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Hitting a baseball, one of the most difficult skills in all of
sports, requires complex hand-eye coordination, but its
link with basic visuomotor capabilities remains largely
unknown. Here we examined basic visuomotor skills of
baseball players and demographically matched
nonathletes by measuring their ocular-tracking and
manual-control performance. We further investigated
how these two capabilities relate to batting
performance in baseball players. Compared to
nonathletes, baseball players showed better
ocular-tracking and manual-control capabilities, which
remain unchanged with increasing baseball experience.
Both, however, become more correlated with batting
accuracy with increasing experience. Ocular-tracking
performance is predictive of batting skill, accounting for
≥ 70% of the variance in batting performance across
players with ≥ 10 years of experience. A simple linear
additive-noise cascade model with shared front-end
visual noise that limits batting performance can explain
many of our results. Our findings show that fundamental
visuomotor capabilities can predict the complex, learned
skill of baseball batting.

Introduction
Hitting a baseball is considered “one of the most

difficult skills in sports” (DeRenne, 2007). This is
because baseball players have less than 500 ms to plan
and execute their swing to hit a pitch coming at them

at nearly 100 mph, often along a curved trajectory. This
amazing feat leads to the question of what elemental
skills are critical to hit a pitch successfully. It has
been proposed that these elemental skills include (a)
encoding visual motion signal to form the percept of
pitch trajectory, (b) making a decision about whether
to swing, and (c) coordinating multiple motor systems
to drive and adjust the swing (Adair, 1990; Bahill &
LaRitz, 1984; Williams & Underwood, 1970). Because
these skills are largely visuomotor, the questions arise:
Do baseball players have better basic visuomotor
capabilities, compared to nonathletes, and how are
these capabilities related to their batting performance?

Previous behavioral studies on baseball players have
studied their low-level visual function (e.g., acuity,
stereoacuity, and contrast sensitivity; Laby et al.,
1996; Molia, Rubin, & Kohn, 1998; Uchida, Kudoh,
Murakami, Honda, & Kitazawa, 2012), the type of
visual or perceptual information needed to successfully
hit (Bahill & LaRitz, 1984; Gray, 2002a; Higuchi,
Morohoshi, Nagami, Nakata, & Kanosue, 2013;
Ranganathan & Carlton, 2007) or catch a ball (Fink,
Foo, &Warren, 2009; McBeath, Shaffer, & Kaiser, 1995;
McLeod & Dienes, 1996; Shaffer & McBeath, 2002),
their cognitive processing (Gray, 2002b), and their eye
movements outside the context of batting (Fooken
& Spering, 2019; Fooken, Yeo, Pai, & Spering, 2016).
Previous studies, however, have not comprehensively
characterized the full range of basic visuomotor
capabilities of baseball players and, more important,
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have not examined how these capabilities could be
related to batting performance. To fill this research
gap, in the current study, we used two methods that
we previously developed to measure ocular-tracking
and manual-control performance to assess baseball
players on the Hong Kong National Baseball Team
and demographically matched nonathletes. In the
ocular-tracking task, participants were asked to
follow an unpredictably moving target with their eyes
(Krukowski & Stone, 2005; Liston & Stone, 2014).
This task is designed to assess dynamic aspects of
vision, smooth pursuit tracking, and the coordination
of pursuit with saccades. In the manual-control task,
participants were asked to use a joystick to control a
randomly moving target (Li, Sweet, & Stone, 2005).
This task mimics the visuomotor control component of
lane keeping (see Li, Chen, & Chen, 2016) and allows
us to evaluate many aspects of closed-loop visuomotor
control such as overall performance error, response
gain, and response delay.

We expected that, due to the highly elite nature of
baseball players selected by the team, they would show
better ocular-tracking and manual-control capabilities
compared with nonathletes. However, basic visuomotor
tasks likely reach asymptotic performance by early
adulthood with just everyday experience, whereas
baseball batting requires years of specialized training
and practice before reaching its peak. We therefore
expected that ocular-tracking and manual-control
performance would not change with experience in
playing baseball, but batting performance would.
Furthermore, if basic visuomotor capabilities (such as
ocular tracking and manual control) and sophisticated,
learned visuomotor skills (such as baseball batting)
share fixed and rate-limiting noise in visual motion
processing, we anticipated that either ocular-tracking
or manual-control performance would predict batting
performance and that their power of prediction could
change with baseball experience. The primary goal of
this study was to determine effective basic visuomotor
predictors of batting performance in baseball players.

