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Abstract
Recent genome-wide experiments in different eukaryotic genomes provide an unprece-

dented view of transcription factor (TF) binding locations and of nucleosome occupancy.

These experiments revealed that a large fraction of TF binding events occur in regions

where only a small number of specific TF binding sites (TFBSs) have been detected. Fur-

thermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indi-

cate that TFs are bound with wide range of affinities to different DNA sequences that lack

known consensus motifs. These observations have thus challenged the classical picture of

specific protein-DNA binding and strongly suggest the existence of additional recognition

mechanisms that affect protein-DNA binding preferences. We have previously demon-

strated that repetitive DNA sequence elements characterized by certain symmetries statisti-

cally affect protein-DNA binding preferences. We call this binding mechanism

nonconsensus protein-DNA binding in order to emphasize the point that specific consensus

TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics

model developed previously, we calculate the nonconsensus protein-DNA binding free

energy for the entire C. elegans and D.melanogaster genomes. Using the available chro-

matin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding

preferences for ~100 TFs, we show that DNA sequences characterized by low predicted

free energy of nonconsensus binding have statistically higher experimental TF occupancy

and lower nucleosome occupancy than sequences characterized by high free energy of

nonconsensus binding. This is in agreement with our previous analysis performed for the

yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the

formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic loca-

tions with enhanced nonconsensus binding. In addition, here we perform a new, large-scale

analysis using in vitro TF-DNA preferences obtained from the universal protein binding

microarrays (PBM) for ~90 eukaryotic TFs belonging to 22 different DNA-binding domain

types. As a result of this new analysis, we conclude that nonconsensus protein-DNA binding

is a widespread phenomenon that significantly affects protein-DNA binding preferences
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and need not require the presence of consensus (specific) TFBSs in order to achieve

genome-wide TF-DNA binding specificity.

Author Summary

Interactions between proteins and DNA trigger many important biological processes.
Therefore, to fully understand how the information encoded on the DNA transcribes into
RNA, which in turn translates into proteins in the cell, we need to unravel the molecular
design principles of protein-DNA interactions. It is known that many interactions occur
when a protein is attracted to a specific short segment on the DNA called a specific pro-
tein-DNA binding motif. Strikingly, recent experiments revealed that many regulatory
proteins reproducibly bind to different regions on the DNA lacking such specific motifs.
This suggests that fundamental molecular mechanisms responsible for protein-DNA rec-
ognition specificity are not fully understood. Here, using high-throughput protein-DNA
binding data obtained by two entirely different methods for ~100 TFs in each case, we
show that DNA regions possessing certain repetitive sequence elements exert the statistical
attractive potential on DNA-binding proteins, and as a result, such DNA regions are
enriched in bound proteins. This is in agreement with our previous analysis performed for
the yeast genome. We use the term nonconsensus protein-DNA binding in order to describe
protein-DNA interactions that occur in the absence of specific protein-DNA binding
motifs. Here we demonstrate that the identified nonconsensus effect is highly significant
for a variety of organismal genomes and it affects protein-DNA binding preferences and
nucleosome occupancy at the genome-wide level.

Introduction
Binding of TFs to their target sites on the DNA is a key step during gene activation and repres-
sion. An existing paradigm assumes that the main mechanism responsible for specific
TF-DNA recognition is TF binding to short (typically 6–20 bp long) DNA sequences called
specific consensus motifs, or specific TF binding sites (TFBSs). It has been known for a long time,
since the seminal studies of Iyer and Struhl [1], that genomic context surrounding specific
TFBSs significantly influences TF-DNA binding preferences. However, general rules describing
the mechanisms responsible for such influences remain unknown.

Recently, the model organism ENCODE (modENCODE) project has revealed genome-wide
comprehensive maps of TF-DNA binding and nucleosome occupancy in C. elegans [2–7] and
in D.melanogaster [8–10]. Remarkably, these studies have challenged the existing paradigm
and revealed that a large fraction of TF-DNA binding events occurs in genomic regions
depleted of specific consensus motifs. Such genomic regions with enhanced overall TF-DNA
binding but depleted in consensus motifs are oftentimes of low sequence complexity, which
means that they are enriched in repeated DNA sequences.

We have recently proposed that repetitive DNA sequences characterized by certain symme-
tries and length scales of repetitive sequence patterns (see below) exert a statistical potential on
DNA-binding proteins, affecting their binding preferences [11–15]. This effect of protein bind-
ing to repetitive DNA sequences in the absence of specific base-pair recognition is different
from the concept of nonspecific protein-DNA binding introduced and explored in seminal
studies of von Hippel, Berg, et al. [16–21]. In particular, von Hippel and Berg defined two
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related mechanisms for nonspecific protein-DNA binding [19]. The first mechanism is DNA
sequence-independent, and it assumes that DNA exerts an electrostatic attraction upon DNA-
binding proteins, modulated by the overall DNA geometry [19]. It has been proposed that
DNA-binding proteins use different conformations in specific and nonspecific binding modes
[16–20, 22]. The second mechanism assumes that mutated specific DNA consensus motifs
retain a reduced binding affinity for sequence-specific TFs [19]. Nonspecific protein-DNA
binding might become significant since the statistical probability to find such imperfect motifs
in many genomic locations by random chance is high for eukaryotic genomes [19, 23]. The
importance of nonspecific protein-DNA binding has been experimentally demonstrated for a
number of systems both in vivo [24, 25] and in vitro [26–31].

We demonstrated recently that repetitive DNA sequence patterns characterized by certain
symmetries lead to nonconsensus protein-DNA binding that can be enhanced or reduced
depending on the symmetry type [11]. We use the term nonconsensus protein-DNA binding in
order to emphasize the point that the nonconsensus protein-DNA binding free energy is com-
puted without using any experimental information on specific protein-DNA binding prefer-
ences (see below). For example, we showed that repetitive homo-oligonucleotide sequence
patterns, such as repeated poly(A)/poly(T)/poly(C)/poly(G) tracts lead to statistically enhanced
nonconsensus protein-DNA binding affinity [11]. Our results indicated that such nonconsen-
sus binding significantly influences nucleosome occupancy [12], TF-DNA binding preferences
[13], and transcription pre-initiation complex binding preferences [14] in yeast.

In addition, using the protein binding microarray (PBM) method, we have recently directly
measured the nonconsensus protein-DNA binding free energy for several human TFs [15]. We
have demonstrated that, remarkably, the magnitude of the identified nonconsensus effect
reaches as much as 66% of consensus (specific) binding [15].

In this study we explore the extent and significance of the nonconsensus protein-DNA
binding mechanism for a large number of proteins belonging to different structural families.
First, we investigate the nonconsensus effect in more complex, multicellular organisms, using
the available ChIP-seq data obtained for ~100 TFs in C. elegans [2, 3] and D.melanogaster [10,
32]. Next, we perform the analysis of high-resolution in vitro universal protein-DNA binding
microarray (PBM) data obtained for ~90 eukaryotic TFs belonging to 22 different DNA-bind-
ing domain types [33–35]. In addition, we identify protein sequence features that statistically
distinguish between proteins with stronger and weaker response to nonconsensus repetitive
DNA sequence elements, respectively.

We stress the point that in vitro analysis is free of confounding factors present in a cell, such
as nucleosomes and indirect TF-DNA binding. Our previous experimental in vitro study of non-
consensus protein-DNA binding was performed for only 6 TFs [15]. The present analysis of the
vast amount of in vitro TF-DNA binding data extends this number to more than an order of
magnitude, suggesting that the nonconsensus mechanismmost likely represents the statistical
law rather than the exception. Therefore, the results reported here strongly support our conclu-
sion that nonconsensus protein-DNA binding is a widespread phenomenon that significantly
affects protein-DNA binding preferences in eukaryotic genomes, and need not require the pres-
ence of consensus (specific) TFBSs in order to achieve genome-wide TF-DNA binding specificity.

Results

Nonconsensus free energy correlates with C. elegans and D.
melanogaster TF-DNA binding preferences
We compared the predicted landscape of nonconsensus protein-DNA binding free energy with
the genomic binding profiles of 69 transcriptional regulators in C. elegans [2, 3] and 30

Nonconsensus TF-DNA Binding in Eukaryotic Genomes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004429 August 18, 2015 3 / 19



transcriptional regulators in D.melanogaster [10, 32], as determined by ChIP-seq in the mod-
ENCODE project [2, 3, 8, 10]. We computed the nonconsensus binding free energy landscape
using a simple approach that we developed previously [11]. Briefly, we used a set of random
protein-DNA binders as a proxy for nonspecific protein-DNA interactions in a crowded cellu-
lar environment (Fig 1). Next, to each location along the C. elegans and D.melanogaster
genomes, we assigned an average free energy of nonconsensus protein-DNA binding, hFiTF,
where the averaging is performed over an ensemble of random binders (see Methods for fur-
ther details). The free energy value at each sequence location is entropy-dominated, and it is
influenced exclusively by the presence of repetitive DNA sequence patterns [11] surrounding
that location. We use the term DNA sequence correlations to describe the repetitive DNA pat-
terns, and the term correlation scale to describe the length of the patterns (Methods). The larger
the correlation scale, the larger the number of repetitive sequence patterns, and thus the stron-
ger the nonconsensus protein-DNA binding effect [11]. Importantly, the genomic DNA
sequence constitutes the only input for the nonconsensus binding model, i.e. the model does
not have any fitting parameters (Methods).

