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Objective: Radiotherapy (RT) is an integral part of the interdisciplinary treatment of
patients with high-risk neuroblastoma (NB). With the continuous improvements of
outcome, the interest in local treatment strategies that reduce treatment-related side
effects while achieving optimal oncological results is growing. Proton beam therapy (PBT)
represents a promising alternative to conventional photon irradiation with regard to the
reduction of treatment burden.

Method: Retrospective analysis of children with high or intermediate risk NB receiving
PBT of the primary tumor site during first-line therapy between 2015 and 2020 was
performed. Data from the prospective in-house registry Standard Protonentherapie
WPE – Kinder- (KiProReg) with respect to tumor control and treatment toxicity were
analyzed. Adverse events were classified according to CTCAE Version 4 (V4.0) before,
during, and after PBT.

Results: In total, 44 patients (24 male, 20 female) with high (n = 39) or intermediate risk
NB (n = 5) were included in the analysis. Median age was 3.4 years (range, 1.4–9.9 years).
PBT doses ranged from 21.0 to 39.6 Gray (Gy) (median 36.0 Gy). Five patients received
PBT to the MIBG-avid residual at the primary tumor site at time of PBT according to the
NB-2004 protocol. In 39 patients radiation was given to the pre-operative tumor bed with
or without an additional boost in case of residual tumor. After a median follow-up (FU) of
27.6 months, eight patients developed progression, either local recurrence (n = 1) or
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distant metastases (n = 7). Four patients died due to tumor progression. At three years,
the estimated local control, distant metastatic free survival, progression free survival, and
overall survival was 97.7, 84.1, 81.8, and 90.9%, respectively. During radiation, seven
patients experienced higher-grade (CTCAE ≥ °3) hematologic toxicity. No other higher
grade acute toxicity occurred. After PBT, one patient developed transient myelitis while
receiving immunotherapy. No higher grade long-term toxicity was observed up to date.

Conclusion: PBT was a well tolerated and effective local treatment in children with high
and intermediate risk NB. The role of RT in an intensive multidisciplinary treatment regimen
remains to be studied in the future in order to better define timing, doses, target volumes,
and general need for RT in a particularly sensitive cohort of patients.
Keywords: neuroblastoma, proton beam therapy (PBT), radiotherapy—adverse effects, pediatric radiation
oncology, childhood cancer, retroperitoneal tumor, survival
INTRODUCTION

Neuroblastoma (NB) is the most common extracranial solid
tumor of childhood. It has been identified as a neuroectodermal
embryonal malignant tumor affecting the sympathetic nervous
tissue. Approximately 50% of all patients are diagnosed already
with distant metastases (1). The age of >18 months at diagnosis,
the detection of amplification of the oncogene MYCN and the
presence of distant metastases are well known risk factors for
worse disease control and survival (2). The amplification of the
MYCN-gene at least five-fold is found in 20–25% of all NBs (3–
5). The different risk groups of NB show a heterogeneous course
from spontaneous regression to high mortality. While no
indication for radiotherapy (RT) is seen in low risk NBs, RT is
an integral part of the interdisciplinary treatment of patients with
high-risk disease (6). In addition to RT, the treatment regimen in
high-risk NBs includes induction chemotherapy, high-dose
chemotherapy including tandem transplant, surgery, and
immunotherapy. Despite intensive multimodal therapy, the 5-
year survival rate of patients with high-risk NB is below 50% (7).
Nevertheless, the treatment of metastatic NB has developed
considerably with the use of high-dose chemotherapy and
immunotherapy (8–10). With the continuous improvements of
prognosis, the interest in local therapeutic strategies that
potentially can reduce treatment-related side effects while
maintaining high tumor control is increasing. Considering the
very young age of the affected children, the position of the tumor
close to the radiation sensitive organs, such as kidneys and spinal
medulla, and the intensive multi-agent chemotherapy applied
prior to radiation, proton beam therapy (PBT) represents a
promising alternative to conventional photon irradiation.
Planning studies in NB have shown that PBT can considerably
reduce the radiation exposure of adjacent healthy tissue,
potentially reducing the radiation-induced toxicities (11, 12).
Furthermore, there are already clinical data demonstrating the
effectiveness and feasibility of PBT for NB patients (13, 14). The
current study reports on our experiences when treating patients
with NB with special consideration of PBT in an intensive
multimodal therapy concept.
2