Methods
Participants

Forty-four baseball players on the Hong Kong
Baseball National Team (17 males, 27 females) in
the age range of 18 to 45 years (mean ± SD: 27 ± 8
years) with baseball experience in the range of 3 to
30 years (mean ± SD: 11 ± 6 years) participated in
this study. Although none of them were professional
baseball players, all had competition experience in
major international baseball contests such as the Hong
Kong Baseball Open, the Phoenix Cup Hong Kong
International Women’s Baseball Tournament, and/or

the Women’s Baseball World Cup. Many also played
softball before starting playing baseball and joining the
National Team. Based on their field positions in major
baseball contests, there were 16 infielders (9 males, 7
females), 12 outfielders (3 males, 9 females), 12 pitchers
(3 males, 9 females), and 4 catchers (2 males, 2 females)
in our baseball player participant group. According to
the World Baseball Softball Confederation, the Hong
Kong men’s national baseball team was ranked 30th out
of 85 nations and the Hong Kong women’s team was
ranked 10th out of 20 nations in 2019.

Forty-seven demographically matched healthy
nonathletes (20 males, 27 females) in the age range of
18 to 39 years (mean ± SD: 24 ± 6 years) participated
in the experiment as the control group. All were staff or
students at the University of Hong Kong and reported
having no previous competitive ball-sports experience.

All participants were right-handed and had normal
or corrected-to-normal vision. No participant wore
corrective lenses, and only two nonathlete participants
wore glasses. All participants were naive to the
purpose of the study and provided informed consent in
accordance with guidelines from the Human Research
Ethics Committee of the University of Hong Kong.
All 44 baseball players completed the ocular-tracking
task. One female player (pitcher) did not participate in
the manual-control task, leaving 43 baseball players
who completed the manual-control task. All 47
nonathletes completed the manual-control task. Three
female and two male nonathletes could not generate
valid data for the ocular-tracking task, leaving 42
nonathletes who completed the ocular-tracking task.
The ocular-tracking and manual-control tasks were
tested on the same day, and the testing order was
counterbalanced across participants. Among the 44
baseball players, 23 female players in the age range of
18 to 41 years (mean ± SD: 28 ± 8 years) with baseball
experience in the range of 3 to 18 years (mean ± SD:
9 ± 4 years) volunteered to participate in the batting
performance test on a different day.

The sample size of this study was chosen intuitively
based on our extensive experience in research on
visuomotor control and was at the upper end of
the range of participants commonly run in such
experiments.

Ocular-tracking task

Stimuli and apparatus
The ocular-tracking task has been described

previously (Liston & Stone, 2014; Stone, Tyson,
Cravalho, Feick, & Flynn-Evans, 2019). It was based
on the classic Rashbass (1961) step-ramp paradigm
modified to accommodate a full sampling of the polar
angles using 180 trials with each trial along every even
angle around the clock. On each trial, a red dot target
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Figure 1. Experimental displays. (a) An illustration of the display
for the ocular-tracking task. On each trial, the red dot made an
initial step off the screen center. It then moved back through its
initial location at a constant velocity until it disappeared from
the screen edge. The size of the red dot is scaled up for
illustration purposes. (b) An illustration of the display for the
manual-control task. The blurred red target moved along the
horizontal axis in the middle of the screen, and this case
illustrates a rightward initial target position error from the
center of the screen.

(0.64°; 8.8 cd/m2) was displayed in the center of a
black background (2.2 cd/m2) on a computer screen
(39°H × 30°V). Participants were asked to fixate the
central target and press a mouse button to trigger the
start of each trial. After a random time delay drawn
from a truncated exponential distribution (mean: 700
ms; minimum: 200 ms; maximum: 5,000 ms), the
target would jump 3.2° to 4.8° away from the fixation
point and immediately move back at a constant speed
toward the center of the screen and then onward
for a random amount of time from 700 to 1,000 ms
before disappearing (see Figure 1a). To minimize the
likelihood of an initial catch-up saccade, the target
always crossed the center of the screen at 200 ms after
its motion onset. Both the target speed and moving
direction were randomly sampled from a range (speed
range: 16–24°/s; direction range: 0–358° in 2° increment
without replacement) to minimize expectation effects.
Participants were instructed to keep their eyes on the
target in the center without blinking once they initiated
the trial and then to follow it as best as they could once
it started moving until it disappeared.

The visual stimuli were presented on a 21-in. CRT
monitor (1,280 × 960 pixels; Mitsubishi Diamond Pro
2070 SB, Tokyo, Japan) at 100 Hz. Participants’ eye
movements were recorded by an infrared camera-based
eye tracker (Eyelink 1000; SR Research, Ottawa,
Canada) at 250 Hz. Participants were seated in a
dark room with their head stabilized by a chin cup
and a forehead bar at a viewing distance of 56.5
cm. Before the start of the ocular-tracking task, all
participants went through a 13-point calibration and
validation procedure provided by the eye tracker that
had them fixate nine locations on a 3 × 3 Cartesian
grid and four locations in the center of each of the
four quadrants. If the participant took a brief rest
during the ocular-tracking task, the calibration and

validation procedure would be repeated before they
resumed tracking again. Most participants took two
rests in between tracking. The mean gaze error averaged
across all the calibration and validation procedures each
participant went through was 0.81° ± 0.04° (mean ±
SE) for the baseball players and 0.68° ± 0.03° for the
nonathletes. The ocular-tracking task took less than 30
min to finish.