We found that the nonconsensus protein-DNA binding free energy correlates negatively
with the combined TF occupancy in both the C. elegans and the D.melanogaster genomes, i.e.
the lower the nonconsensus binding free energy, the higher the combined TF occupancy (Fig
2). Fig 2a and 2c illustrate this correlation for free energy profiles, hhFiTFiseq, averaged over
genomic sequences aligned with respect to the TSS. A statistically significant correlation at the
single gene level is also observed, on average, without sequence alignment with respect to the
TSS (Fig 2b and 2d). In these analyses both genomes show statistically significant negative cor-
relations, with the correlation being more pronounced in C. elegans.

We verified that the predicted free energy landscape is qualitatively robust with respect to
variations in the model parameters (i.e. the sliding window width, L, and the TFBS size,M) (S1
Fig). In addition, we validated that the predicted free energy landscape is determined by the
presence of repetitive sequence patterns, and not by the average genomic nucleotide content.
To show this, we shuffled the DNA sequence in each sliding window along the genome to
obtain random DNA sequences with a fixed nucleotide content, and we computed the normal-
ized free energy, δF = F−Frand, where Frand is the free energy of the random, shuffled sequences,
averaged over different random realizations (Methods). As shown in S2 Fig, the normalized
free energy δF is robust with respect to global variations in the genomic nucleotide content.

The predicted reduction in the nonconsensus free energy upstream of TSSs (Fig 2a and 2c)
stems from the enhanced level of homo-oligonucleotide sequence correlations (i.e. repetitive
homo-oligonucleotide sequence patterns, such as repeated poly(dA:dT) tracts). This effect can
be intuitively understood in the following way. As shown in our previous work, the presence of
enhanced homo-oligonucleotide sequence correlations within a DNA region generally leads to
the widening of the protein-DNA binding energy spectrum in this region [11]. For example, in
the statistical ensemble of random binders interacting with DNA sequence that contains long
homo-oligonucleotide tracts with two alternating types of nucleotides (such as alternating poly
(dA:dT) and poly(dT:dA) tracts), the width (i.e. the standard deviation) of the binding energy
spectrum, shomo

U , will be universally larger than the corresponding width for the case of entirely

random DNA sequence, shomo
U ’ ffiffiffi

2
p � srandom

U [11]. This result is independent of the micro-
scopic details of the protein-DNA interaction potential, U, and it is simply the consequence of
the central limit theorem [36, 37]. The wider energy spectrum, shomo

U > srandom
U , universally

leads to the statistically lower free energy, Fhomo < F random [38], and therefore to a higher non-
consensus protein-DNA binding affinity. The computed probability distributions of the non-
consensus protein-DNA binding energy and the free energy in the C. elegans genome, further
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illustrates this mechanism (S3 Fig). Thus, the nonconsensus protein-DNA binding mechanism
can significantly influence TF-DNA binding preferences in the C. elegans and D.melanogaster
genomes, complementing the conventional, specific protein-DNA recognition mode.

We stress the fact that the minimum of the average nonconsensus protein-DNA binding
free energy landscape does not align precisely with the maximum of the average TF occupancy
profile in both C. Elegans and D.melanogaster genomes (Fig 2a and 2c). Such mismatch is also
observed between the average nonconsensus protein-DNA binding free energy landscape and
the average nucleosome profile (see below, Fig 3a and 3c), similar to the case as we previously
observed for the yeast genome [12]. Combination of additional factors not taken into account
in our model but present in vivomight explain a possible origin of such a mismatch. These fac-
tors include, first, steric constrains imposed by the presence of nucleosome particles [39]; sec-
ond, steric constrains imposed by the transcription pre-initiation complex (PIC) [40]; and
third, the presence of specific TFBSs [41].

Nonconsensus protein-DNA binding influences nucleosome
preferences
We also assessed the effect of nonconsensus protein-DNA binding on nucleosome binding
preferences in the C. elegans and D.melanogaster genomes. Genome-wide measurements of
nucleosome occupancy show a typical nucleosome depleted region upstream of the TSSs, and a
well-positioned +1 nucleosome [2, 4, 42]. In D.melanogaster, an oscillating nucleosome occu-
pancy pattern was observed, similar to the one in yeast [43], while the C. elegans genome-wide
nucleosome occupancy profile does not demonstrate such strong oscillations [4, 42].

The computed nonconsensus free energy landscapes show a statistically high, positive corre-
lation with the nucleosome occupancy profile in both genomes (Fig 3). In particular, the

Fig 1. Cartoon illustrating our model for computing the free energy of nonconsensus protein-DNA
binding. Schematic representation of the procedure for computing the nonconsensus free energy. Step 1: In
order to model nonspecific TF-DNA binding, we generate an ensemble of 250 random TFs. Step 2: Each TF
moves within a sliding window of width L bp. The TF-DNA binding energy is computed at each location of TF
along the sliding window using the random potential. Step 3: For each TF we calculate the TF-DNA binding
free energy. We repeat this process for all random TFs and compute the average nonconsensus binding free
energy with respect to this ensemble of random TFs. Moving the sliding window along the genome, we assign
the nonconsensus TF-DNA binding free energy at each genomic location. We assume that each random
binder makes contacts withM bps upon DNA binding. For each model TF (random binder), we define the
partition function of protein-DNA binding within the chosen sliding window of width L bp. We used L = 50 bp
(i.e. the sliding window size) in our calculations of the genome-wide nonconsensus TF-DNA binding free
energy profiles, and L = 36 bp for calculations of the nonconsensus TF-DNA free energies for in vitro protein
binding microarray (PBM) experiments. In the latter case, we do not move the sliding window since each DNA
sequence in the PBM library is 36-bp long.

doi:10.1371/journal.pcbi.1004429.g001
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average nonconsensus free energy shows a pronounced minimum in the upstream nucleosome
depleted region (Fig 3a and 3c), similar to the one observed in yeast [12]. In Fig 3b and 3d we
also observed, at the single gene level, statistically significant correlation between the average
nucleosome occupancy and the average free energy of nonconsensus binding (Methods).
Sequences with lower nonconsensus protein-DNA binding free energy have, on average, lower
nucleosome occupancy.

Fig 2. The free energy of nonconsensus TF-DNA binding negatively correlates with the combined TF occupancy for bothC. elegans andD.
melanogaster genomes. (a) The average free energy of nonconsensus TF-DNA binding per bp, hfi ¼ hhFiTFiseq=M (red), and the average, combined
occupancy profile of 69C. elegans TFs (blue), plotted around the TSSs of 17,207C. elegans coding genes. The notation <TF occupancy> describes the
average, combined occupancy profile of all 69 TFs. The linear correlation coefficient is computed for a linear fit of hfi versus <TF occupancy> at individual
genomic locations, computed every 4 bp, within the interval (-1500,1500) around the TSS. The sequences are aligned with respect to the TSS. In order to
compute error bars, we divided genes into ten randomly chosen subgroups, and computed hfi for each subgroup. The error bars are defined as one standard
deviation of hfi between the subgroups. The error bars for the combined TF occupancy are computed analogously. (b) Correlation between the minimum
value of the free energy of nonconsensus TF-DNA binding, fmin = min(f), and the combined occupancy of all TFs, computed for individual genes in non-
overlapping windows of 100 bp, within the entire interval (-1000,1000). The data was grouped into 50 bins. (c) Similar to (a) but showing the average free
energy of nonconsensus TF-DNA binding per bp, hfi (red), and the average transcription factor occupancy (blue), around the TSSs of 12,188 D.
melanogaster genes. (d) Similar to (b) but for 12,188 D.melanogaster genes.

doi:10.1371/journal.pcbi.1004429.g002
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We suggest that the observed effect stems from the competition between TFs that experi-
ence enhanced nonspecific attraction towards upstream promoter regions (i.e., reduced level of
the nonconsensus free energy) and nucleosome-forming histones. It is important to stress that
the presence of repetitive DNA sequence elements in promoter regions might also affect his-
tone-DNA binding due to the nonconsensus mechanism, and as a result of it, the nucleosome
formation. How exactly individual histones and histone complexes respond to different repeti-
tive DNA sequence patterns remains an open question. This issue is further complicated by the
fact that several additional mechanisms influence histone-DNA binding in promoter regions.
Namely, genome-wide, in vitro nucleosome reconstruction experiments demonstrate that