METHODS

Patients
Children with high or intermediate risk NB receiving PBT at a
single institution during front-line treatment within the
prospective in-house registry (Standard Protonentherapie
WPE – Kinder- KiProReg; DRKS00005363) were included in
this analysis. The high-risk group included all patients with an
age of >18 months or >12 months (depending on the study
protocol) at diagnosis presenting either with MYCN
amplification or with distant metastases. All patients were
discussed within the multidisciplinary German NB study board
before starting RT. The decision for PBT was considered
individually by the national German NB board, which in
addition to representatives of pediatric oncology also includes
radiation oncology representing both PBT and conventional RT.
PBT was typically preferred in younger patients, larger tumors,
sites near critical structures, and central sites. Patients treated for
a relapse were excluded from this analysis. For all children, data
on patients, tumor, treatment, outcome, and toxicity was
collected. The registry was approved by the Institutional
Ethical Board of the University Duisburg-Essen.

Treatment
Overall strategies were applied within or according to the respective
national or international protocols and treatment standards,
respectively. In general, first line treatment for high risk disease
consisted of induction chemotherapy, high-dose myeloablative
chemotherapy followed by autologous stem-cell rescue and post-
consolidation treatment of either immunotherapy with the antibody
ch14.18 or retinoic acid. In all patients receiving high-dose
chemotherapy with busulfan/melphalan (BuMel), a period of 60–
90 days was respected before irradiation started. Consolidating
immunotherapy started 4 weeks after the end of RT.

Prior to the start of RT, a re-staging consisting of functional
imaging using 123I-mIBG or fluorine-18 (18F) fluorodeoxyglucose
(FDG), and cross-sectional imaging was performed. In the case of
tumor site in the vicinity of the kidney, a renal scintigraphy was
performed prior to radiation planning. In addition, before PBT
January 2021 | Volume 10 | Article 617506
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planning, a central radiological review was performed regarding the
preoperative extension and any residual disease in all patients.
Furthermore, the surgery reports were evaluated and discussed
with the surgeon in case of any uncertainties. A treatment
planning computed tomography (CT) was obtained using 1–2
mm slice thickness for all cases. The planning CT was merged
with a planning magnetic resonance imaging (MRI) and the initial,
preoperative, andmost recent previous diagnosticMRIs andMIBGs
whenever available. Immobilization of patients for CT-simulation
and treatment was ensured using customized immobilization
devices depending on the tumor site and geometry. Patients were
individually positioned either in prone or supine position. For
patients treated according to the “NB 2004 Trial Protocol for Risk
Adapted Treatment of Children with Neuroblastoma” (NB 2004/
NB2004-HR) (NCT 00410631; NCT 00526318) (15), the extended
(by up to 2 cm = CTV) active residual primary tumor was
delineated and a total dose of 36–40 Gray (Gy) was delivered to
the respective PTV. For patients treated according to High Risk
Neuroblastoma Study 1.8 of SIOP-Europe (HRNBL1) (NCT
01704716) protocol or European Low and Intermediate Risk
Neuroblastoma Protocol (LINES) (NCT01728155), the gross
tumor volume (GTV) included the preoperative extent of the
disease adapted to the current anatomy and extended by up to
1 cm in order to account for microscopic spread (CTV). The
respective PTV was irradiated up to 21 Gy. Since October 2018,
radiation of the primary preoperative tumor region with 21.6 Gy
and a tumor boost for the residual tumors with cumulative 36 Gy
became the standard in Germany [Association of the Scientific
Medical Societies in Germany (AWMF) registration number: 025/
008] and was applied in patients not treated in a clinical trial (16).
Additionally, in patients with up to threeMIBG positive (at the time
of RT) osteomedullary metastases, combined irradiation of these
lesions was considered. However, the decision to radiate metastases
was made very individually by the national interdisciplinary study
board. For all dose concepts, a generic relative biological
effectiveness (RBE) factor of 1.1 (relative to that of Co-60) was
assumed. Proton doses were expressed in terms of Gy (RBE) [Gy
(RBE) = proton Gy X 1.1]. After high-dose chemotherapy with
Busulfan/Melphalen, the RT planning goals aimed to reduce the
maximum dose to gastrointestinal tract, spinal cord, and lung below
30 Gy (RBE). PBT was applied with either uniform (US) or pencil
beam scanning (PBS). Treatment planning was carried out with
XiO Version 4.80 (Elekta, Stockholm, Sweden) and RayStation©