Data analysis
We recorded the time series of the eye and target (i.e.,

red spot) positions. Prior to any analysis, we detected
and segregated saccade eye movements using a method
that has been validated in our previous studies (Liston,
Krukowski, & Stone, 2013; Niehorster, Siu, & Li, 2015).
We modified this method to apply a biphasic saccade
template appropriate for the high spatiotemporal
fidelity of our 250-Hz eye tracker. As such, we were
able to reliably detect and remove saccades down to
approximately one eighth of a degree in amplitude.

Our oculometric assessment method has been
described previously (Liston & Stone, 2014; Stone
et al., 2019). In a nutshell, we computed 12 different
oculometric measures to evaluate four different aspects
of participants’ ocular-tracking performance:

1. Pursuit initiation as measured by latency (the
median across trials of the time between target
motion onset and the initiation of smooth pursuit
eye movements) and open-loop acceleration (the
median across trials of the mean radial acceleration
along the target direction of smooth pursuit in
the 100-ms interval immediately following pursuit
onset).

2. Steady-state tracking as measured by steady-state
gain (the median across trials of the mean speed
of smooth pursuit in the steady-state tracking
interval 400 to 700 ms after motion onset, projected
along the direction of target motion and divided by
the target speed), proportion smooth (the median
across trials of the proportion of time that tracking
within the steady-state tracking interval was
smooth pursuit, as a metric of how much pursuit is
contributing to steady-state tracking), saccadic rate
(the total number of both forward and backward
catch-up saccades made in the 400- to 700-ms
period of steady-state tracking divided by the total
steady-state tracking time, i.e., 300 ms), saccadic
amplitude (the median amplitude of the forward
catch-up saccades occurring in the steady-state
tracking interval with forward saccades classified as
within 180° of the direction of target motion), and
saccadic dispersion (the standard deviation of the
distribution of directions across forward catch-up
saccades).
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3. Direction tuning as measured by direction noise
and direction asymmetry and anisotropy. Direction
noise is the average across trials of the local
standard deviations taken across the measured
pursuit directions at a given direction and its two
nearest neighbor directions corrected for the 2°
expected differences. Direction asymmetry and
anisotropy refer to vertical-horizontal asymmetry
and oblique-cardinal anisotropy, respectively,
which are the best-fitting first and second polar
harmonic modulations of the direction gain (i.e., the
local linear regression slope of the pursuit- versus
target-direction curve within a 30° window; see
details in Krukowski & Stone, 2005, and Liston &
Stone, 2014).

4. Speed tuning as measured by speed noise (the
standard deviation across trials of the difference
between the actual radial pursuit speed and the
best linear regression estimate for a given target
speed divided by the mean target speed) and speed
responsiveness (the best-fitting linear regression
slope of the mean radial pursuit speed vs. target
speed). These two measures capture how well
pursuit can discriminate between small differences
in target speed as opposed to how effective the
pursuit response is in general, which is captured by
steady-state gain.

To ensure the quality of the data, we excluded trials
from the analysis if blinks or other artifacts obscured
that part of a trial used for the computation of specific
oculometric measurements, but this occurred relatively
rarely. Specifically, for the baseball players, on average,
152 ± 4 (mean ± SE) out of 180 trials were used for
the pursuit-initiation and direction-tuning analysis, and
168 ± 3 out of 180 trials were used for the steady-state
tracking and speed-tuning analysis. For the nonathletes,
on average, 136 ± 4 out of 180 trials were used for the
pursuit initiation and direction-tuning analysis, and
163 ± 3 out of 180 trials were used for the steady-state
tracking and speed-tuning analysis.

To characterize the baseball experience–related
characteristics present in the ocular-tracking
performance, we combined all 12 oculometric measures
to compute an ocular-tracking performance index
for each baseball player and nonathlete. The index
value indicates how closely an individual participant’s
ocular-tracking performance matches the average
performance of the baseball players. Specifically, like
the procedure in Liston, Wong, and Stone (2017),
we first used the data of the nonathletes to define a
normative standard and calculated its median (M) and
standard deviation (σ ):

M =Control50th and

σ = Control75th −Control25th
2φ−1 (0.75)

, (1)

in which φ−1 is the inverse of the normal cumulative
distribution function. We then converted each raw
oculometric measure into a Z value metric (ω) relative
to the normative standard for each baseball player
(ωbaseball) and nonathlete (ωcontrol):

ωBaseball = Baseball Raw − M
σ

and

ωcontrol = Control Raw − M
σ

. (2)