Fig 3. The free energy of nonconsensus TF-DNA binding positively correlates with the nucleosome occupancy. (a) The average free energy of
nonconsensus TF-DNA binding per bp, hfi ¼ hhFiTFiseq=M (red), and the average nucleosome occupancy from [4] (gray), around the TSSs of 23,287 mRNA
coding and non-coding C. elegans genes. The linear correlation coefficient is computed for a linear fit of hfi versus the average nucleosome occupancy at
individual genomic locations, computed every 4 bp, within the interval (-1000,1000). In order to compute error bars, we divided genes into five randomly
chosen subgroups, and computed hfi for each subgroup. The error bars are defined as one standard deviation of hfi between the subgroups. (b) Correlation
between the minimal value of the free energy of nonconsensus TF-DNA binding, fmin = min(f), and the nucleosome occupancy, computed for individual genes
in non-overlapping windows of 100 bp within the interval (-1000,1000) around the TSS for each of the 23,287 genes. The data was grouped into 50 bins. (c)
Similar to (a) but showing the average free energy of nonconsensus TF-DNA binding per bp, hfi (red), and the average H2A.Z nucleosome occupancy (grey)
around the TSSs of 12,188D.melanogaster genes [32]. (d) Similar to (b) but for 12,188 D.melanogaster genes.

doi:10.1371/journal.pcbi.1004429.g003
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nucleosome-free regions (NFR) can be formed to some extend even in the mixture of purified
genomic DNA with histones [44, 45]. However, intrinsic DNA sequence preferences of nucleo-
somes still remain an open issue [46]. In particular, it has been recently demonstrated that AT-
rich sequences present in many NFRs have little effect on the stability of nucleosomes [46].
Rather it appears that ATP-dependent chromatin modifiers constitute a major factor regulat-
ing nucleosome-binding preferences in vivo [43, 46].

In vitro protein-DNA binding measurements for ~90 TFs to ~45,000
short, non-genomic DNA sequences validate the nonconsensus binding
mechanism
Here we provide an additional, highly significant validation for the proposed mechanism of
nonconsensus protein-DNA binding by the analysis of the available in vitro TF-DNA binding
data obtained using the protein-binding microarray (PBM) technology [35, 47–49]. The PBM
technology allows to simultaneously measure binding of a TF to tens of thousands of 36-bp
long DNA sequences in a single experiment [35]. The PBMmethod is free from the confound-
ing factors, such as the effect of competing TFs and nucleosomes on TF-DNA binding prefer-
ences. Here, we used the currently available ‘universal PBM’ data for 91 TFs (belonging to 22
distinct DNA-binding domains) from C. elegans, D.melanogaster, andmus musculus [33, 34,
50] (Fig 4 and S1 Table). The DNA libraries used in these ‘universal PBM’ experiments were
designed in such a way that they cover all possible 8-mer DNA sequences [35], giving an unbi-
ased view of TF-DNA binding specificity. Overall, there are ~45,000 distinct DNA sequences
in this library, and thus the TF-DNA binding strength was measured for each TF to all these
sequences [33, 34, 50].

We computed the nonconsensus TF-DNA binding free energy, hfiTF, for each 36-bp long
DNA sequence in the library using the procedure described above (Fig 1). Contrary to the case
of genomic sequences, here we do not move the sliding window along the DNA sequence since
each sequence is short, L = 36 bp, and therefore a single value of hfiTF is assigned to each DNA
sequence.

Remarkably, for 69 out of 91 analyzed TFs (i.e. 76%) we detected a statistically significant,
negative correlation between the nonconsensus protein-DNA binding free energy and the mea-
sured in vitro TF-DNA binding intensity. This is in agreement with the results obtained for the
in vivo TF-DNA binding data (Fig 2b and 2d). Twelve TFs (i.e. 13%) did not show a statistically
significant correlation, and interestingly, ten TFs (i.e. 11%) showed an opposite, positive corre-
lation (S1 Table). The latter observation is remarkable, since it demonstrates that a non-negligi-
ble fraction of TFs can respond to DNA symmetries (represented by our free energy model) in
an opposite way compared to the majority of other TFs. However, statistically, the average
TF-DNA binding preferences show highly significant, negative correlation with the computed
free energy of nonconsensus protein-DNA binding (Fig 4) in agreement with the in vivo results
(Fig 2b and 2d).

In order to identify what structural and sequence features are responsible for the anomalous
behavior of these 11% of TFs, we classified all TFs according to the DNA-binding domain
(DBD) families they belong to. However, we have not identified any particular DBD families
that are unique to those 11% of TFs (S1 Table and S4 Fig). We have also not identified any pref-
erence of these TFs with respect to any particular biological function, according to the gene
ontology (GO) classification. Therefore, the question what sequence and structural features of
proteins are responsible for the positive correlation between the free energy and the experimen-
tally measured in vitro TF occupancy remains open.
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Next, in order to identify protein sequence features that might be responsible for enhanced
nonconsensus TF-DNA binding, we separated TFs (we used 82 mouse TFs for this analysis)
into two groups. The first group contained 41 TFs with the strongest negative correlation
between the free energy and the measured TF occupancy. The second group contained the
remaining 41 TFs. We have analyzed the amino acid correlation properties in these two groups
of TFs. Our working hypothesis here is that enhanced amino acid sequence correlations in TF
sequences are responsible for enhanced nonconsensus TF-DNA binding. We use the term
“sequence correlations” in order to describe repetitive sequence patterns. We have previously
used a similar analysis in order to investigate protein sequence features responsible for
enhanced level of protein structural disorder and protein-protein interaction promiscuity [36].
In particular, we have analyzed the frequency of occurrence of the following repetitive amino
acid sequence patterns in each TF group: [aa], [aXa], [aXXa], and [aXXXa], where a repre-
sents each amino acid type and X represents an arbitrary amino acid (S2 Table). For example,
when we compute the frequency of [Lys-X-Lys] pattern, we count the total number of the
occurrence of this pattern in each protein sequence, irrespectively to the identity of X. As a
result of this analysis, we have identified three patterns that demonstrated a statistically signifi-
cant difference of frequencies between the two TF groups: [Lys-XX-Lys] (enriched in the first
TF group; Kolmogorov-Smirnov p-value, pks ’ 0.01), [Arg-Arg] (enriched in the second TF
group; pks ’ 0.02), and [Leu-X-Leu] (enriched in the first TF group;pks ’ 0.05) (S2 Table). In
addition the overall compositional fraction of Lys was enriched in the first TF group (pks ’
0.01) (S2 Table). The fact that the most statistically significant enrichment (distinguishing the
two TF groups) is observed for the [Lys-XX-Lys] and [Arg-Arg] patterns is encouraging since
positively charged Lys and Arg are obviously the key amino acids responsible for TF binding to
the negatively charged DNAmolecule.

Two conclusions can be drawn from our results. First, that the intrinsic propensity for non-
consensus protein-DNA binding is imprinted both into the DNA and the protein. Since our

Fig 4. Random-binder model for nonconsensus protein-DNA binding provides a good statistical description of the TF-DNA binding strength
measured in vitro. (a) Plots show the correlation between the free energy of nonconsensus TF-DNA binding, hfi, and the measured average TF binding
intensity of 82 mouse TFs [34]. We used the data from the PBM experiments performed on universal arrays, which provide measurements of TF binding to all
possible 8-bp sequences (8-mers). The data for average TF intensity and free energy was grouped into 25 bins. (b) Typical examples of sequences with high
and low values of the nonconsensus free energy, respectively, as determined by the in vitro PBMmeasurements.

doi:10.1371/journal.pcbi.1004429.g004
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simple nonconsensus binding model treats proteins as random binders, it captures general
trends in the binding profiles of most, but not all, TFs. Second, nonconsensus and specific
(consensus) protein-DNA binding mechanisms are tightly interlinked, and both of these mech-
anisms cooperate in determining the overall protein-DNA binding preferences in eukaryotic
genomes. The fact that our simple random-binder model (without any fitting parameters and
without any protein-DNA binding specificity built in) provides such a good statistical descrip-
tion of the measured DNA binding strength for the majority of TFs strongly suggests that the
nonconsensus mechanism is quite general and it represents the statistical law rather than the
exception. However, more accurate, atomistic models describing nonconsensus protein-DNA
binding interactions are necessary in order to improve the accuracy of our predictions for dif-
ferent proteins.

