as
detailed in Supplementary Data 1 and 2, using a “stratified random sam-
pling” method™®” (https://doi.org/10.5281/zenodo.10359896) using a
70:30 split ratio. The training cohort included 34 controls, 74 Stage C, and 53
Stage D patients (Supplementary Data 1), while the validation cohort
comprised 15 controls, 51 CHB patients, and HCC patients across stages A
(34), B (86), C (32), and D (23) (Supplementary Data 2).

To ensure that our methylation markers specifically identify HCC and
are not confounded by CHB, we validated the specificity of the markers on
“naive” samples of CHB. This approach that validated our markers on a
completely naive CHB cohort gives us higher confidence that the selected
markers are HCC-specific markers and that they differentiate HCC from
CHB. In addition, we assume that a certain fraction of the CHB patients
might have converted to early HCC and were not yet clinically diagnosed. By
including them in the training session, we might have confounded the
“control” sample.

Additionally, we focused only on the later stages of cancer in the
training set and included early stages (A and B) only in the validation set.
Again, early stages samples were “naive” to the markers trained on late-stage
cancers, increasing our confidence in the robustness of the markers for early
stages of cancer. The inclusion of early-stage cases (34) only in the validation
cohort tests whether a model developed on later-stage data applies to early-
stage disease. This approach ensures that the markers are effective across all
stages of HCC, which is vital for early detection, where timely interventions
can dramatically impact patient outcomes.

Data imputation

The empty values within the dataset were addressed through imputation,
where the method of filling missing values was selected based on the nature
of the data for each variable. For variables with a normal distribution or
believed to have data missing at random, mean imputation was utilized. In
cases of skewed data, median imputation was employed as a more robust
measure of central tendency. For categorical variables, mode imputation
was adopted to represent the most frequent category. Each imputation
method was chosen with consideration to preserve the integrity of the data
to the extent possible while preparing a comprehensive dataset for analysis.

Blood Collection, PBMC Separation, and DNA Extraction

Blood was collected in 9-ml tubes containing K3-EDTA and processed
within one hour. Plasma and peripheral blood monocyte separation was
performed according to GE Healthcare Cat No 71-7167-00 protocol. The
PBMCs were frozen at —80 °C for a maximum of 5 months before being
shipped on dry ice to the lab. Upon arrival at the lab, the cells were thawed,
and DNA was extracted by the previously described guanidine iso-
thiocyanate method™, followed by binding to silica magnetic beads, washing
with 80% ethanol and elution with water.

Targeted bisulfite sequencing and methylation analysis

Bisulfite conversion was conducted utilizing the EZ-96 DNA Methylation
MagPrep kit (D5041, Zymo Research, Irvine, CA, USA), which was followed
by two sequential rounds of polymerase chain reaction. For the inaugural
round, we employed primers incorporating an anchoring sequence along
with sequences targeting a specified region encompassing the following
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genes and their corresponding CGs: GLRX2 (cg09182724), STAPI
(cg04398282), AHNAKI (cgl4171514), cg09435170, VMPI (cg02782634),
NBPF3  (cgl4018420), RNMTLIPI (cg08365438), MAPILC3B2
(cg22164177). The amplification was executed using the Bio-Rad C1000
Touch Thermal Cycler (Bio-Rad Laboratories, CA, USA). The primers
utilized for this procedure are available upon request. A 5 pL aliquot of the
initial PCR amplification product was subjected to a secondary round of
PCR amplification employing primers imbued with indexes for sample
barcoding (primer sequences available upon request). Following amplifi-
cation, PCR products were combined into a pooled library, which was
subsequently purified on two occasions utilizing AMPure XP Beads
(Beckman Coulter Life Sciences, CA, USA). Quantitative assessment of the
purified library was performed via Real-Time PCR employing the NEB-
Next® Library Quant Kit for Illumina (New England Biolabs, MA, USA).
Barcoded libraries, encompassing all samples, were sequenced on the Illu-
mina platform utilizing the MiSeq Reagent Nano Kit V2 and a 250x2
paired-end sequencing protocol (Illumina, CA, USA).

For our targeted bisulfite sequencing experiments, we utilized Trim-
galore (parameters: trim_galore —illumina —paired --fastqc) (https://zenodo.
org/record/5127899#.Y7RxfOzM]qs) to trim sequencing adapters and low-
quality data from the raw, paired-end reads and obtain clean data for sub-
sequent analysis. We then aligned the clean data to eight reference genomes
GLRX2 (cg09182724), STAPI (cg04398282), AHNAKI (cgl4171514),
cg09435170, VMPI1 (cg02782634), NBPF3 (cgl14018420), RNMTL1P1
(cg08365438), MAP1LC3B2 (cg22164177) using Bismark™ To mitigate the
impact of PCR amplification biases and sequencing errors and to ensure a
more accurate representation of the methylation status across the targeted
genomic regions, deduplication was performed. This process was carried
out using a custom script, which iterates through each pair of reads, iden-
tifies, and removes duplicates based on their UMIs (Unique Molecular
Identifiers) and alignment positions. The full script is accessible on Zenodo
https://doi.org/10.5281/zenodo.10002131%,