Versions 4.7 to 7.0 (RaySearch Laboratories, Stockholm, Sweden).
Typically, two to three beams were used for treatment planning. A
multi-field optimization employing intensity modulation was
conducted in PBS delivery mode. Typically, the maximum dose of
a field was allowed to exceed its nominal dose, i.e. a field
configuration with equal weights, by 30%. In order to address
potential uncertainties, a density overwrite of the intestine with the
average intestine density and a re-computation of the dose
distribution was performed. If an interfractional change of the
intestine filling had relevant impact on dose robustness, a robust
optimization of the treatment plan was conducted simultaneously
on the planning CTwith or without overwriting intestine density. In
addition, the accuracy of dose computation in heterogeneous
Frontiers in Oncology | www.frontiersin.org 3
anatomical regions was taken into account by the Monte-Carlo
dose engine as an integral part of the treatment planning system
RayStation (17, 18).

Patient set-up, positioning, and treatment were conducted
with a ProteusPlus therapy machine (IBA, Lovain-La-Neuve,
Belgium). Position verification was facilitated with laser systems,
orthogonal X-ray imaging, and a surface tracking camera system
(AlignRT, Vision RT Ltd., London, UK). Corrections of the
patient set-up were applied to the patient position system, which
supports six degrees of freedom. US fields were applied with the
IBA universal nozzle which is attached to a 360° gantry. The
nozzle was equipped with a Snout180 supporting up two field-
specific brass apertures upstream of a range compensator custom
milled from an acrylic glass cylinder. PBS fields were applied with
a PBS dedicated nozzle which is attached again to a 360° gantry.
The PBS delivery proceeded in a step-and-shoot spot scanning
mode. The energy and thus, range of the pencil beams was
adjusted with an energy-selection system downstream of an
isochronous cyclotron.

Whenever tumors in the abdomen and in the thorax
displayed relevant respiratory motion, special management to
compensate for interplay effect was provided. The motion during
the sessions of these cases was monitored with AlignRT. The set-
up margin was expanded particularly in cranio-caudal direction.
The size of the additional margin was checked against the
AlignRT readings. If the respiratory motion was a major
concern, also layered repainting was considered resulting in
the repeated application of spot segments with the same
proton kinetic energy and downscaled fluence (factor of five).
Verification MRIs were done on regular basis during treatment,
and if any anatomical changes were detected, a new planning CT
was obtained with adaptation of contours and plan.

During PBT, regular consultations by radiation oncologists
and pediatric oncologists were provided. If patients were too
young to consciously cooperate, pediatric anesthesiologists
performed deep sedation with i.v. propofol.

Adverse Events and Follow-Up
Adverse events were classified according to Common Toxicities
Criteria on Adverse Events (CTCAE) version 4.0. Adverse events
were recorded before, during RT, after 90 days and then at least
once a year according to the prospective in-house registry. All
patients were assessed weekly during PBT. During FU, patients
underwent clinical examination, evaluation of tumor markers,
bone marrow examination, cross-sectional and functional
diagnostic imaging.

Statistical Analysis
Qualitative data was reported as frequency (minimum-maximum
and percentage). The cut-off was based on the known cut-off or
median. Local recurrence (LR) was used to indicate failure in the
irradiated region. Consequently, local control (LC) was determined as
the absence of local recurrence. Local metastatic relapse (LMR) was
used to describe failure at irradiated metastatic lesions. Accordingly,
local metastatic control characterized the absence of failure at
irradiated lesions. Progression was defined as any event of tumor
January 2021 | Volume 10 | Article 617506
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growth or relapse. Therefore, progression free survival (PFS)
represents the time from diagnosis until any failure, relapse, or
death. Distant metastatic failure (DMF) was defined as a metastatic
recurrence occurring at a metastatic non-irradiated site. Distant
metastatic free survival (DMFS) was defined as the absence of
metastatic recurrence. Overall survival (OS) was defined as the time
from diagnosis to death. LC, PFS, DMFS, andOS were calculated and
graphically illustrated using the Kaplan-Meier method. Patients
were censored at the time of the last follow-up if not having any
event. All statistical analyses were carried out with the Statistical
Package for the Social Sciences (SPSS)Version 16.0 underWindows®.