Discussion
Our analyses of the effect of nonconsensus protein-DNA binding demonstrate that the com-
bined genome-wide binding preferences of 69 TFs in C. elegans and 30 TFs in D.melanogaster
are significantly, negatively correlated with the predicted nonconsensus free energy landscape
(Fig 2). Our analyses also show that the experimentally derived nucleosome occupancy in C.
elegans and in D.melanogaster is significantly, positively correlated with the predicted noncon-
sensus protein-DNA binding free energy (Fig 3). This trend is qualitatively similar to the one
that we previously observed in yeast [12]. The results shown in Figs 2 and 3 strongly suggest
that TFs compete with nucleosomes for nonconsensus binding to DNA. Such a competition
between TFs and nucleosomes could lead to the enhanced TF binding cooperativity previously
predicted by Mirny [51] and Teif et al. [52]. We suggest that nonconsensus protein-DNA bind-
ing greatly enhances such nucleosome-induced cooperativity between TFs, and most impor-
tantly, in order to achieve this enhancement, promoters do not require the presence of specific,
consensus TF binding sites. We stress the important point that the predicted effect of noncon-
sensus TF-DNA binding most likely affects many but not all TFs. We expect for example, that
stress response TFs, such as for example Msn2 in yeast [53], might be insignificantly influenced
by the nonconsensus mechanism.

Our model predicts that genomic loci enriched with repetitive sequences, such as in hetero-
chromatin, should also be enriched with TF binding. However, the ChIP-seq analysis in such
regions is impeded by the fact that multi-mapping reads from long repetitive region will be fil-
tered out by most peak-calling algorithms, therefore identifying interactions in these regions
remains a challenging problem [54]. Interestingly, there are evidences that regions of hetero-
chromatin are not actually transcriptionally inert and non-coding RNAmolecules are tran-
scribed from repeated DNA sequences in pericentromeric heterochromatin in different
eukaryotic genomes [55]. A recent study even demonstrated [56] that some TFs bind directly
to the major satellite repeat DNA sequences that are present in pericentromeric heterochroma-
tin regions and might play a significant role in the mouse heterochromatin formation. Further
experiments and analysis of TF binding to the heterochromatin would reveal whether noncon-
sensus binding play an important role in these regions as well.

Our analysis of available in vitro TF-DNA binding data from protein-binding microarray
(PBM) experiments (Fig 4 and S1 Table) demonstrates that statistically, on average, in vitro
TF-DNA binding preferences negatively correlate with the computed nonconsensus free
energy landscape, and showed qualitatively similar behavior to the one observed in vivo (com-
pare Fig 2b and 2d with Fig 4). This additional analysis is important for several reasons. First,
the in vitro TF-DNA binding preferences are not affected by the presence of other proteins and
histones, which can compete with the protein or cause an indirect binding to the DNA. Second,
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the TF binding intensity is measured in PBM experiments at significantly higher accuracy com-
pared to ChIP-seq experiments. Third, the usage of non-genomic sequences that cover all pos-
sible 8-mer DNA sequences, eliminates possible sequence bias that might exist in the genomic
sequences, and thus PBMmeasurements provide an entirely independent validation of the
nonconsensus protein-DNA binding effect. Finally, the present analysis performed for ~90 TFs
extends our previous analysis performed for only 6 TFs [15] by more than an order of magni-
tude, thus strongly suggesting the generality of the nonconsensus protein-DNA binding effect
in eukaryotic genomes.

Interestingly, ten TFs (i.e. 11%) showed an opposite, positive correlation between the free
energy and the measured TF-DNA occupancy (S1 Table). The latter observation is remarkable,
since it demonstrates that a non-negligible fraction of TFs can respond to DNA symmetries
(represented by our free energy model) in an opposite way compared to the majority of other
TFs. However, we failed to identify any particular structural, sequence, or functional features
unique to this set of TFs. This failure might stem from the small number of proteins that exhib-
ited such behavior. Yet, we were able to identify repetitive amino acid sequence patterns that
are responsible for enhanced nonconsensus TF-DNA binding (S2 Table). In particular, for the
group of TFs characterized by the strongest nonconsensus TF-DNA binding preferences, the
most statistically significant enrichment is observed for the [Lys-XX-Lys] pattern, while the fre-
quency of [Arg-Arg] pattern is reduced in this group (S2 Table). The latter result is intuitively
sound since both Lys and Arg are the key amino acids responsible for TF binding to the nega-
tively charged DNAmolecule.

Importantly, in this study, our random-binder statistical mechanics model for protein-
DNA interactions does not use any experimentally pre-determined information on either low-
affinity or high-affinity TF-DNA binding sites. The genomic DNA sequence constitutes the
only experimental parameter of the model. In addition, our model does not have any fitting
parameters. Contrary to the case of specific protein-DNA binding that requires the presence of
a 6 to 20-bp long specific DNA motif (unique for each individual TF), the nonconsensus pro-
tein-DNA binding effect stems from multiple nonspecific interactions between the TF and a
relatively long (few tens of bp) DNA fragments enriched with repetitive sequence patterns. The
fact that different TFs are affected in a statistically similar way by entirely different DNA
sequences containing similar repetitive patterns constitutes the key difference between the non-
consensus and specific protein-DNA recognition modes.

What exactly is the interplay between nonconsensus DNA repetitive sequence elements and
consensus (specific) sequences and how their combination influences the overall binding of
proteins to the DNA and the expression levels of genes are important questions yet to be
explored. We suggest that repetitive nonconsensus sequence elements might have similar influ-
ence on TF-DNA binding and on gene expression as repeats of consensus (specific) DNA
sequence elements (i.e. homotypic clusters) [57]. However, an important difference between
these two types of repeated sequence elements is that nonconsensus repeats can affect many
different TFs in a similar way, while homotypic clusters are more specific to a limited set of
TFs.

Repetitive sequence elements located near the consensus (specific) motif, could increase the
TF association rate, by inducing the one-dimension “sliding” of the TF, and improving its
search for the specific binding site [20, 58]. The presence of many weaker sites flanking a strong
binding site could lead to a funnel effect [59–62], where the molecules are directed to the strong
binding site as depicted in S5a Fig. It could also stabilize binding sites that are not strong
enough individually [63, 64] and increase the ability of binding sites to “withstand mutations”
[65]. We use the C. elegans Hlh-1 protein as an example demonstrating that nonconsensus
DNA sequence elements might stabilize the binding to specific consensus elements in vivo (S5b
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Fig). The analysis of Hlh-1 binding sites (based on the genome-wide ChIP-seq measurements
[2, 3] in C. elegans) demonstrates that only 5% of the total number of Hlh-1 specific motifs in
the genome is bound by Hlh-1 (S5b Fig). We sorted the genomic sequences containing the
Hlh-1 motif (consensus motifs were reported in [3]) into two groups: the first group contains
DNA sequences that were experimentally determined as being bound by Hlh-1, while the sec-
ond group contains unbound DNA sequences. S5c Fig represents the average nonconsensus
protein-DNA binding free energy computed for each of these two sequence groups. We
observed that the nonconsensus free energy is reduced for the group that contains bound
sequences as compared with the group that contains unbound sequences. The computed p-val-
ues show that this result is statistically significant (S5c Fig). This example supports the hypoth-
esis that nonconsensus sequence elements might provide the funnel effect in vivo. Additional
analysis and experimental measurements of the kinetics of TF-DNA binding to consensus (spe-
cific) sequence elements embedded in different nonconsensus DNA backgrounds, should shed
more light on this hypothesis.

Future in vitromeasurements of binding preferences for additional TFs [66], combined
with high-resolution in vivo ChIP-seq and ChIP-exo analysis, will help to complete the molec-
ular picture of design principles for nonconsensus protein-DNA binding and its functional
significance.

Methods

Gene sets
We used the set of 23,287 C. elegans genes based on Wormbase annotation, WS228 [2, 67], and
12,188 D.melanogaster genes annotated in [10].

Experimental in vivo TF occupancy
We used experimentally measured binding preferences of 69 C. elegans TFs (S3 Table), as
determined by the Gerstein and Snyder labs [2, 3]; for computing the D.melanogaster TF occu-
pancy we used binding preferences of 30 TFs (S4 Table) determined by the White lab [8].
TF-DNA binding preferences for both genomes were measured using ChIP-seq assays (mod-
ENCODE project). We defined TF occupancy for each genomic location as the total number of
bound TFs at each location along the genome.

Experimental nucleosome occupancy
We used experimentally measured, genome-wide, normalized nucleosome occupancy deter-
mined by the paired-end Ilumina sequencing in C. elegans [4, 5]; we also used the genome-
wide map of H2A.Z nucleosome occupancy in D.melanogaster embryos (0–12 hr) (determined
in [32]).

Experimental in vitro TF-DNA binding strength measured using PBM
We used experimentally measured in vitro binding intensity for the C. elegans, D.melanogaster,
andmus musculus TFs (S1 Table), determined using the protein-binding microarray (PBM)
technology [33, 35, 47–49].