Using Bismark methylation extractor (bismark methylation_ex-
tractor --p --bedGraph --counts --scaffolds --no_overlap), we calculated the
methylation level at each CpG site by extracting methylation information
from the aligned reads.

epiLiver Test Description

The epilLiver test utilizes plasma samples to analyze DNA methylation
markers for the early detection of HCC, as described earlier’. This test
examines specific CpG sites associated with key genes, including CHFR,
VASH2, CCNJ, GRID2IP, and F12, using targeted bisulfite next-generation
sequencing. It generates two primary scores: HCC-detect which includes
DNA genes CHFR, VASH2, CCNJ, GRID2IP genes, designed for maximum
sensitivity in identifying HCC, and HCC-spec, which focuses on the F12
gene and is optimized for high specificity by differentiating HCC from other
liver conditions. This high-throughput assay ensures high specificity and
sensitivity in detecting HCC among the study cohort.

Methodological Approach for Integrating Plasma-Based AFP
and epiLiver Scores with PBMC-Derived M4 and M8 Markers in
HCC Detection

In our investigation, detailed in ref. 9, we assessed the utility of Alpha-
Fetoprotein (AFP) levels in plasma as a predictor for HCC. The AFP
measurements, as detailed in our earlier work, were conducted using
Chemiluminescence Immunoassay. Among our cohort of 302 HCC
patients, AFP data were available for 282 individuals, while 20 cases did
not have this information (details provided in Table 1 of Cheishvili
et al. ’). Additionally, we included AFP levels from 22 Chronic Hepa-
titis B (CHB) patients and one healthy individual for comparative
analysis.

We adhered to the AFP threshold of 400 ng/mL, a standard in HCC
diagnostics. This threshold is informed by a substantial body of literature,
including a comprehensive review that sifted through 29,828 articles,
ultimately including 59 studies and one review covering 11,731

confirmed HCC patients and 21,972 controls”. In our methodology, a
sample was deemed indicative of HCC when AFP levels exceeded this
400 ng/mL threshold.

Additionally, we integrated the analysis with the M4, M8, and epiLiver
scores. The M4 and M8 scores are composite metrics derived from the
methylation levels of specific genes to predict the presence of HCC. M8
Score includes eight genes: AHNAKI, GLRX2, MAPILC3B2, NBPF3,
RNMTLIPI1, STAP1, VMPI, and ¢g09435170. Each gene’s methylation level
is multiplied by a regression coefficient, and the products are summed to
generate the M8 score. This score is designed to effectively discriminate
between control and HCC cases. M4 score is a simplified version, incor-
porating only four genes from the M8 set: MAPILC3B2, NBPEF3,
RNMTLI1P1, and STAP1. Similar to the M8 score, the methylation levels of
these four genes are weighted by their respective regression coefficients and
summed to create the M4 score. Both scores were developed and validated
using Receiver Operating Characteristic (ROC) analysis to determine their
effectiveness in detecting early-stage HCC.

epiLiver score, based on the combined probability of “HCC-detect”
and “HCC-spec’,” were assessed against a threshold of 1.955, associated with
100% specificity. This integration enabled a comprehensive comparison of
the predictive efficacies of M4, M8, epiLiver, and AFP within the same
cohort and control group while accounting for instances of missing
AFP data.

Furthermore, we investigated a combined diagnostic approach. In this
methodology, a sample was identified as HCC-positive if either the AFP
level surpassed 400 ng/mL or if the prediction based on the epiLiver, M4, or
M8 scores indicated HCC. This approach, seeking to enhance the accuracy
of HCC detection, effectively leverages the strengths of both biochemical
(AFP) and molecular (epiLiver, M4, M8) markers.

Statistics and reproducibility

Power analysis and sample size determination. In our prior work™,
we identified specific CGs that accurately distinguished early HCC stages
from chronic hepatitis B and C, as well as from healthy controls. Power
calculations were carried out to determine the minimal sample size
necessary for a follow-up clinical trial, targeting a power of 0.8. The
analyses showed the requisite sample sizes for detecting the given delta
methylation between non-cancerous (Controls, CHB, CHC) and all four
HCC stages: 4 for GLRX2 (cg09182724) (delta —0.12598485), 9 for
STAP1 (cg04398282) (delta 0.100254597), 9 for AHNAK (cg14171514)
(delta —0.104702096), 7 for cg09435170 (delta —0.111705118), 1 for
VMP1 (cg02782634) (delta —0.128756528), 3 for NBPF3 (cg14018420)
(delta  0.09283704), 4 for RNMTLIP1 (cg08365438) (delta
—0.054604218), and 4 for MAPILC3B2 (cg22164177) (delta
—0.130729187). The power analyses delineated the requisite sample sizes
to detect the given delta methylation between non-cancerous (Controls,
CHB, CHC) and all four HCC stages for each CG. The cohort used in our
validation study, which consisted of 49 controls, 51 CHB, 34 HCC-0/
HCC_A, 86 HCC_B, 106 HCC_C, and 76 HCC_D subjects, significantly
exceeds the calculated sample sizes, thus providing robust validation for
our study findings.