Patients and Tumor Characteristics
A total of 44 patients (24 male; 20 female) were evaluable for this
analysis.ThemedianageatPBTwas3.4years (range, 1.4–9.9years).The
cohort included 39 children (89.0%) with high-risk disease and five
children (11%)with local intermediate-risk disease. Further information
on patients and tumor characteristics is displayed in Table 1.

Treatment
Induction chemotherapy was performed either according to the
German Society for Paediatric Oncology and Hematology (GPOH)
regimen consisting of three N5 (cisplatin, etoposide, and vindesine)
and three N6 cycles (vincristine, dacarbacine, ifosfamide, and
doxorubicine) (n = 34) (6), according to the SIOPEN protocol
with the administration of “rapid COJEC” containing cisplatin,
vincristine, carboplatin, etoposide, and cyclophosphamide with
subsequent administration of Granulocyte Colony Stimulating
Factor (n = 8) or according to the European Low and
Intermediate Risk Neuroblastoma Protocol (LINES) which
comprises a combination chemotherapy consisting of carboplatin
and etoposide as well as cyclophosphamide doxorubicin and
vincristine (n = 2).

After induction chemotherapy, high-dose chemotherapy with
autologous stem cell rescue was provided to 39 patients (88.6%).
For high-dose chemotherapy either busulfan and melphalan
(BuMel) (n = 32), melphalan, etoposide, and carboplatin (n =
6) or treosulfan–melphalan (n = 1) was administered.

All but one child (98%) underwent tumor resection before
RT. Complete macroscopic excision (CME) was achieved in
thirteen patients (29.5%). PBT was performed either according
to the NB2004 protocol (n = 4), SIOPEN HRNBL1 protocol (n =
5) SIOPEN LINES protocol (n = 2) or according to the German
AWMF guideline (n = 33). Of 31 patients with residual tumor at
the time of RT, 25 (80.6%) received a dose of more than 30 Gy
(RBE). After RT, 5 children received retinoic acid and 36
children received immunotherapy for consolidation purposes.

Outcome
After a median FU of 27.6 months from diagnosis, the estimated
local control, distant metastatic free survival, progression free
survival, and overall survival at 3 years was 97.7, 84.1, 81.8, and
90.9% respectively (Figure 1). Out of eight patients with disease
progression, one experienced local failure only and seven patients
experienced progression with distant metastasis without local
failure. Four patients died due to tumor progression. No
progression was observed at the irradiated metastatic sites (n = 4).
Frontiers in Oncology | www.frontiersin.org 4
Treatment Toxicity
Twenty-three patients presented already at baseline (before
starting PBT) with one or more conditions such as veno
occlusive disease/sinusoidal obstruction syndrome of the liver
(n = 8, 18%), sensorineural hearing loss (n = 5, 11.3%), chronic
diarrhea (n = 2, 4.5%), neurological impairment (n = 2, 4.5%),
necrosis of the femoral head (n = 1, 2.2%), lung function
restriction (n = 1, 2.2%), and grade 3 hematotoxicity (n = 3,
6%). The two patients with chronic diarrhea were later diagnosed
with an exocrine pancreatic insufficiency.

No higher grade (CTCAE > °2) acute adverse event was
observed during the course of PBT except for hematologic
toxicity. Higher-grade hematologic toxicity (> CTCAE ° 2) was
TABLE 1 | Patient and treatment characteristics.

Characteristics %

Sex n
male 24 55%
female 20 45%
Age at diagnosis years
Median 2,6
Min 0.1
Max 8.7
Age at start of proton therapy years
Median 3.4
Min 1.4
Max 9.9
Risk grouping n
high 39 89%
intermediate 5 11%
nMYC Status n
amplified 29 66%
non-amplified 15 34%
Induction chemotherapy n
yes 44 100%
no 0 0%
Resection status n
CME 13 30%
IME 30 68%
none 1 2%
High-dose chemotherapy n
none 5 11%
BuMel 32 73%
MEC 6 14%
TreoMel 1 2%
Radiotherapy treatment concept n
36–39.6 Gy to residue 4 9%
21.6 Gy to preop.TU; boost to residue to cum. 36 Gy 33 75%
21 Gy to preop. TU 7 16%
Median total PBT dose Gy