Calculation of the free energy of nonconsensus protein-DNA binding
In order to compute the nonconsensus protein-DNA binding free energy landscape, we gener-
ate an ensemble of random DNA binders as a proxy for the phenomenon of nonconsensus pro-
tein-DNA binding in a crowded cellular environment [11]. Our model does not use any
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experimentally pre-determined protein-DNA binding preferences in order to model protein-
DNA binding. The actual DNA sequences of the C. elegans andD.melanogaster genomes consti-
tute the only input parameter for our model. In order to compute the free energy of nonconsen-
sus protein-DNA binding at any given location along a DNA sequence, we position the center of
the sliding window of width L = 50 bp at that location. The 50 bp length is a typical sliding event
distance of a protein along the DNA under physiological conditions [68, 69] (Fig 1).

We assume that a model protein (random binder) makesM bp contacts with the DNA (Fig
1b) and that the model protein-DNA interaction energy at each genomic position i is simply a
sum ofM interaction energies:

UðiÞ ¼ �
XMþi�1

j¼i

X

a¼fA;T;C;Gg
KasaðjÞ ð1Þ

where sα(j) represents the elements of a four-component vector of the type (δαA, δαT, δαC, δαG),
and δαβ = 1 if α = β, or δαβ = 0 if α 6¼ β. For example, if the A nucleotide is positioned at the
coordinate j along the DNA, then this vector takes the form: (1,0,0,0). If, for example, the DNA
sequence contains entirely poly(A) at a given genomic location, then a random binder makes
allM contacts with the A nucleotide, and hence at this location the resulting energy, Eq (1),
will be simply,MKA. In order to generate each model protein, we draw the values of KA, KT,
KC, and KG from Gaussian probability distributions, P(Kα), with zero mean, and standard devi-
ation σα = 2kBT, where T is the temperature and kB is the Boltzmann constant. We have shown
previously that the resulting free energy is qualitatively robust with respect to the choice of
model parameters [11]. The energy scale, 2kBT’ 1.2 kcal/mol, is chosen to represent a typical
strength of a hydrogen bond, or an electrostatic bond that a protein makes with one DNA bp
[16, 19].

For each model random binder, we define the partition function of protein-DNA binding
within the chosen sliding window of width L bp:

Z ¼
XL

i¼1

expð�UðiÞ=kBTÞ ð2Þ

and the corresponding free energy of nonconsensus protein-DNA binding in this sliding win-
dow:

F ¼ �kBTlnZ ð3Þ

We then assign the computed F to the sequence coordinate in the middle of the sliding win-
dow. Next, we move the sliding window along the DNA sequence and we compute F at each
sequence location. This procedure allows us to assign the free energy of nonconsensus protein-
DNA binding to each DNA bp within the genome.

Next, we repeat the described procedure for an ensemble of 250 model random binders (Fig
1) and compute the average free energy, hFTFi, over this ensemble, at each sequence location.
We stress that the resulting free energy is qualitatively robust with respect to the choice of the
sliding window size, L, within a wide range of values (S1 Fig). In addition, the free energy pro-
files are statistically robust with respect to a moderate variation of the value ofM, within a typi-
cal range of the TF binding site size (S1 Fig). We verified that the predicted free energy
landscape is dominated by DNA sequence correlations, and not by the average nucleotide com-
position (S2 Fig). In particular, for each random binder, in each sliding window we computed
the normalized free energy, δF = F−Frand, where Frand is the free energy computed for a random-
ized sequence (in the same sliding window as F) and averaged over 25 random realizations.
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p-value calculations
In order to compute the p-value for S5c Fig, we first selected all the 800 bp-long sequences con-
taining the exact binding motifs for each TF. For example, genome-wide, we have overall 9258
sequences containing the consensus Hlh-1motif. Among those 9258 sequences, 442 sequences
were experimentally determined as bound by Hlh-1, while the rest of 8816 sequences were
unbound. In order to compute the p-value, we compiled 105 pairs of groups containing 442
and 8816 sequences, respectively, randomly chosen from the original 9258 sequences. These
105 pairs of groups represent randomized analogs for the original groups of bound and
unbound Hlh-1motifs. Second, for each of these pairs of random groups we computed the
average free energies, hfi, of nonconsensus binding separately for the randomized bound and
unbound groups, as described above. Third, for each pair of randomized groups we computed
the difference of the integrated free energy within the interval (-400,400) between the two ran-
domized groups. Finally, we computed the probability that this difference is equal or larger
than the actual value of the difference. The latter probability was taken as the p-value.

Supporting Information
S1 Fig. Robustness of the computed free energy of nonconsensus protein-DNA binding
with respect to (A) the TFBS size,M, and (B) the width of the sliding window, L. Plots show
the normalized, average free energy per bp, hdfi ¼ hhdFiTFiseq=M, where δF is computed in

the interval (-400,400) around the TSSs of 18,150 genes in C. elegans. The free energy F is com-
puted as described in the main text, using an ensemble of 125 random DNA binders. Frand is
the free energy computed for a randomized sequence (in the same sliding window as F), and
averaged over 25 random realizations.
(EPS)

S2 Fig. Robustness of the computed free energy of nonconsensus protein-DNA binding
with respect to the global variability of the nucleotide content along the genome. Plot
shows the average free energy per bp, hfi (blue curve) compared to the corresponding normal-
ized average free energy hdfi ¼ hhdFiTFiseq=M (red curve), where δF = F−Frand. Both the un-

normalized and normalized energies are plotted in the interval (-400,400) around the TSSs of
18,150 genes in C. elegans. The free energy F is computed as described in the main text, using
an ensemble of 125 random DNA binders. Frand is the free energy computed for a randomized
sequence (in the same sliding window as F), and averaged over 25 random realizations. We
usedM = 8 and L = 50 in our calculations. The described procedure removes a possible bias in
the free energy stemming from the global variability of the nucleotide content.
(EPS)

S3 Fig. Illustration of the entropy-dominated mechanism for nonconsensus TF binding to
repetitive DNA sequence elements. (a) Probability distribution, P(U), for two different groups
of DNA sequences: the first group is composed of 1000 genomic (C. elegans) DNA sequences
containing repetitive elements (black), and the second group of sequences is composed of ran-
domly permuted DNA sequences from the first group (gray). The repetitive, genomic
sequences are characterized by a wider standard deviation of P(U) than the randomly per-
muted, non-repetitive sequences. The length of each sequence is 58-bp; the sequences were
selected from the TSS region of the C. elegans genes. (b) The repetitive DNA sequences are
characterized by the lower (statistically, on average) free energy of nonconsensus TF-DNA
binding,<F>TF than the randomly permuted, non-repetitive DNA sequences.
(EPS)
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S4 Fig. Classification of TFs with respect to their DNA-binding domain (DBD) families
and the correlation between TF occupancy and free energy of nonconsensus TF-DNA bind-
ing. Each box-plot represents (a)DBD family, where each TF belonging to this family is repre-
sented by a single bar. The y-axis displays the correlation R-value between the measured in vitro
TF occupancy and the free energy of nonconsensus DNA-binding. Most of the DBD families
only contain TFs with negative R-values. One family contains two proteins with positives R-val-
ues (SAND). Three DBD families contain TFs that are both negatively and positively correlated
with the free energy (BRLZ, GATA, HLH). Fig shows only the DBD families that contain at
least two TFs (15 out of 22 DBD families), and only mouse TFs (74 out of 91 PBM-tested TFs).
(EPS)

S5 Fig. Example of how nonconsensus sequence elements can influence consensus (specific)
TF-DNA binding to the specific TFBS. (a) Schematic representation of the nonconsensus
funnel effect. Repetitive, nonconsensus sequence elements can increase the TF binding to the
DNA near a strong, specific binding site, and to induce a one-dimension “sliding” of the TF
towards the specific TFBS. (b) Two examples of sequences, both containing exactly the same
consensus-binding motif ACAGCTG for the C. elegans transcription factor Hlh-1, surrounded
by different nonconsensus sequence elements (Hlh-1was detected as bound [2, 3] to the spe-
cific binding motif shown in the top sequence, but it remained unbound to the identical specific
motif shown the bottom sequence). (c) The computed average free energy per bp,
hdfi ¼ hhdFiTFiseq=M, in the interval (-400,400) around Hlh-1specific motifs that was detected

as being bound (red). Blue line corresponds to hfi computed for DNA sequences surrounding
unbound Hlh-1motifs [2, 3]. The specific motifs, which were detected as being bound, are sur-
rounded by DNA sequences with significantly lower average free energy compared to unbound
motifs (computed p-value< 10−5; see Methods).
(EPS)

S1 Table. The table shows the correlation between the computed free energy of nonconsen-
sus TF-DNA binding, f, and the measured TF binding intensity for 91 TFs from [33,
34,47,50]. The linear correlation coefficient, R, and the p-value were calculated for each TF
after binning the data into 50 bins (the binning is performed in a way similar to the binning
performed in the plots presented in the main text). 69 out of 91 proteins statistically behave
according to our model (p< 0.05), ten proteins exhibit the opposite behavior (p< 0.05), while
the remaining 12 proteins show no statistically significant correlation (p> 0.05). For each TF
in the table, the protein name and its DNA-binding domain type are specified.
(XLSX)

S2 Table. Statistical analysis of repetitive amino acid patterns and the amino acid content
of TF sequences belonging to the two groups of the mouse TFs (82 TFs overall). The first
group (1st average) contained 41 TFs with the strongest negative correlation between the free
energy and the measured TF occupancy. The second group (2nd average) contained the
remaining 41 TFs. We have analyzed the frequency of occurrence of the following repetitive
amino acid sequence patterns in each TF group: [aa], [aXa], [aXXa], and [aXXXa], where a
represents each amino acid type and X represents an arbitrary amino acid. The second table
contains the average amino acid content in each group of TFs. The presented p-values repre-
sent the Kolmogorov-Smirnov p-values.
(XLSX)

S3 Table. List of modEncode C. elegans TFs.
(XLSX)
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S4 Table. List of modEncode D.melanogaster TFs.
(XLSX)

Acknowledgments
We thank Yifat Miller and the staff of the BGU High Performance Cluster computational
center.