Cross-validation approach for model evaluation in cancer predic-
tion. Cross-validation was executed using the “tidyverse” and “caret” R
packages, following to the same analytical framework as outlined in our
previous publication™ (https://doi.org/10.5281/zenodo.7823332).

The process involved a validation set approach, where the dataset was
randomly divided into training and validation subsets. For this study, the
data comprised 49 healthy controls, 51 CHB (chronic hepatitis B) patients,
and 302 cancer individuals categorized across stages A to D. The cross-
validation procedure was performed three times, each with a unique seed
(123, 234, and 586), ensuring the training data encompassed 50% of the
entire dataset in each instance. This approach allowed for the computation
of model performance metrics, including R-squared (R2), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE), as detailed in the
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Table 2 | Performance metrics of selected genes across different disease stages in the validation cohort

Gene AHNAK NBPF3 RNMTL1P1 VMP1 GLRX2 MAP1LC3B2 STAP1 cg09435170
Training Cohort 97.06% 100% 100% 100% 97.06% 100% 100% 100%
Specificity

ROC Threshold <0.1529 >0.004211 <0.9621 <0.2005 <0.9397 <0.9628 >0.5461 <0.3449

Ctrl 100.00% 93.33% 86.67% 86.67% 100.00% 100.00% 100.00% 86.67%
CHB 9.80% 3.92% 7.84% 13.73% 0.00% 1.96% 9.80% 5.88%
HCC_0/A 8.82% 55.88% 61.76% 8.82% 2.94% 5.88% 17.65% 8.82%
HCC_B 8.14% 56.98% 68.60% 10.47% 0.00% 1.16% 29.07% 4.65%
HCC_C 9.38% 68.75% 59.38% 9.38% 0.00% 9.38% 15.63% 3.13%
HCC_D 0.00% 60.87% 78.26% 13.04% 0.00% 4.35% 26.09% 0.00%

The ‘Training Cohort Specificity’ values were instrumental in determining the ‘ROC (Receiver Operating Characteristic) Thresholds.’ These cut-offs, derived from the training cohort data (Supplementary

Data 1), were subsequently applied to the validation cohort.

results section. Leveraging the models derived from these three distinct
training datasets, we evaluated the precision with which the model could
predict cancer in the remaining validation dataset, a comparative analysis of
which is presented in Supplementary Fig. 1.

All statistical analyses were conducted using R software (version 4.3.2),
Prism (GraphPad Software, version 10.3.1) and Python (version 3.11.5).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

Comparative analysis of gene-specific methylation profiles
across HCC stages

After dividing the dataset into training and validation cohorts as described
in the Methods, we conducted a Receiver Operating Characteristic (ROC)
analysis on the median methylation levels of each gene within the training
cohort. This analysis compared controls with combined Stages C and D to
determine each gene’s discriminative capability. We established stringent
thresholds for each gene, at specificities ranging from 97.06% to 100%, as
detailed in Table 2. These thresholds were then applied in the validation
cohort to assess the markers’ performance across various HCC stages and
control groups.

In this validation study, conducted with a cohort from Bangladesh, we
employed targeted next-generation sequencing (NGS) to analyze the
median methylation levels of specific genes, thereby extending our com-
parison to a very different ethnic population from our prior study on a
Chinese cohort™. Our analysis focused on genes AHNAK (cgl4171514),
STAPI (cg04398282), NBPF3 (cgl14018420), RNMTLIP1 (cg08365438),
VMP1 (cg02782634), GLRX2 (cg09182724), MAPI1LC3B2 (cg22164177),
as well as the non-gene-specific cg09435170. These genes were selected
based on their demonstrated performance as classifiers of HCC in our
previous study™. This strategy enabled not only the validation of the clinical
significance of these markers but also determining their performance across
different ethnic groups.

The amplification strategy expanded our analysis beyond the specific
CG sites previously identified using the Illumina 450 K array™’. We assessed
the median methylation levels for each gene’s respective amplicons
(Fig. 1A). As described in our previous findings™’, STAP1 was highly sig-
nificant. Additionally, a subset of genes including RNMTLIP1, GLRX2,
NBPF3, and MAP1LC3B2, showed significant differences across all stages
compared to the control group with p-values less than 0.0001, as depicted in
Fig. 1A. VMP1 showed significant differences in all stages except for Stage A.
Conversely, cg09435170 displayed no significant differences between the
stages and the control group, except for Stage A where it was significant.
AHNAK was significantly different when comparing Stage A to the control

group (p=0.0041) and showed borderline significance in Stage B
(p=0.1069).

In the validation cohort, each gene’s performance varied across dif-
ferent stages of HCC and control groups. Notably, NBPF3 showed the
highest sensitivity across all HCC stages, with sensitivity values of 55.88% in
HCC-A, 56.98% in HCC-B, 68.75% in HCC-C, and 60.87% in HCC-D. This
was coupled with high specificity in CHB (96.08%) and control
groups (93.33%).

RNMTLIP1 also displayed notable sensitivity, especially in the early
stages, with values of 61.76% in HCC-A and 68.60% in HCC-B. However, its
specificity was slightly lower than NBPF3.