36.0
Median number of fractions n

20
Consolidation therapy n
immunotherapy 36 82%
retino acid 5 11%
none 3 18%
January 2021 | Volume
 10 | Article 6
n, number; GPOH regime, German Society for Paediatric Oncology and Hematology
(GPOH) regimen [three N5 (cisplatin, etoposide, and vindesine) and three N6 cycles
(vincristine, dacarbacine, ifosfamide, and doxorubicine)], Rapid Cojek (cisplatin, vincristine,
carboplatin, etoposide, and cyclophosphamide with subsequent administration of
Granulocyte Colony Stimulating Factor); CME, Complete macroscopic excision; IME,
Incomplete macroscopic excision; BuMel, Busulphan and Melphalan; MEC, Melphalan,
Etoposide, and Carboplatin; TreoMel, treosulfan–melphalan.
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FIGURE 1 | Kaplan-Meier estimates of local control (LC), overall survival (OS) and progression free survival (PFS) respectively for all patients.
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reported in seven patients including leukocytopenia (n = 3),
thrombocytopenia (n = 3), anaemia (n = 1), and neutropenia
(n = 4). One child presented with temporary myelitis (CTCAE °
3) associated with impaired leg movement and bladder
dysfunction following the first block of immunotherapy after
PBT, and was considered as early-delayed complication. The
diagnostic imaging displayed a hyperintense MRI change of the
spinal cord at the level of the radiation field having received near-
maximum dose of 24Gy (RBE). Dosimetric analyses showed no
overlap between potential regions with high linear energy
transfer (LET) and the area of the myelitis. In one out of five
fields applied in two irradiation series, the distal edge stops in the
proximity of the myelon. The robustness analysis in terms of
stopping-power and set-up uncertainties revealed that even in an
unfavorable scenario, the dose received by the myelon would be
increased by about 4 Gy (RBE) and would, thus, still be far below
the acceptable dose limits. After treatment with corticosteroids
and immunoglobin, the clinical symptoms improved.

With regard to long-term toxicity, no symptomatic adverse
event was observed attributable to PBT so far. In one patient, an
asymptomatic image finding of the irradiated parts of the kidney
cortex with normal renal function parameters was observed.
DISCUSSION

This study is one of the largest series with standardized data
on RT for NB. Our original data displays excellent safety,
feasibility and high tumor control gathered from a prospective
monoinstitutional registry. Our study complements the existing
literature on children undergoing RT for NB confirming high
LC and acceptable OS. Local control and survival rates were
similar to other studies, which demonstrated a 3- to 5-year LC
Frontiers in Oncology | www.frontiersin.org 5
and OS of 64.7–97% and 35–94% (13, 19–27). In the literature,
the most common late effects associated with RT were
musculoskeletal abnormalities, gastrointestinal dysfunctions,
metabolic disorders, vascular changes, and secondary
malignancies (22, 28–31). However, in previous experiences the
incidence of RT associated complications was very low, which is
consistent with our early results. While the complications of RT in
children with NB were only rudimentarily investigated during
the early experiences, this study stands out in particular for the
close interdisciplinary monitoring and assessment of acute and
late effects.

Previously, three comparable studies on PBT for NB have
been published. All studies comprised cohorts with similar
median age and similar treatment strategies prior to irradiation
[9–10, 15]. In all three studies, patients received PBT to the
preoperative tumor bed with 21.6–24 Gy (RBE). In two of them,
a boost to the residual tumor was administered for a subset of
patients. The estimated 3-year local control rate of 97.7% in our
study is consistent with the previous PBT experience. Hill et al.
reported a local control rate of 97% at 5 years after a median
follow-up time of 48.7 months (14). Bagley et al. published on a
5-year local control rate of 87% after a median follow‐up of 60.2
months (13). Lim et al. did not experience any local recurrence in
their study but having a limited follow-up time of only 14.9
months. As the characteristics of our cohort, and our results are
in line with the previous investigations, it confirms that high
local control rates can be achieved with PBT in a very sensitive
cohort of very young NB patients (32).