Author Contributions
Conceived and designed the experiments: AA HC RG DBL. Performed the experiments: AA
HC SBZ. Analyzed the data: AA HC SBZ RG DBL. Contributed reagents/materials/analysis
tools: SBZ. Wrote the paper: AA HC RG DBL.

References
1. Iyer V, Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic

DNA structure. EMBO J. 1995; 14(11):2570–9. Epub 1995/06/01. PMID: 7781610

2. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al. Integrative analysis of the
Caenorhabditis elegans genome by the modENCODE project. Science. 2010; 330(6012):1775–87.
Epub 2010/12/24. doi: 10.1126/science.1196914 PMID: 21177976

3. Niu W, Lu ZJ, Zhong M, Sarov M, Murray JI, Brdlik CM, et al. Diverse transcription factor binding fea-
tures revealed by genome-wide ChIP-seq in C. elegans. Genome Research. 2011; 21(2):245–54. doi:
10.1101/gr.114587.110 PMID: 21177963

4. Ercan S, Lubling Y, Segal E, Lieb JD. High nucleosome occupancy is encoded at X-linked gene pro-
moters in C. elegans. Genome Res. 2011; 21(2):237–44. Epub 2010/12/24. doi: 10.1101/gr.115931.
110 PMID: 21177966

5. Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I, Cheung MS, et al. Broad chromosomal domains
of histone modification patterns in C. elegans. Genome Res. 2011; 21(2):227–36. Epub 2010/12/24.
doi: 10.1101/gr.115519.110 PMID: 21177964

6. Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, ChenWJ, et al. WormBase: a comprehensive
resource for nematode research. Nucleic Acids Res. 2010; 38(Database issue):D463–7. Epub 2009/
11/17. doi: 10.1093/nar/gkp952 PMID: 19910365

7. Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL, McWhirter RD, et al. A spatial and temporal
map of C. elegans gene expression. Genome Research. 2011; 21(2):325–41. doi: 10.1101/gr.114595.
110 PMID: 21177967

8. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al. Identification of functional ele-
ments and regulatory circuits by Drosophila modENCODE. Science. 2010; 330(6012):1787–97. doi:
10.1126/science.1198374 PMID: 21177974

9. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al. Identification of functional ele-
ments and regulatory circuits by Drosophila modENCODE. Science. 2010; 330(6012):1787–97. Epub
2010/12/24. doi: 10.1126/science.1198374 PMID: 21177974

10. Negre N, Brown CD, Ma L, Bristow CA, Miller SW,Wagner U, et al. A cis-regulatory map of the Dro-
sophila genome. Nature. 2011; 471(7339):527–31. Epub 2011/03/25. doi: 10.1038/nature09990 PMID:
21430782

11. Sela I, Lukatsky DB. DNA sequence correlations shape nonspecific transcription factor-DNA binding
affinity. Biophysical Journal. 2011; 101(1):160–6. Epub 2011/07/05. doi: 10.1016/j.bpj.2011.04.037
PMID: 21723826

12. Afek A, Sela I, Musa-Lempel N, Lukatsky DB. Nonspecific transcription-factor-DNA binding influences
nucleosome occupancy in yeast. Biophysical Journal. 2011; 101(10):2465–75. Epub 2011/11/22. doi:
10.1016/j.bpj.2011.10.012 PMID: 22098745

13. Afek A, Lukatsky DB. Nonspecific protein-DNA binding is widespread in the yeast genome. Biophysical
Journal. 2012; 102(8):1881–8. Epub 2012/07/10. doi: 10.1016/j.bpj.2012.03.044 PMID: 22768944

14. Afek A, Lukatsky DB. Genome-Wide Organization of Eukaryotic Preinitiation Complex Is Influenced by
Nonconsensus Protein-DNA Binding. Biophysical Journal. 2013; 104(5):1107–15. Epub 2013/03/12.
doi: 10.1016/j.bpj.2013.01.038 PMID: 23473494

Nonconsensus TF-DNA Binding in Eukaryotic Genomes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004429 August 18, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004429.s009
http://www.ncbi.nlm.nih.gov/pubmed/7781610
http://dx.doi.org/10.1126/science.1196914
http://www.ncbi.nlm.nih.gov/pubmed/21177976
http://dx.doi.org/10.1101/gr.114587.110
http://www.ncbi.nlm.nih.gov/pubmed/21177963
http://dx.doi.org/10.1101/gr.115931.110
http://dx.doi.org/10.1101/gr.115931.110
http://www.ncbi.nlm.nih.gov/pubmed/21177966
http://dx.doi.org/10.1101/gr.115519.110
http://www.ncbi.nlm.nih.gov/pubmed/21177964
http://dx.doi.org/10.1093/nar/gkp952
http://www.ncbi.nlm.nih.gov/pubmed/19910365
http://dx.doi.org/10.1101/gr.114595.110
http://dx.doi.org/10.1101/gr.114595.110
http://www.ncbi.nlm.nih.gov/pubmed/21177967
http://dx.doi.org/10.1126/science.1198374
http://www.ncbi.nlm.nih.gov/pubmed/21177974
http://dx.doi.org/10.1126/science.1198374
http://www.ncbi.nlm.nih.gov/pubmed/21177974
http://dx.doi.org/10.1038/nature09990
http://www.ncbi.nlm.nih.gov/pubmed/21430782
http://dx.doi.org/10.1016/j.bpj.2011.04.037
http://www.ncbi.nlm.nih.gov/pubmed/21723826
http://dx.doi.org/10.1016/j.bpj.2011.10.012
http://www.ncbi.nlm.nih.gov/pubmed/22098745
http://dx.doi.org/10.1016/j.bpj.2012.03.044
http://www.ncbi.nlm.nih.gov/pubmed/22768944
http://dx.doi.org/10.1016/j.bpj.2013.01.038
http://www.ncbi.nlm.nih.gov/pubmed/23473494


15. Afek A, Schipper JL, Horton J, Gordan R, Lukatsky DB. Protein-DNA binding in the absence of specific
base-pair recognition. Proceedings of the National Academy of Sciences of the United States of Amer-
ica. 2014; 111(48):17140–5. doi: 10.1073/pnas.1410569111 PMID: 25313048

16. von Hippel PH, Revzin A, Gross CA, Wang AC. Non-specific DNA binding of genome regulating pro-
teins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc Natl Acad Sci U S
A. 1974; 71(12):4808–12. Epub 1974/12/01. PMID: 4612528

17. Berg OG, Winter RB, von Hippel PH. Diffusion-driven mechanisms of protein translocation on nucleic
acids. 1. Models and theory. Biochemistry. 1981; 20(24):6929–48. Epub 1981/11/24. PMID: 7317363

18. Berg OG, von Hippel PH. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical
theory and application to operators and promoters. J Mol Biol. 1987; 193(4):723–50. PMID: 3612791

19. von Hippel PH, Berg OG. On the specificity of DNA-protein interactions. Proc Natl Acad Sci U S A.
1986; 83(6):1608–12. Epub 1986/03/01. PMID: 3456604

20. von Hippel PH, Berg OG. Facilitated target location in biological systems. J Biol Chem. 1989; 264
(2):675–8. Epub 1989/01/15. PMID: 2642903

21. von Hippel PH. From "simple" DNA-protein interactions to the macromolecular machines of gene
expression. Annu Rev Biophys Biomol Struct. 2007; 36:79–105. Epub 2007/05/05. PMID: 17477836

22. Slutsky M, Mirny LA. Kinetics of protein-DNA interaction: facilitated target location in sequence-depen-
dent potential. Biophys J. 2004; 87(6):4021–35. Epub 2004/10/07. PMID: 15465864