STAP1, maintaining 100% specificity in the validation cohort, showed
varying sensitivity across HCC stages, with 17.65% in HCC-A, 29.07% in
HCC-B, 15.63% in HCC-C, and 26.09% in HCC-D.

Conversely, AHNAK and GLRX exhibited lower sensitivity across
HCC stages. AHNAK's sensitivity in the early stages A and B was 8.82% and
8.14%, respectively, while GLRX showed minimal sensitivity across all HCC
stages, peaking at 2.94% in HCC-A. Nonetheless, both genes maintained
high specificity.

The remaining genes, VMP, MAP1LC3B2, and cg09435170, showed
mixed results. Their specificity and sensitivity varied across different HCC
stages. For a detailed breakdown of each gene’s performance metrics across
different stages and control groups, please refer to Table 2. This gene-specific
analysis implied that the sensitivity of a single gene is insufficient, and a
combinatory model ought to be developed.

Sequential refinement of gene scores for enhanced discrimina-

tion of HCC stages

Our approach to developing a robust metric for early detection and staging
of HCC began with including all eight genes. We performed multilinear
regression analysis on the training cohort (refer to Supplementary Data 1),
employing a binary classification system: controls were labeled as zero, and
all cancer stages as one. This analysis led to the development of a combined
score, the M8-score, as detailed in Supplementary Data 3 (Summary output
of 8 genes). The M8-score, calculated by aggregating the products of each
gene’s median methylation level and its corresponding regression coeffi-
cient, effectively discriminated between control and cancer stages in the
validation cohort. In this model, each coefficient reflects the importance of
individual genes in distinguishing between different disease states.

Initial analysis using the Kruskal-Wallis test assessed the overall sig-
nificant differences between methylation scores of the control and various
disease stages (CHB, Stage A to D) in the validation cohort. Subsequently,
Dunn’s multiple comparisons test was employed as a post-hoc analysis to
pinpoint significant specific pairwise differences among the groups, as
illustrated in Fig. 2A, B and detailed in Supplementary Data 2. This analysis
revealed no significant difference between the control group and CHB
(p>0.9999). However, the differences between the control group and the
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Fig. 1 | These scatter plots display the median methylation levels for the genes
AHNAKI, NBPF3, RNMTLIP1, VMP1, GLRX2 and MAP1LC3B2. For genes
represented by a single CG site (STAPI and cg0943517), methylation levels of that
specific site were analyzed. Each data point represents an individual sample’s
methylation value. Statistical comparisons were made using a nonparametric

ANOVA (Kruskal-Wallis test) followed by Dunn’s multiple comparison test.
Comparisons were made between the control groups (n = 49) and each disease stage:
CHB (Chronic Hepatitis B) (n=51), Stage A (n = 34), Stage B (n = 86), Stage C
(n=106), and Stage D (n = 76) for each gene. P-values indicating significant dif-
ferences are noted accordingly. Source data are provided as a Source Data file.

cancer stages (Stages A to D) were significant, with increasing levels of
significance correlating with the progression of the cancer stage (p-values
from 0.0012 to <0.0001). These results emphasize the potential of our
identified methylation markers in differentiating early and advanced stages
of HCC from the control group and CHB.

After establishing the M8-score, we tested whether we could reduce the
number of genes in our model. We used the median methylation of the

genes (AHNAK, NBPF3, RNMTLIPI, VMP1, GLRX2, MAPILC3B2)
(Supplementary Data 1) alongside the single CG methylation levels of
STAPI and cg09435170, as presented in Supplementary Data 4. We used a
multivariable linear regression analysis with the eight genes as independent
variables to determine which genes are significant classifiers of HCC. We
identified four significant genes (NBPF3, RNMTLIPI, MAP1LC3B2, and
STAPI). We used a multilinear regression with these four genes to create the
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Fig. 2 | Scatter plots and ROC analysis of methylation scores in training and
validation cohorts. A Scatter Plots of Methylation Scores (M8 and M4): Top Panel
(Training Cohort): Displays the distribution of M8 and M4 scores for Stage C
(n=74) and Stage D (n = 53) of HCC (Hepatocellular Carcinoma) compared to the
control group (n = 34). Each dot represents an individual sample, with horizontal
lines indicating the median methylation score per group. Bottom Panel (Validation
Cohort): Illustrates the distribution of M8 and M4 scores across all stages of HCC
(Stage A (n = 34), Stage B (n = 86), Stage C (n = 32), Stage D (n=23)), CHB
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(Chronic Hepatitis B) (n =51), and control (n = 15) groups. Statistical analysis was
performed using the Kruskal-Wallis test for multiple comparisons. Source data are
provided as a Source Data file. BROC Analysis Training Cohort: ROC curves for M8
(top left) and M4 (top right) combine stages C and D of HCC and are compared
against the combined Control and CHB groups. Bottom Panel (Validation Cohort):
Showcases ROC curves for M8 (bottom left) and M4 (bottom right), aggregating
stages A, B, C, and D of HCC, juxtaposed with the combined Control and CHB
groups for analysis.