PBT was used less frequently in NB compared to other
malignancies. First, total doses are relatively low, and second
concerns were raised regarding the robustness of PBT plans in
the presence of small bowel or diaphragm and lung in or close to
the target volume. Protons lose their energy as they pass through
January 2021 | Volume 10 | Article 617506
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matter and are thereby continuously slowing down. The
absorbed dose scales with the inverse of the squared velocity
giving rise to an enhancement in ionization near the end of the
range, called the Bragg peak. The advantageous depth dose
distribution allows for conformal dose coverage of the (static)
target and a low radiation burden to healthy tissue. On the other
hand, the accurate deposition of dose in the depth domain
necessitates concepts to deal with possible variations in
geometry or density. These have been considered in the
treatment planning of the current study by various measures,
individually depending on the tumor site, the amount of
respiratory motion or the variability of density of the
gastrointestinal tract. All these parameters can affect robustness
and, thus, carry a risk of over- or underdosing the target volume
and possibly compromising tumor control rates. The overall
good local control rates of PBT reported here and elsewhere,
confirm feasibility and robustness of PBT treatment plans for the
treatment of NB. Plan comparison studies have shown that PBT
is particularly advantageous for lateralized target volumes to
protect the contralateral side (11, 33).

While RT is considered as a key element in the treatment of
high-risk NB, the value of radiation for metastases in NB is seen
controversially. While limited cohort studies with a comparison
group could not find a positive effect (34, 35), institutional
studies revealed promising results (25, 36). In our analysis,
local tumor control was achieved for all metastases when
irradiated. However, RT to metastatic lesions was only offered
to children with limited dissemination at the time of RT defined
as up to three MIBG-avid lesions.

Although RT is an integral part of the multimodality
treatment of high-risk neuroblastoma, the role of RT with
regard to the dose concept is still unclear (37). High local
control rates were achieved after irradiation of the preoperative
tumor bed with 21 Gy (22, 38–40). It was even discussed by
Casey et al. whether lower doses could be sufficient as they
obtained comparable results for 18 Gy (41). However, the extent
of surgery and the response to high-dose chemotherapy were not
taken into account at the radiation planning, so far. There is an
on-going controversy about the impact of a macroscopically
complete resection compared to an incomplete tumor resection
in children with high-risk disease. Analyses of the German NB
study NB97 did not show any significant difference for LC, PFS,
and OS between the two groups (42). In contrast, the results of
the HR-NBL1/SIOPEN study in patients with metastatic NB
responding to induction therapy were recently published and
showed a small but due to the high number of patients significant
improvement for survival and local control rates after
macroscopic complete resection (43). In our study, CME was
only achieved in 13 patients. Still, only one child experienced
local progression. However, out of 31 children with residual
tumor at time of RT, 25 children received a dose higher than 30
Gy (RBE) for the residual tumor. In Europe, there is a debate, if,
after subtotal resection a dose increase with 36 Gy may be
advantageous. A retrospective study from the Memorial Sloan
Kettering Cancer Centre showed that patients with residual
tumor who had received a dose of more than 30 Gy remained
Frontiers in Oncology | www.frontiersin.org 6
free of local failure (100%), while 30% of those who were
irradiated with a dose below 30 Gy experienced local failure
(44). Simon et al. had comparable results for patients with
residual tumor who received a dose of 36–40 Gy. The local
control rate at 3 years in NB 97 for patients with residual tumor
who underwent RT was 100% (45). In contrast, the preliminary
results of the prospective American ANBL0532 study published
recently displayed no benefit of a boost. In this study, 133
patients received preoperative tumor bed irradiation at 21.6 Gy
and a boost to the residual tumor up to 36 Gy. No superior
results for LC, EFS, or OS at 5 years were achieved when
compared to the COG A3973 (NCT 00004188) study. After
amendment, patients received only 21.6 Gy radiation of the
tumor bed without any boost to the residue (46). The recently
opened European collaborative study HR-NBL2 currently
investigates the role of a boost after incomplete resection in a
randomized fashion. These data are particularly relevant as there
is evidence that a dose increase above 30Gy may also increase the
likelihood of complications (31).

In contrast to these data but in line with other proton studies,
we did not observe relevant, higher grade toxicity, although most
of the patients received total doses above 30Gy.