23. Wunderlich Z, Mirny LA. Different gene regulation strategies revealed by analysis of binding motifs.
Trends Genet. 2009; 25(10):434–40. Epub 2009/10/10. doi: 10.1016/j.tig.2009.08.003 PMID:
19815308

24. Elf J, Li GW, Xie XS. Probing transcription factor dynamics at the single-molecule level in a living cell.
Science. 2007; 316(5828):1191–4. Epub 2007/05/26. PMID: 17525339

25. Hammar P, Leroy P, Mahmutovic A, Marklund EG, Berg OG, Elf J. The lac repressor displays facilitated
diffusion in living cells. Science. 2012; 336(6088):1595–8. Epub 2012/06/23. doi: 10.1126/science.
1221648 PMID: 22723426

26. Liebesny P, Goyal S, Dunlap D, Family F, Finzi L. Determination of the number of proteins bound non-
specifically to DNA. J Phys Condens Matter. 2010; 22(41):414104. Epub 2011/03/10. doi: 10.1088/
0953-8984/22/41/414104 PMID: 21386587

27. Manzo C, Zurla C, Dunlap DD, Finzi L. The effect of nonspecific binding of lambda repressor on DNA
looping dynamics. Biophys J. 2012; 103(8):1753–61. Epub 2012/10/23. doi: 10.1016/j.bpj.2012.09.006
PMID: 23083719

28. Zurla C, Manzo C, Dunlap D, Lewis DE, Adhya S, Finzi L. Direct demonstration and quantification of
long-range DNA looping by the lambda bacteriophage repressor. Nucleic Acids Res. 2009; 37
(9):2789–95. Epub 2009/03/12. doi: 10.1093/nar/gkp134 PMID: 19276206

29. Wang YM, Austin RH, Cox EC. Single molecule measurements of repressor protein 1D diffusion on
DNA. Phys Rev Lett. 2006; 97(4):048302. Epub 2006/08/16. PMID: 16907618

30. Blainey PC, Luo G, Kou SC, Mangel WF, Verdine GL, Bagchi B, et al. Nonspecifically bound proteins
spin while diffusing along DNA. Nat Struct Mol Biol. 2009; 16(12):1224–9. Epub 2009/11/10. doi: 10.
1038/nsmb.1716 PMID: 19898474

31. Tafvizi A, Huang F, Leith JS, Fersht AR, Mirny LA, van Oijen AM. Tumor suppressor p53 slides on DNA
with low friction and high stability. Biophys J. 2008; 95(1):L01–3. Epub 2008/04/22. doi: 10.1529/
biophysj.108.134122 PMID: 18424488

32. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, et al. Nucleosome organization in the
Drosophila genome. Nature. 2008; 453(7193):358–62. Epub 2008/04/15. doi: 10.1038/nature06929
PMID: 18408708

33. Grove CA, De Masi F, Barrasa MI, Newburger DE, AlkemaMJ, Bulyk ML, et al. A multiparameter net-
work reveals extensive divergence between C. elegans bHLH transcription factors. Cell. 2009; 138
(2):314–27. Epub 2009/07/28. doi: 10.1016/j.cell.2009.04.058 PMID: 19632181

34. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA, et al. Diversity and complexity
in DNA recognition by transcription factors. Science. 2009; 324(5935):1720–3. Epub 2009/05/16. doi:
10.1126/science.1162327 PMID: 19443739

35. Berger MF, Bulyk ML. Universal protein-binding microarrays for the comprehensive characterization of
the DNA-binding specificities of transcription factors. Nat Protoc. 2009; 4(3):393–411. Epub 2009/03/
07. doi: 10.1038/nprot.2008.195 PMID: 19265799

36. Afek A, Shakhnovich EI, Lukatsky DB. Multi-scale sequence correlations increase proteome structural
disorder and promiscuity. J Mol Biol. 2011; 409(3):439–49. Epub 2011/04/06. doi: 10.1016/j.jmb.2011.
03.056 PMID: 21463640

Nonconsensus TF-DNA Binding in Eukaryotic Genomes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004429 August 18, 2015 17 / 19

http://dx.doi.org/10.1073/pnas.1410569111
http://www.ncbi.nlm.nih.gov/pubmed/25313048
http://www.ncbi.nlm.nih.gov/pubmed/4612528
http://www.ncbi.nlm.nih.gov/pubmed/7317363
http://www.ncbi.nlm.nih.gov/pubmed/3612791
http://www.ncbi.nlm.nih.gov/pubmed/3456604
http://www.ncbi.nlm.nih.gov/pubmed/2642903
http://www.ncbi.nlm.nih.gov/pubmed/17477836
http://www.ncbi.nlm.nih.gov/pubmed/15465864
http://dx.doi.org/10.1016/j.tig.2009.08.003
http://www.ncbi.nlm.nih.gov/pubmed/19815308
http://www.ncbi.nlm.nih.gov/pubmed/17525339
http://dx.doi.org/10.1126/science.1221648
http://dx.doi.org/10.1126/science.1221648
http://www.ncbi.nlm.nih.gov/pubmed/22723426
http://dx.doi.org/10.1088/0953-8984/22/41/414104
http://dx.doi.org/10.1088/0953-8984/22/41/414104
http://www.ncbi.nlm.nih.gov/pubmed/21386587
http://dx.doi.org/10.1016/j.bpj.2012.09.006
http://www.ncbi.nlm.nih.gov/pubmed/23083719
http://dx.doi.org/10.1093/nar/gkp134
http://www.ncbi.nlm.nih.gov/pubmed/19276206
http://www.ncbi.nlm.nih.gov/pubmed/16907618
http://dx.doi.org/10.1038/nsmb.1716
http://dx.doi.org/10.1038/nsmb.1716
http://www.ncbi.nlm.nih.gov/pubmed/19898474
http://dx.doi.org/10.1529/biophysj.108.134122
http://dx.doi.org/10.1529/biophysj.108.134122
http://www.ncbi.nlm.nih.gov/pubmed/18424488
http://dx.doi.org/10.1038/nature06929
http://www.ncbi.nlm.nih.gov/pubmed/18408708
http://dx.doi.org/10.1016/j.cell.2009.04.058
http://www.ncbi.nlm.nih.gov/pubmed/19632181
http://dx.doi.org/10.1126/science.1162327
http://www.ncbi.nlm.nih.gov/pubmed/19443739
http://dx.doi.org/10.1038/nprot.2008.195
http://www.ncbi.nlm.nih.gov/pubmed/19265799
http://dx.doi.org/10.1016/j.jmb.2011.03.056
http://dx.doi.org/10.1016/j.jmb.2011.03.056
http://www.ncbi.nlm.nih.gov/pubmed/21463640


37. Lukatsky DB, Afek A, Shakhnovich EI. Sequence correlations shape protein promiscuity. J Chem
Phys. 2011; 135(6):065104. Epub 2011/08/17. doi: 10.1063/1.3624332 PMID: 21842953

38. Elkin M, Andre I, Lukatsky DB. Energy Fluctuations Shape Free Energy of Nonspecific Biomolecular
Interactions. Journal of Statistical Physics. 2012; 146(4):870–7.

39. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome
core particle at 2.8 angstrom resolution. Nature. 1997; 389(6648):251–60. PMID: 9305837

40. Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD. Structure of an RNA polymerase II-TFIIB com-
plex and the transcription initiation mechanism. Science. 2010; 327(5962):206–9. Epub 2009/12/08.
doi: 10.1126/science.1182015 PMID: 19965383

41. Kasinathan S, Orsi GA, Zentner GE, Ahmad K, Henikoff S. High-resolution mapping of transcription fac-
tor binding sites on native chromatin. Nature methods. 2014; 11(2):203–9. doi: 10.1038/nmeth.2766
PMID: 24336359

42. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, PeckhamH, et al. A high-resolution, nucleosome
position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res.
2008; 18(7):1051–63. Epub 2008/05/15. doi: 10.1101/gr.076463.108 PMID: 18477713

43. Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. A packing mechanism for nucleosome organi-
zation reconstituted across a eukaryotic genome. Science. 2011; 332(6032):977–80. Epub 2011/05/
21. doi: 10.1126/science.1200508 PMID: 21596991

44. Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, et al. Intrinsic histone-DNA
interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol. 2009;
16(8):847–52. Epub 2009/07/22. doi: 10.1038/nsmb.1636 PMID: 19620965

45. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, et al. The DNA-encoded nucle-
osome organization of a eukaryotic genome. Nature. 2009; 458(7236):362–6. Epub 2008/12/19. doi:
10.1038/nature07667 PMID: 19092803

46. Lorch Y, Maier-Davis B, Kornberg RD. Role of DNA sequence in chromatin remodeling and the forma-
tion of nucleosome-free regions. Genes Dev. 2014; 28(22):2492–7. Epub 2014/11/19. doi: 10.1101/
gad.250704.114 PMID: 25403179

47. Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, Bulyk ML. Compact, universal DNA
microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol.
2006; 24(11):1429–35. Epub 2006/09/26. PMID: 16998473

48. Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, et al. Rapid analysis of the DNA-
binding specificities of transcription factors with DNAmicroarrays. Nat Genet. 2004; 36(12):1331–9.
Epub 2004/11/16. PMID: 15543148

49. Gordan R, Shen N, Dror I, Zhou T, Horton J, Rohs R, et al. Genomic regions flanking E-box binding
sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep.
2013; 3(4):1093–104. Epub 2013/04/09. doi: 10.1016/j.celrep.2013.03.014 PMID: 23562153

50. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, et al. Variation in homeo-
domain DNA binding revealed by high-resolution analysis of sequence preferences. Cell. 2008; 133
(7):1266–76. Epub 2008/07/01. doi: 10.1016/j.cell.2008.05.024 PMID: 18585359

51. Mirny LA. Nucleosome-mediated cooperativity between transcription factors. Proc Natl Acad Sci U S A.
2010; 107(52):22534–9. Epub 2010/12/15. doi: 10.1073/pnas.0913805107 PMID: 21149679

52. Teif VB, Rippe K. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhanc-
ers. Phys Biol. 2011; 8(4):044001. doi: 10.1088/1478-3975/8/4/044001 PMID: 21666293

53. Elfving N, Chereji RV, Bharatula V, Bjorklund S, Morozov AV, Broach JR. A dynamic interplay of nucle-
osome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic
Acids Res. 2014; 42(9):5468–82. doi: 10.1093/nar/gku176 PMID: 24598258

54. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical guidelines for the comprehen-
sive analysis of ChIP-seq data. PLoS Comput Biol. 2013; 9(11):e1003326. Epub 2013/11/19. doi: 10.
1371/journal.pcbi.1003326 PMID: 24244136

55. Grewal SI, Elgin SC. Transcription and RNA interference in the formation of heterochromatin. Nature.
2007; 447(7143):399–406. PMID: 17522672

56. Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa-Velazquez IA, van de Nobelen S, Shukeir N,
et al. A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol
Biol. 2012; 19(10):1023–30. Epub 2012/09/18. doi: 10.1038/nsmb.2382 PMID: 22983563

57. Ezer D, Zabet NR, Adryan B. Homotypic clusters of transcription factor binding sites: A model system
for understanding the physical mechanics of gene expression. Computational and structural biotechnol-
ogy journal. 2014; 10(17):63–9. doi: 10.1016/j.csbj.2014.07.005 PMID: 25349675

58. Kolomeisky AB. Physics of protein—DNA interactions: mechanisms of facilitated target search. Physi-
cal Chemistry Chemical Physics. 2011; 13(6):2088–95. doi: 10.1039/c0cp01966f PMID: 21113556

Nonconsensus TF-DNA Binding in Eukaryotic Genomes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004429 August 18, 2015 18 / 19

http://dx.doi.org/10.1063/1.3624332
http://www.ncbi.nlm.nih.gov/pubmed/21842953
http://www.ncbi.nlm.nih.gov/pubmed/9305837
http://dx.doi.org/10.1126/science.1182015
http://www.ncbi.nlm.nih.gov/pubmed/19965383
http://dx.doi.org/10.1038/nmeth.2766
http://www.ncbi.nlm.nih.gov/pubmed/24336359
http://dx.doi.org/10.1101/gr.076463.108
http://www.ncbi.nlm.nih.gov/pubmed/18477713
http://dx.doi.org/10.1126/science.1200508
http://www.ncbi.nlm.nih.gov/pubmed/21596991
http://dx.doi.org/10.1038/nsmb.1636
http://www.ncbi.nlm.nih.gov/pubmed/19620965
http://dx.doi.org/10.1038/nature07667
http://www.ncbi.nlm.nih.gov/pubmed/19092803
http://dx.doi.org/10.1101/gad.250704.114
http://dx.doi.org/10.1101/gad.250704.114
http://www.ncbi.nlm.nih.gov/pubmed/25403179
http://www.ncbi.nlm.nih.gov/pubmed/16998473
http://www.ncbi.nlm.nih.gov/pubmed/15543148
http://dx.doi.org/10.1016/j.celrep.2013.03.014
http://www.ncbi.nlm.nih.gov/pubmed/23562153
http://dx.doi.org/10.1016/j.cell.2008.05.024
http://www.ncbi.nlm.nih.gov/pubmed/18585359
http://dx.doi.org/10.1073/pnas.0913805107
http://www.ncbi.nlm.nih.gov/pubmed/21149679
http://dx.doi.org/10.1088/1478-3975/8/4/044001
http://www.ncbi.nlm.nih.gov/pubmed/21666293
http://dx.doi.org/10.1093/nar/gku176
http://www.ncbi.nlm.nih.gov/pubmed/24598258
http://dx.doi.org/10.1371/journal.pcbi.1003326
http://dx.doi.org/10.1371/journal.pcbi.1003326
http://www.ncbi.nlm.nih.gov/pubmed/24244136
http://www.ncbi.nlm.nih.gov/pubmed/17522672
http://dx.doi.org/10.1038/nsmb.2382
http://www.ncbi.nlm.nih.gov/pubmed/22983563
http://dx.doi.org/10.1016/j.csbj.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25349675
http://dx.doi.org/10.1039/c0cp01966f
http://www.ncbi.nlm.nih.gov/pubmed/21113556


59. Shimamoto N. One-dimensional diffusion of proteins along DNA Its biological and chemical signifi-
cance revealed by single-molecule measurements. Journal of Biological Chemistry. 1999; 274
(22):15293–6. PMID: 10336412

60. Esadze A, Kemme CA, Kolomeisky AB, Iwahara J. Positive and negative impacts of nonspecific sites
during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physi-
ological ionic strength. Nucleic acids research. 2014:gku418.

61. Weindl J, Dawy Z, Hanus P, Zech J, Mueller JC. Modeling promoter search by E. coli RNA polymerase:
One-dimensional diffusion in a sequence-dependent energy landscape. Journal of theoretical biology.
2009; 259(3):628–34. doi: 10.1016/j.jtbi.2009.05.006 PMID: 19463831

62. Mirny L, Slutsky M, Wunderlich Z, Tafvizi A, Leith J, Kosmrlj A. How a protein searches for its site on
DNA: the mechanism of facilitated diffusion. Journal of Physics A: Mathematical and Theoretical. 2009;
42(43):434013.

63. Zhang C, Xuan Z, Otto S, Hover JR, McCorkle SR, Mandel G, et al. A clustering property of highly-
degenerate transcription factor binding sites in the mammalian genome. Nucleic acids research. 2006;
34(8):2238–46. PMID: 16670430

64. Afek A, Schipper JL, Horton J, Gordân R, Lukatsky DB. Protein−DNA binding in the absence of specific
base-pair recognition. Proceedings of the National Academy of Sciences. 2014; 111(48):17140–5.

65. Smith T, Husbands P, Layzell P, O'Shea M. Fitness landscapes and evolvability. Evolutionary compu-
tation. 2002; 10(1):1–34. PMID: 11911781

66. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and
inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158(6):1431–43. Epub
2014/09/13. doi: 10.1016/j.cell.2014.08.009 PMID: 25215497

67. Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, ChenWJ, et al. WormBase 2012: more genomes,
more data, new website. Nucleic Acids Res. 2012; 40(Database issue):D735–41. Epub 2011/11/10.
doi: 10.1093/nar/gkr954 PMID: 22067452

68. Halford S. An end to 40 years of mistakes in DNA-protein association kinetics? Biochemical Society
Transactions. 2009; 37(2):343.

69. Bonnet I, Biebricher A, Porté P-L, Loverdo C, Bénichou O, Voituriez R, et al. Sliding and jumping of sin-
gle EcoRV restriction enzymes on non-cognate DNA. Nucleic acids research. 2008; 36(12):4118–27.
doi: 10.1093/nar/gkn376 PMID: 18544605

Nonconsensus TF-DNA Binding in Eukaryotic Genomes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004429 August 18, 2015 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/10336412
http://dx.doi.org/10.1016/j.jtbi.2009.05.006
http://www.ncbi.nlm.nih.gov/pubmed/19463831
http://www.ncbi.nlm.nih.gov/pubmed/16670430
http://www.ncbi.nlm.nih.gov/pubmed/11911781
http://dx.doi.org/10.1016/j.cell.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25215497
http://dx.doi.org/10.1093/nar/gkr954
http://www.ncbi.nlm.nih.gov/pubmed/22067452
http://dx.doi.org/10.1093/nar/gkn376
http://www.ncbi.nlm.nih.gov/pubmed/18544605