This allowed us to construct a 12-element normalized
oculometric vector for each baseball player (Baseball
ωi) and nonathlete (Control ωi):

Baseball ωi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωBaseball_latency
ωBaseball_open−loop acceleration

ωBaseball_steady−state gain
ωBaseball_proportion smooth

ωBaseball_saccade rate
ωBaseball_saccade amplitude
ωBaseball_saccde dispersion
ωBaseball_direction noise

ωBaseball_direction asymmetry
ωBaseball_direction anisotropy

ωBaseball_speed noise
ωBaseball_speed responsiveness

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Control ωi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωControl_latency
ωControl_open−loop acceleration

ωControl_steady−state gain
ωControl_proportion smooth

ωControl_saccade rate
ωControl_saccade amplitude
ωControl_saccde dispersion
ωControl_direction noise

ωControl_direction asymmetry
ωControl_direction anisotropy

ωControl_speed noise
ωControl_speed responsiveness

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To characterize baseball experience–related
oculometric signs, we averaged the Baseball ωi vectors
across our baseball player population to yield a baseball
vector (Baseball vector):

Baseball vector =
∑n

i=1

Baseball ωi
NBaseball

, (3)

where NBaseball is the number of the baseball players.
Because the Baseball ωi vectors are “normalized,”
each element of the Baseball vector gives the distance
(in z values) between the average baseball player
participant and the average of the control population
for a specific oculometric measure, and the larger
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distances weight the oculometric measures with higher
discrimination power. To quantify the scalar magnitude
of ocular-tracking performance along the Baseball
vector, we took the dot product between an individual’s
12-element normalized oculometric vector (Baseball
ωi or Control ωi) and the Baseball vector to yield a
projection-based scalar metric (i.e., ocular-tracking
performance index):

IndexBaseball = Baseball ωi · (Baseball vector )
Scaling Factor

and

IndexControl = Control ωi · (Baseball vector )
Scaling Factor

, (4)

with

Scaling f actor = ∥∥CHOL(COV(Control ω))

·Baseball vector ′∥∥, (5)

where Control ω is the matrix containing all oculometric
vectors in the control population of nonathletes,
COV is the covariance matrix, and CHOL is the
Cholesky decomposition. Applying the Cholesky
decomposition of the covariance matrix of Control ω
to the Baseball vector produces a sample baseball
player vector with the covariance properties of the
12 oculometric measures in the control population.
Scaling factor in the denominator thus normalizes
the ocular-tracking performance index by taking the
magnitude of the correlation between oculometric
measures into consideration.

Manual-control task

Stimuli and apparatus
We used the closed-loop compensatory manual-

control task as described in our previous studies
(Li et al., 2005, 2016) to measure participants’
manual-control performance. On each trial, a red round
Gaussian-blurred target (σ : 3.1°; peak luminance:
2 cd/m2) was displayed on a uniform black background
(0.14 cd/m2) on a rear projected large screen (110°H ×
94°V) at 60 Hz (see Figure 1b). Its horizontal position
was updated by a perturbation function u consisting
of the sum of seven harmonically unrelated sinusoids,
given as:

u (t) = D
∑7

i=1
aisin(2π fit + ρi), (6)

where ai represents the amplitude and fi represents
the frequency of the ith sine component (see Table 1).

Sinusoid (i) a f(Hz)

1 2 0.10
2 2 0.14
3 2 0.24
4 0.2 0.41
5 0.2 0.74
6 0.2 1.28
7 0.2 2.19

Table 1. Amplitude (ɑ) and frequency (f) for each of the seven
harmonically unrelated sinusoids in the input position
perturbation function u.

ρ i is a random phase offset drawn from –π to π on
each trial. D is the disturbance gain, which was set to
8.1° and led to an average uncorrected perturbation
speed of 25.1°/s (peak: 95.7°/s). This sum-of-sinusoids
perturbation series made the target movement appear
random and allowed for a frequency-based analysis of
the control response.

At the beginning of each trial, the target appeared
at the center of the screen and began moving when
participants pulled the trigger of a high-precision
joystick (Flybox; B&G Systems, Palo Alto, CA,
USA). Participants were asked to smoothly move
the joystick left and right to control the horizontal
movement of the target to keep it stationary and as
close to the center of the screen as possible. Initially,
the target moved according to the sum-of-sinusoids
perturbation, but as participants moved the joystick,
the target position was affected by both the input
perturbation and participants’ joystick movement. We
used acceleration controller dynamics for the joystick
in which the joystick displacement (sampled at 60
Hz) was proportional to the acceleration of the target
movement on the screen. The maximum displacement
of the joystick corresponded to a peak target movement
acceleration of 81.29°/s2.