The use of myeloablative chemotherapy (8, 9) and particularly
those containing BuMel (47) has been shown to improve the
outcome of high-risk NB patients. However, an increased
radiosensitivity was assumed after the administration of Busulfan
containing myeloablative chemotherapy regimens. Unfortunately,
the data on the combination of BuMel and irradiation is very
limited and mainly restricted to Ewing sarcomas. Therefore, dose
limits applicable to NBs are difficult to define. Seddon et al. reported
on a 17-year-old boy presenting with myelopathy after radiation
therapy (maximum Dose to myelon: 50.2 Gy) and BuMel (48).
Carrie et al. described morbidity-relevant gastrointestinal (GI) side
effects (obstruction) after BuMel and pelvic irradiation (49). Bölling
et al. evaluated complications attributable to RT after BuMel in the
EuroEwing 99 trial with regard to the GI tract, lung, and spinal cord.
After a mean follow-up of 7 months, 18 patients being examined
did not show any spinal cord complication. After a short mean FU
of 1 month, one out offive patients presented with lung dysfunction
grade III after irradiation. However, this patient already had
pulmonary dysfunction before RT. No higher grade adverse event
regarding GI was reported (50). In another report of the EuroEwing
99 study, Whelan et al. presented a case with myelopathy after
BuMel and irradiation (51). In our cohort, we had homogenously
respected an interval of 60 to 90 days between BuMel and
irradiation. In addition the maximum dose to GI tract, lung, and
spinal cord was limited to 30 Gy (RBE). With this strategy, we have
not observed any complication attributable to the combination of
BuMel and RT. Another concern may be raised, regarding the
tolerability of RT. Dinutuximab, a monoclonal antibody targeting
the glycolipid antigen disialoganglioside expressed on NB cells, has
been shown to promote a survival benefit in patients with high-risk
NB (52). It is currently unclear whether the combination of RT and
immunotherapy may induce additional acute or long term toxicity
due to overlapping toxicity profiles (53). Ding et al. reported three
patients with myelitis shortly after initiation of dinutuximab therapy
January 2021 | Volume 10 | Article 617506
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and hypothesized a combined effect between irradiation and
immunotherapy. The authors postulated that the influence of RT
to the blood-brain barrier could have increased the permeability of
dinutuximab. Also in our series, one patient presented with a
transient myelitis after the first block of dinutuximab following
RT also visible within the MRI of the spinal canal related to the
radiation field. Fortunately, the symptoms improved after
administration of steroids, comparable to the cases presented by
Ding et al. [36]. In general, we have to consider RT in NB as
particularly challenging in the context of a very demanding and
intense multimodal therapy concept.

The proximity of the target volume to the kidney makes
nephrotoxicity a significant concern in many patients,
particularly when higher RT doses have to be administered.
Since residual tumor tissue often remains in the preaortic region
close to the large vessel and the kidneys, there is a risk of relevant
dose exposure to the kidneys in many patients. In order to
protect the better kidney, a split renal function scintigraphy
should be performed prior to radiation planning. With this
approach we did not observe any clinical relevant radiation
induced nephrotoxicity, up to date. Nevertheless, in one
patient MRI identified a partial post-RT fibrosis of the kidney
cortex as result of partial radiation exposure of the kidney
without any subsequent clinical and biochemical evidence of
global renal impairment. Interestingly, this patient was operated
prior to induction chemotherapy. Therefore, the target volume
was based on the initial tumor extension but not on the surgical
bed after response to induction chemotherapy generating a very
large radiation field.

In the present study, we have to recognize some limitations.
The follow-up time is still short and any findings on long-term
toxicity cannot be considered representative. Furthermore,
patients included in our analysis were irradiated within
different study protocols. Finally, we critically acknowledge the
retrospective nature of our analysis and the restricted cohort size.

In summary, PBT is a highly conformal RT modality
potentially improving the treatment burden. According to our
data, PBT for children with NB is feasible with very little acute
Frontiers in Oncology | www.frontiersin.org 7
and early late toxicity. Tumor control rates were high, both for
primary disease and metastases. However, results have to be
confirmed in larger cohorts and with longer follow-up periods.
Any RT in NB patients has to be part of an intensive
multidisciplinary treatment regimen and will need intensive
investigation with regard to oncological benefit and risk for
adverse events.
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