M4-score, a collective metric composed of the weighted coefficient of each of
the four genes (refer to Fig. 2 and Supplementary Data 3).

To compare the performance of the M8 and M4 scores, both training
and validation cohorts were examined. Initially, the Kruskal-Wallis test was
conducted to assess overall differences between groups. Following this,
Dunn’s multiple comparisons test was utilized to further appraise the dis-
criminative efficacy of these scores across these cohorts, thoroughly
examining their predictive capacities in differentiating HCC stages (Fig. 2A).

ROC analysis was then conducted within the training cohort to eval-
uate the discriminative ability of M8 and M4 scores to distinguish controls
from HCC stages and established thresholds at 100% specificity and highest
sensitivity for each M-score (Fig. 2B, Table 3).

In the validation cohort, both M8 and M4 scores demonstrated high
specificity (100%) in the control group. Notably, the sensitivity for early-
stage HCC (Stage A) was higher for the M4-score (73.53%) as compared to
the M8 score (67.65%). Similar trends were observed in later stages, with the
M4 score generally outperforming the M8 score.

A critical observation was that our M-scores results classified a subset
of the CHB group (9.8% for the M8-score and 17.63% for the M4-score) as
HCC. Given that 15%-40% of CHB individuals may develop HCC in their
lifetime, particularly in Asian populations”, like our Bangladeshi cohort,
this finding is significant. Alternatively, these results might just simply
reflect the reduced specificity of the markers for CHB. To differentiate these
two possibilities, a follow-up study is required.

Cross-validation analysis of model robustness in classifying HCC
Cross-validation was performed as outlined in the methods section, utilizing
models derived from three distinct training datasets, each generated using
different random seeds (123, 234, and 586). For the first training set (seed
123), the model exhibited an R-squared (R2) value of 1, with a Root Mean
Square Error (RMSE) of 1.456573 and a Mean Absolute Error (MAE) of

1.358391. Similarly, the second training set (seed 234) yielded an R2 of 1,
RMSE of 1.403377, and MAE of 1.34692. The third training set (seed 586)
further corroborated the consistency of the model, demonstrating an R2 of
1, RMSE of 1.446507, and MAE of 1.406228. These results, indicating sig-
nificant statistical differences, were consistent across all training instances,
underscoring the robustness of the M8 and M4 model predictions in dif-
ferentiating HCC cases from healthy control and chronic hepatitis B groups
(Supplementary Fig. 1).

Enhanced HCC detection: integrating M8 and M4 PBMC methy-
lation scores with epiLiver ctDNA analysis

To improve the diagnostic accuracy for HCC, our study implemented an
integrated approach combining M8 and M4 scores, derived PBMC
methylation markers (current study), with the epiLiver score based on
ctDNA analysis’. This strategy aimed to harness the strengths of each
marker, enhancing overall sensitivity while maintaining high specificity.

For each participant in the validation cohort, both the M-score and the
epiLiver score were applied using the most stringent threshold for each
score. Specifically, the M-scores were set at a threshold corresponding to
100% specificity based on ROC analysis of the training cohort. Similarly, the
epiLiver score threshold was set at 100% specificity, using a sum of prob-
abilities threshold of >1.995. At this stringent level, the sensitivity of the
epiLiver score was lower than what was previously reported using a 95%
specificity threshold’.

A positive cancer diagnosis was confirmed if either the M-score or the
epiLiver score exceeded their respective thresholds. This combined meth-
odology, referred to as M8+-epiLiver and M4+epiLiver in our analysis (refer
to Table 3), was specifically designed to improve the sensitivity of HCC
detection without compromising specificity.

This integrated approach enhanced sensitivity for early-stage HCC.
For instance, in Stage A HCC, the sensitivity of the M4--epiLiver score
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‘M8 Score: This score is based on a threshold greater than 0.7743. This ROC (Receiver Operating Characteristic) threshold was determined from the training cohort, where it was associated with a specificity of 100%. The threshold selection and its specificity are described in

detail in the earlier sections of the paper.

**M4 Score: Similar to the M8 score, the M4 score uses a threshold greater than 0.7367. This threshold was also derived from the training cohort’s ROC analysis and achieved a specificity of 100%. This methodology and its specificity are elaborated upon previously in

the text.

***EpilLiver Score: The EpilLiver score is based on a sum of probabilities greater than 1.955. This criterion was established to ensure a specificity of 100%. The calculation and rationale behind this specific threshold are explained in the preceding sections.

reached 79.4%, an improvement over the 73.5% for M4 alone and 26.5% for
epiLiver. In Stage B HCC, the sensitivity of M4-epiLiver increased to 86.0%,
exceeding the individual performances of epiLiver (48.8%), M8 (70.9%), and
M4 (75.6%). These findings highlight the benefit of merging plasma-cfDNA
markers with PBMC-derived markers.

An important aspect of our study was that the combined M8+-epiLiver
and M4+epiLiver scores were 100% specific. This is crucial for avoiding
false-positive diagnoses, thereby enhancing the reliability of these tests.

In summary, the combination of epiLiver and PBMC M-scores
represents a significant advancement. By integrating these scores, we
increase sensitivity, particularly in the crucial early stages of HCC, without
compromising specificity.