Participants were seated in a light-excluded booth
and viewed the display with their head stabilized by a
chinrest at a viewing distance of 56.5 cm. Participants’
cyclopean eye (i.e., their straight ahead) was aligned
with the center of the screen before the data collection.
Participants were given two practice trials to get familiar
with the task and then completed six experimental trials
in a single session. The duration of each trial was 95 s,
and thus the manual-control task lasted about 20 min.

Data analysis
We recorded the time series of the target position

error, the joystick control output, and the input position
perturbation. We skipped the data in the first 5 s out of
each 95-s trial to avoid analyzing the initial transient
response. We then computed three different measures
as described in Li et al. (2005) to evaluate three different
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aspects of participants’ manual-control performance:
(a) overall control performance as measured by the root
mean square (RMS) of the time series of the target
position error relative to the center of the screen, (b)
control response amplitude and (c) delay, as measured
by gain and phase Iag from the frequency response
(Bode) analyses on the recorded time-series data.
Specifically, we performed Fourier transform of the
time series of both the joystick control output (in
percentage of maximum displacement) and the target
position error (in degrees of visual angle or deg).
We computed the control response amplitude (i.e.,
gain in percentage of max/deg) by taking the ratio of
the Fourier coefficients of the joystick displacement
and the target position error at each perturbation
frequency, and the response delay (i.e., phase lag in
degrees of sinusoidal phase or °) by taking the phase
difference between the Fourier components of the
joystick displacement and the target position error at
each perturbation frequency.

To characterize the baseball-related characteristics
present in the manual-control performance, we
combined all three manual-control measures to
compute a manual-control performance index for
each baseball player and nonathlete. The index value
indicates how closely an individual participant’s
manual-control performance matches the average
performance of the baseball players. The computation
procedure for the manual-control performance index
is the same as for the ocular-tracking performance
index described above (see Ocular-tracking task),
except that we constructed a three-element normalized
manual-control vector for each baseball player (Baseball
ωi) and nonathlete (Control ωi):

Baseball ωi =
[
ωBaseball_RMS error

ωBaseball_gain
ωBaseball_phase lag

]

and

Control ωi =
[
ωControl_RMS error

ωControl_gain
ωControl_phase lag

]
.

Batting performance test

To measure the baseball players’ batting capability in
response to a known stimulus set, we used a three-wheel
pitching machine (BMH33A; Nippon ZETT, Osaka,
Japan) for the batting performance test. We tested six
combinations of pitching speeds and trajectories (80
kph straight, 100 kph straight, 60 kph left/right curved,
and 80 kph left/right curved) five times in a randomized
order. In total, 30 balls were launched from the pitching
machine at the height of 1.6 m and the distance of 18 m

away from the home plate. After sufficient warm-up and
practice, each baseball player participant completed 30
swings to the 30 pitches, and the batting accuracy (i.e.,
hit or not) was evaluated by the head coach of the Hong
Kong National Baseball Team for each pitch to allow
us to compute the hit rate (total number of hits divided
by 30). Due to the tight training schedule, participants
were tested on two to three pitches per week, and the
entire test lasted about 3 months.

Results
Ocular-tracking performance

Figure 2 plots the summary of the 12 different
oculometrics measures for a typical baseball player
(Figure 2a) and a nonathlete (Figure 2b). For the
measurements of pursuit initiation and steady-state
tracking shown in the histograms in the left column,
the baseball player showed superior ocular-tracking
performance compared with the nonathlete, as
demonstrated by shorter latency, larger open-loop
acceleration, larger steady-state gain and proportion
smooth, and smaller catch-up saccade rate, amplitude,
and dispersion. For the measurements of direction-
tuning and speed-tuning shown in the scatterplots
in the right column, the baseball player also showed
superior ocular-tracking performance compared with
the nonathlete, as demonstrated by smaller direction
noise, smaller direction asymmetry and anisotropy,
smaller speed noise, and higher speed responsiveness.

Figure 3 plots the histograms of the 12 oculometric
measures for the 44 baseball players and the 42
nonathletes who completed the ocular-tracking task.
Independent-samples t tests showed that the baseball
players were superior to the nonathletes in all four
aspects of ocular-tracking performance, as indicated by
8 out of 12 oculometric measures: shorter latency (t(84)
= 2.84, p = 0.0056, Cohen’s d = 0.61), larger open-loop
acceleration that reached borderline significance (t(84)
= 1.98, p = 0.051, Cohen’s d = 0.43), larger steady-state
gain (t(84) = 4.12, p < 0.001, Cohen’s d = 0.89),
smaller catch-up saccade amplitude (t(84) = 2.98, p
= 0.0038, Cohen’s d = 0.64) and dispersion (t(84) =
2.78, p = 0.0068, Cohen’s d = 0.60), smaller direction
noise (t(84) = 3.48, p < 0.001, Cohen’s d = 0.75) and
vertical-horizontal asymmetry (t(84) = 2.49, p = 0.015,
Cohen’s d = 0.54), and larger speed responsiveness
(t(84) = 2.50, p = 0.014, Cohen’s d = 0.54). In summary,
despite considerable within-group variance observed
for each oculometric measure, the baseball players
systematically showed overall better ocular-tracking
performance than did the demographically matched
nonathletes across most (but not all) metrics.
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Figure 2. Summary of the 12 oculometric measures for (a) a typical baseball player and (b) a nonathlete. Histograms in the left column
of both (a) and (b) plot across-trial measurements of pursuit initiation and steady-state tracking; scatter plots in the right column
show trial-by-trial measurements of direction-tuning and speed-tuning. The red vertical line in each histogram indicates the median.
The direction-tuning plot shows pursuit direction as a function of target direction for each trial. The local linear-regression slope of
the fitted blue curve indicates direction gain; the inset illustrates the polar plot of “cloverleaf” direction-gain asymmetry and
anisotropy (blue line) referenced to the circle of unity gain (thin black line). The speed-tuning plot shows pursuit speed as a function
of target speed for each trial. The blue line indicates perfect performance. The slope of the fitted red line indicates speed
responsiveness. Qualitative comparison of panels (a) and (b) illustrates some of the functional differences in the raw data associated
with being a baseball player.

To examine the discrimination power of our
oculometric measures to separate baseball players
from nonathletes, we computed the area under the
Receiver Operating Curve (i.e., ROC area) of the two
distributions for our two populations of participants,
which quantifies the ability of an ideal observer to
discriminate one sample at random from one of the two
distributions (Green & Swets, 1966). Values of 0.70 and
higher are usually considered strong effects (Hosmer,
Lemeshow, & Sturdivant, 2013). For our oculometric
measures, the ROC area for steady-state gain (0.77) and
direction noise (0.72) exceeded this criterion, indicating
these two measures have strong discrimination power to
separate baseball players from nonathletes.

Note that, consistent with previous sports vision
literature (Laby et al., 1996; Schneiders et al., 2010;
Winograd, 1942), an independent-samples t test showed
that our baseball players had better binocular Freiburg
visual acuity (Bach, 1996) than the nonathletes (t(84)
= 3.47, p < 0.001, Cohen’s d = 0.75). However, across
both the baseball player and the nonathlete participants
in the current study, visual acuity was not significantly
correlated with any of the 12 oculometric measures

(Pearson’s r(86) ≤ 0.25, p ≥ 0.22 after Holm’s sequential
Bonferroni correction for multiple correlations; see also
Liston & Stone, 2014). This indicates that visual acuity
is not a contributing factor to the better ocular-tracking
performance observed in baseball players. Furthermore,
it has been reported that there is no significant
difference in the static visual acuity among professional
Japanese baseball players at different performance levels
(Hoshina et al., 2013), indicating that visual acuity is
also not a predictor of baseball performance level.

To further examine the overall ocular-tracking
performance difference between the baseball players
and nonathletes, we combined the 12 oculometric
measures to compute the ocular-tracking performance
index for each participant (see Methods). The index
value indicates how closely an individual participant’s
ocular-tracking performance matches the average
performance of the baseball players. Figure 4a plots the
histograms of the ocular-tracking performance index
and the fitted Gaussian curves for the two participant
groups. An independent-samples t test showed that
the values of the ocular-tracking performance index
were significantly higher for the baseball players than
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Figure 3. Histograms and Gaussian fits of the 12 oculometric measures for 44 baseball players (magenta bars and lines) and 42
nonathletes (blue bars and lines). ROC values indicate the area under the ROC curve of the two distributions, which quantifies the
ability of an ideal observer to discriminate one sample at random from one of the two distributions.

for the nonathletes (t(84) = 4.66, p < 0.001, Cohen’s
d = 1.00), indicating that the baseball players had
overall better ocular-tracking capabilities than did
the nonathletes. In addition, the ROC area for the
ocular-tracking performance index (0.79) was larger
than that for each of the 12 oculometric measures
(see Figure 3) and exceeded 0.70, indicating that the
combined ocular-tracking performance index has
strong discrimination power to separate baseball players
from nonathletes.

To examine whether the baseball player’s position
(infielder, outfielder, pitcher, or catcher) in the field
affected ocular-tracking performance, we conducted
a one-way analysis of variance (ANOVA) with player
position as a categorical variable on each of the 12
oculometric measures. We did not find a significant
effect of player position on any of the 12 oculometric
measures (F(3, 43) < 2.55, p > 0.069, η2 < 0.16). A
one-way ANOVA with player position as a categorical
variable on the ocular-tracking performance index also
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Figure 4. Histograms and Gaussian fits of the (a) ocular-tracking and (b) manual-control performance indices for 44 baseball players
(magenta bars and lines) and 42 nonathletes (blue bars and lines). (c) Manual-control performance index against ocular-tracking
performance index for 44 baseball players (magenta circles) and 42 nonathletes (blue diamonds). The baseball players showed a
significant correlation between ocular-tracking and manual-control performance index that is absent in the nonathletes.