AFP and its integration with epiLiver, M8, and M4 scores

We next evaluated whether combining AFP, a classic HCC marker, with
either epiLiver or the PBMC M4 and M8 scores and their combinations
enhance the sensitivity of detection of HCC. Table 3 presents the perfor-
mance metrics of AFP alone, as well as combined scores of M8, M4 with
either epiLiver and AFP or just with AFP.

AFP alone demonstrated a moderate sensitivity across HCC stages,
particularly in the early stages (Stage A), with a sensitivity of 62.5%, and the
sensitivity improved when AFP was combined with either PBMC or ctDNA
markers. For example, the combination of either M8 + AFP or M4 + AFP
showed enhanced sensitivities of 85.3% and 88.2%, respectively, in Stage A,
which is notably higher than AFP alone or the M4-score (73.53%) and the
M8 score (67.65%) on their own. These combinations also performed
exceptionally well in later stages (B-D), consistently achieving sensitivities
between 90.7-96.9%, which is substantially higher than the 59.5-80.0% range
observed with AFP alone or M4 and M8 alone (Supplementary Data 5 for
summary).

Overall, the integration of PBMC M-scores with epiLiver and AFP
significantly enhanced the sensitivity across all HCC stages while main-
taining a high specificity, particularly among CHB patients. Among the
various combinations, M4-epiLiver+AFP and M8-epiLiver+AFP demon-
strated the highest sensitivity across later HCC stages, while M4 + AFP was
highly sensitive at the early stage with no further enhancement in combi-
nation with epiLiver. The strong performance in early-stage HCC detection
is crucial for timely clinical intervention. All combinations maintained
100% specificity.

We compared the reported sensitivities for traditional imaging tech-
niques like ultrasound, either alone or in combination with alpha-
fetoprotein (AFP), with ‘M4 + AFP’ and ‘M4-epiLiver+AFP’ markers
highlighting the high performance of the combined methylation and AFP
blood-based biomarkers described here (Supplementary Data 5).

We evaluated the diagnostic efficacy of the M4 + AFP combination for
early-stage HCC, Stage A, by calculating the Positive Predictive Value (PPV)
and Negative Predictive Value (NPV) as discussed earlier’. These calcula-
tions were informed by the prevalence of Hepatitis B Virus (HBV) and
Hepatitis C Virus (HCV) in Bangladesh, as these conditions are known risk
factors for HCC. The prevalence of HBV in the Bangladeshi population is
estimated at approximately 5.4%, while HCV prevalence is around
0.84%""*. Utilizing the sensitivity and specificity values of the M4 + AFP
combination for Stage A HCC, as delineated in Table 4, along with the HBV
and HCV prevalence rates, we calculated the PPV and NPV. The PPV
reflects the likelihood that individuals with a positive M4 + AFP test truly
have early-stage HCC, while the NPV indicates the likelihood that those
with a negative test result genuinely do not have the condition.

Additionally, we calculated PPV and NPV independent of
prevalence”. The results, presented in Table 5 when combining CHB
patients and controls, demonstrate varying PPV and NPV across different
markers and HCC stages, providing further insights into their diagnostic
performance. For example, the M4 + AFP combination exhibited a PPV of
74% and an NPV of 86% for early-stage HCC (HCC-A). When the PPV is
calculated when taking into consideration only healthy people as the control
group, then the PPV across all tests is 100% (Table 5). This results from the
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detection of HCC by our test in HCB patients. It is unclear whether these are
false negatives or true converters from HCB to HCC. Our calculations reveal
a PPV of 100% and an NPV of 99.3% when considering the HBV pre-
valence. In the context of HCV prevalence, the PPV remains at 100%, with
the NPV slightly higher at 99.9%.

In conclusion, the combination of M4 or M8 scores with either epiLiver
and AFP markers, or both, significantly enhances HCC diagnostics,
improving detection capabilities early in the disease and across all stages of
HCC. Our findings indicate that M4 markers, which require fewer regions
for analysis, perform comparably to M8 markers, suggesting an optimized
approach that reduces complexity without compromising diagnostic effi-
cacy. This streamlined methodology not only maximizes sensitivity but also
maintains high specificity.

Specificity of M4 and M8 scores for HCC comparison to breast
and prostate cancer

To validate the specificity of the genes included in the M4 and M8 scores for
detecting HCC, we applied the M4 and M8 scores to DNA methylation data
from PBMC derived from prostate and breast cancer patients. We used data
from our earlier studies that examined breast cancer markersin T cells* and
prostate cancer methylation*. Although these data were derived from
T cells, our previous study demonstrated equal performance whether T cells
or PBMC were used”’. We inspected the same CpGs for which methylation
data were available in these two datasets. We observed that while AHNAK,
STAP1, and cg09435170 sites displayed significant methylation differences
between breast cancer (BrCa) and control groups, the significance was
modest and much less pronounced than what we observed in HCC
(Fig. 1A). For AHNAK, the p-value was 0.0218, for STAP1, the p-value was
0.02, and for cg09435170, the p-value was 0.02. STAP1 showed hyper-
methylation, while AHNAK and cg09435170 showed hypomethylation in
BrCa. This trend paralleled our observations in liver cancer in PBMCs
(current study) (Supplementary Fig. 2). Other examined sites, including
VMP1 (P =0.068), did not reach statistical significance.