Figure 5. (a) Representative 13 s of raw manual-control performance for a typical baseball player (left panel) and a typical nonathlete
(right panel). The solid line depicts the input target position error and the dashed line depicts the output joystick control response. (b)
Histograms and Gaussian fits of the RMS error of the target position for 43 baseball players (magenta bars and lines) and 47
nonathletes (blue bars and lines). (c) Frequency-response (Bode) plots of the manual-control performance for 43 baseball players
(magenta circles) and 47 nonathletes (blue triangles). The upper panel illustrates the mean response amplitude (gain) and the lower
panel illustrates the mean response delay (phase lag) averaged across participants. The rightmost data points illustrate the mean
averaged across input perturbation frequencies. Error bars are ± 1 SE across participants.

did not reveal any significant effect of player position
(F(3, 43) = 1.21, p = 0.32, η2 = 0.083). These results
indicate that the baseball player’s position does not
have a significant relationship with ocular-tracking
performance.

Manual-control performance
Figure 5a plots the input target position error and

the output joystick control during a sample 13 s in the
first half of a 95-s trial for a typical baseball player and

a typical nonathlete. They both showed scaled control
response to the input target position error with the
response at the highest frequencies smoothed out. The
baseball player showed larger responses with greater
phase lead than did the nonathlete, echoing the reported
previous findings that athletes in general are exceptional
in their anticipatory sensorimotor skills compared with
general population (Muller & Abernethy, 2012).

Figure 5b plots the histogram of the RMS error of
the target position for the 43 baseball players and the 47
nonathlete controls who completed the manual-control
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task. An independent-samples t test revealed that
the RMS error in degrees of visual angle (deg) was
significantly smaller for the baseball players than for
the nonathletes (mean ± SD: 31.15 ± 2.30 deg vs. 34.88
± 3.16 deg, t(88) = 6.36, p < 0.001, Cohen’s d = 1.34),
indicating that the baseball players’ overall control
performance was better than the nonathletes.

Figure 5c plots the manual-control response
amplitude (i.e., gain) and response delay (i.e., phase
lag) at each input perturbation frequency (i.e., the
standard Bode plot) for both the baseball players and
the nonathletes. A 2 (participant group) × 7 (frequency)
mixed-design ANOVA on gain revealed that both
the main effects of participant group and frequency
were significant (F(1, 88) = 39.80, p < 0.001, η2 =
0.31 and F(6, 528) = 301.32, p < 0.001, η2 = 0.77,
respectively), and so was their interaction effect (F(6,
528) = 19.29, p < 0.001, η2 = 0.18). Gain increased
with perturbation frequency at lower frequencies and
then decreased with perturbation frequency at higher
frequencies, which is a typical response characteristic
for acceleration control dynamics (Li et al., 2005, 2016).
Newman-Keuls post hoc tests revealed that while the
baseball players did not differ from the nonathletes in
gain at the four lower frequencies, they showed larger
gain in the three highest frequencies (0.74–2.19 Hz:
p < 0.001), indicating that the baseball players were
more responsive to high-frequency motion signals. An
independent-samples t test showed that the mean gain
averaged across seven input perturbation frequencies
was also significantly larger for the baseball players
than for the nonathletes (9.3 ±1.3 dB vs. 6.8 ± 2.3 dB,
t(88) = 6.31, p < 0.001, Cohen’s d = 1.33).

A 2 (participant group) × 7 (frequency) mixed-design
ANOVA on phase lag revealed that both the main
effects of participant group and frequency were also
significant (F(1, 88) = 58.71, p < 0.001, η2 = 0.40 and
F(6, 528) = 4764.15, p < 0.001, η2 = 0.98, respectively),
but their interaction effect was not significant (F(6,
528) = 1.30, p = 0.25, η2 = 0.010). As expected,
phase lag increased with perturbation frequency. An
independent-samples t test showed that the mean phase
lag averaged across seven input perturbation frequencies
was also significantly smaller for the baseball players
than for the nonathletes (77.7 ± 7.7° vs. 91.0 ± 8.7°,
t(88) = 7.66, p < 0.001, Cohen’s d = 1.62), indicating
that the baseball players initiated manual-control
responses sooner than did the nonathletes across all
frequencies.

For our manual control measures, the ROC area well
exceeded 0.70 for all three measures (RMS error: 0.83;
gain: 0.86; phase lag: 0.87), indicating that all of them
have excellent discrimination power to separate baseball
players from nonathletes.