We further investigated HCC genes in prostate cancer data. We
examined AHNAK, STAP1, RNMTL1P1, VMP1, and MAPILC3B2
(Fig. S3) and found no statistical significance when comparing healthy
control individuals to prostate adenocarcinoma. Though this observation is
quite encouraging and suggests that our HCC markers may be specific to
HCG, it still requires more validation on larger datasets and across more
cancer types.

Discussion
Our study focused on evaluating the diagnostic potential of PBMC-derived
methylation markers in HCC, with an emphasis on high sensitivity across
different stages of the disease. The obvious advantage of using white blood
cells rather than cfDNA is the technical challenge in quantifying DNA
methylation in extremely scarce plasma-cfDNA and the relative abundance
of white blood cell DNA. Initially, we investigated a classifier incorporating a
weighted coefficient of eight genes, known as the M8 score. Subsequently,
we used a more streamlined model comprising four key genes, termed the
M4 score. This simplification pursued two primary objectives: firstly, to
enhance cost-effectiveness and ease of analysis by reducing the number of
genes involved; secondly, to explore whether a smaller, more targeted set of
significant genes could retain or even enhance the model’s predictive
accuracy for HCC.

The M4 score demonstrated improved sensitivity across various stages
of HCC compared to the M8 score, with sensitivities of 73.5% for Stage A,
75.6% for Stage B, 78.1% for Stage C, and 95.7% for Stage D, indicating its
effectiveness in accurately detecting HCC from early to advanced stages.
Given the reduced number of genes in the M4 score, developing a multiplex
PCR or digital PCR assay could offer a faster and more cost-effective
alternative to methylation-specific sequencing. This approach would
streamline the diagnostic process, making it more accessible for routine
clinical use while maintaining the accuracy of the M4 score.

The integration of M-scores with the previously described epiLiver’
significantly enhanced sensitivity without compromising specificity. Spe-
cifically, in Stage A HCC, the sensitivity of the M4--epiLiver score at a 100%
specificity threshold reached 79.4%, compared to 73.5% for M4 alone and
26.5% for epilLiver. In Stage B HCC, this sensitivity further improved to
86.0% for M4+-epiLiver, outperforming the individual performances of
epiLiver (48.8%), M8 (70.9%), and M4 (75.6%). Additionally, in later stages
C and D, the M4+-epiLiver scores showed sensitivities of 93.8% and 95.7%,
respectively, indicating a consistent enhancement across various HCC
stages. These results highlight the diagnostic advantage of combining
cfDNA methylation and PBMC DNA methylation. By maintaining a high
specificity threshold of 100% for each biomarker set, we achieved enhanced
sensitivity while ensuring the robustness and reliability of the diagnostic
approach.

Combining M8 and M4 scores with epiLiver and AFP markers
improved sensitivity without sacrificing specificity, and it particularly
excelled in early-stage HCC detection. The M4 4+ AFP combination, for
instance, achieved a sensitivity of 88.2% in early-stage HCC (Stage A/0),
significantly higher than M4 alone (73.5%), AFP alone (62.5%) or epiLiver
(26.5%). This increased sensitivity was consistent across all HCC stages, with
the M4 + AFP reaching 89.5% in Stage B and the M4-epiLiver-AFP com-
bination showing sensitivities of 96.9% and 95.7% in Stages C and D. These
findings suggest that the combination of PBMC-based markers with AFP
could offer a diagnostic approach for early HCC identification, especially in
populations at risk due to HBV and HCV.

In addition to the sensitivity and specificity metrics, the Positive Pre-
dictive Value (PPV) and Negative Predictive Value (NPV) are critical for
assessing the real-world utility of our M4 + AFP combination for early-
stage HCC detection. These values are especially significant in clinical set-
tings where disease prevalence influences diagnostic accuracy.

To contextualize these findings within the Bangladeshi population,
where Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are prevalent
risk factors for HCC, we calculated the PPV and NPV. For HBV prevalence,
the M4 + AFP combination shows a PPV of 100% and an NPV 0f 99.3%. In
the context of HCV prevalence, these values remain impressively high, with
a PPV of 100% and an NPV of 99.9%. These results underscore the
M4 + AFP combination’s effectiveness as a non-invasive diagnostic tool for
early HCC detection, particularly in populations at risk due to HBV
and HCV.

Therefore, while traditional methods such as AFP alone may fall short
in sensitivity and specificity, our integrated approach employing the
M4 + AFP combination overcomes these limitations.

Our anecdotal observations from a limited sample of two patients with
very early-stage HCC (Stage 0) suggested that the PBMC-based M scores
might have potential for early detection. These results, while preliminary,
indicate a possible advantage of PBMC markers in early-stage HCC
detection, warranting further investigation.

In our study, we observed that several chronic hepatitis B (CHB)
patients had M scores within the range typically indicative of HCC. This
observation may be linked to the well-documented increased risk of HCC
among individuals with CHB. Specifically, the M8 and M4 scores identified
potential HCC in 9.8% and 17.6% of CHB patients, respectively. These
percentages are notable, considering epidemiological data suggest that 15%-
40% of CHB patients may develop HCC in their lifetime”, particularly in
regions like Bangladesh, where our cohort was based. Such findings might
underscore the potential utility of M scores in the early detection of HCC
among high-risk groups, which is crucial for timely intervention that can
significantly improve patient outcomes. However, it is important to
recognize that these findings on their own do not confirm the presence of
HCC. The presence of elevated M scores in CHB patients might alternatively
reflect the reduced specificity of our markers within this subgroup. Without
follow-up data, we cannot conclusively determine whether the elevated M
scores represent true HCC cases or false positives. Therefore, these results
emphasize the need for further studies to assess the specificity of these
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Fig. 3 | HCC Prediction Across Various Score
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markers and to confirm their predictive value in this patient population.
Prospective studies will be essential to clarify these findings.

Like any study, ours has its set of limitations. The number of partici-
pants, though adequate as per statistical power calculations, and the varied
characteristics within the chronic hepatitis B group may affect the accuracy
and reliability of our results. Also, the age differences among the healthy
controls, hepatitis B, and HCC patients, coupled with the study being
conducted solely in Bangladesh, may limit how applicable our findings are
to other populations. However, the fact that markers that were originally
detected in a Chinese population performed so well in genetically distant
Indian populations is encouraging.

One notable limitation is the availability of AFP data. AFP testing was
conducted based on clinical indications at the physician’s discretion,
resulting in AFP data from only one healthy individual. Additionally, while
AFP data were available for a subset of the CHB group, this does not provide
a comprehensive control group for comparison. This limitation impacts the
calculation of specificity for the combined biomarker and necessitates a
cautious interpretation of the results. The absence of AFP data for the
majority of healthy individuals and the selective availability in the CHB
group prevents meaningful comparison and accurate specificity estimation.

Our study’s cross-sectional design underscores the need for long-
itudinal studies to fully grasp the changes in methylation across different
stages of HCC and chronic hepatitis B evolution.

Additionally, our study did not examine how inflammation or other
liver diseases might influence the sensitivity and specificity of the M4 and
M8 biomarkers. This question would need to be resolved by studying
samples from patients with other liver diseases or chronic inflammatory
conditions. However, we do show that common chronic liver inflammatory
conditions such as chronic hepatitis B could be differentiated from Stage A
HCC using these markers.

While our study demonstrated promising results for the early detection
of HCC using specific DNA methylation markers, it’s crucial to consider the
specificity of these markers for HCC versus other cancers. Nevertheless,
analysis of DNA methylation in T cells from prostate and breast cancer
suggests specificity of our markers for HCC. Testing the marker panel across
a diverse set of cancers will clarify its specificity and enhance its clinical
utility.

The identified methylation markers offer a potential augmentation to
existing HCC diagnostic algorithms, particularly in early detection, and
perhaps replacing ¢fDNA markers altogether with PBMC markers in
combination with AFP. Integration might be envisioned through a diag-
nostic panel that melds these markers with existing imaging and serological
assays, enhancing accuracy in diagnosis and risk stratification. However, a
structured pathway toward clinical translation, akin to the integration of

High-Sensitivity Troponin T (hs-TnT) in Acute Coronary Syndrome
diagnostic algorithms***’, is imperative. This entails clinical validation of the
markers, algorithm development, guideline revisions, clinician training, and
continuous evaluation, addressing challenges at each juncture for successful
implementation.

Looking ahead, a more extensive validation of the identified methy-
lation markers in larger and heterogeneous cohorts is imperative. Long-
itudinal analysis could further illuminate the methylation dynamics and the
pivotal role these markers play in HCC progression. Delving deeper into the
interaction between methylation markers and immune modulation could
unveil more layers, offering a clearer diagnostic picture of HCC.

In summary, our study illuminates the potential of PBMC methylation
markers in broadening the diagnostic spectrum for HCC. The high sensi-
tivity rates, particularly at the best-performing M4-epiLiver and M4 + AFP
score, underscore the prospect of devising a more precise and early detection
paradigm for HCC. This methodology could significantly propel timely
clinical interventions, potentially ameliorating the prognosis for patients
with HCC.

Data availability

The data supporting the findings of this study have been deposited in the
Sequence Read Archive (SRA) PRJINA1067580 and are accessible under
controlled conditions. Acquiring the data necessitates a material transfer
agreement (MTA) and is restricted solely to academic utilization. For fur-
ther details and to request data access, please contact David Cheishvili at
david.cheishvili@epimedtech.com. The source data for Figs. 1, 2, and 3 are
available in Supplementary Data 6.

Code availability
All codes are available on Zenodo:
The R code for cross-validation can be downloaded: https://doi.org/10.
5281/zenodo.7823332*
The code for UMI BAM deduplication is also available:
https://doi.org/10.5281/zenodo.10002131%
The code for stratified random sampling is accessible at: https://doi.
org/10.5281/zenodo.10359896.
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