To further examine the overall manual-control
performance difference between the baseball players and
the nonathletes, we combined all three manual-control

measures to compute the manual-control performance
index for participant (see Methods). The index value
indicates how closely an individual participant’s
manual-control performance matches the average
performance of the baseball players. Figure 4b plots the
histograms of the manual-control performance index
and the fitted Gaussian curves for the two participant
groups. An independent-samples t test showed that
the values of the manual-control performance index
were significantly higher for the baseball players
than for the nonathletes (t(88) = 9.51, p < 0.001,
Cohen’s d = 2.01), showing that baseball players
showed overall better manual-control capabilities than
did the nonathletes. In addition, the ROC area for
the manual-control performance index (0.92) was
larger than that for each of the three manual-control
measures (see Figure 5), indicating that the combined
manual-control performance index also has excellent
discrimination power to separate baseball players from
nonathletes.

To examine whether the baseball player’s position
(infielder, outfielder, pitcher, or catcher) in the field
had any effect on manual-control performance, we
conducted a one-way ANOVA with player position as a
categorical variable on each of the three manual-control
measures. We did not find any significant effect of
player position on any of the three measures (F(3,
42) < 1.45, p > 0.24, η2 < 0.10). A one-way ANOVA
with player position as a categorical variable on the
manual-control performance index also did not reveal
a significant effect of player position (F(3, 42) = 0.54,
p = 0.66, η2 = 0.040). These results indicate that the
baseball player’s position does not have a significant
relationship with manual-control performance.

Correlation between ocular-tracking and manual-control
performance

To examine whether ocular tracking can predict
manual-control performance, we examined whether
there was any linear correlation between the 12
oculometric and the three manual-control measures.
For the baseball players, two oculometric measures,
steady-state gain and speed responsiveness, were
significantly correlated with the RMS error in the
manual-control task (Pearson’s r(43) = –0.45 and –0.47,
p = 0.030 and p = 0.019, respectively, after Bonferroni
correction), and no other significant correlations were
found. For the nonathletes, no significant correlation
was found between any oculometric and manual-control
measures. This shows that for the baseball players,
higher gain or speed responsiveness in ocular tracking
can stochastically predict better performance in
manual control, but no such prediction exists for the
nonathletes.

To further examine the relationship between
ocular-tracking and manual-control capabilities,
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Figure 6. (a) Ocular-tracking performance index, (b) manual-control performance index, and (c) hit rate as a function of years of
experience and (d) predictive power of performance indices (red dots: ocular tracking; blue dots: manual control) as a function of
experience level. The colored areas indicate the 95% confidence intervals across simulations of the best-fitting linear additive-noise
cascade model proposed in the Discussion (see Figure 7), with ξ o (the noise scalar for the oculomotor system) = 0.23, ξm = 2.06 (the
noise scalar for the manual motor system), ξ i (the intercept of the noise scalar for batting) = 2.15, and ξ s (the slope of the noise
scalar for batting) = 0.17, with the reduced χ2 (9.59, 12) = 0.80.

we performed linear correlation analysis on the
ocular-tracking and manual-control performance
indices for each participant group (Figure 4c). We
found that the two indices were significantly correlated
for the baseball players (Pearson’s r(43) = 0.45, p =
0.0025) but not for the nonathletes (Pearson’s r(42) =
0.11, p = 0.48). This shows that ocular-tracking and
manual-control capabilities are highly linked in the
baseball players but not in the nonathletes. That is,
while better ocular-tracking performance is associated
with better manual-control performance for the baseball
players, better ocular-tracking performance does not
imply better manual-control performance for the
nonathletes.

Visuomotor predictors of batting performance
To find the visuomotor predictors of batting

performance (hit rate), we first examined how
ocular tracking, manual control, and batting
performance change with years of experience in playing
baseball. Figure 6 plots ocular-tracking performance

index (left panel), manual-control performance index
(middle panel), and hit rate of batting performance
(right panel) as a function of years of experience.
Neither ocular-tracking (Figure 6a) nor manual-control
performance (Figure 6b) showed any significant
improvement with years of experience (Pearson’s
r(44) = 0.077, pone-tailed = 0.31 and Pearson’s r(43)
= 0.18, pone-tailed = 0.13, respectively). One-tailed
testing is justified because of the a priori assumption
that the correlation would be positive. As expected,
these two basic visuomotor skills were not changed
by playing baseball. On the other hand, hit rate of
batting performance (Figure 6c) showed a trend of
improvement with years of experience (Pearson’s r(23)
= 0.32, pone-tailed = 0.070), perhaps failing to reach full
significance because of a smaller sample size—we only
had access to the batting performance of the female
players, with only three of them having more than a
decade of experience, thus limiting the x-axis range.
Note that although years of experience may correlate
with age, there was no correlation between hit rate and
age for these female baseball players (Pearson’s r(23) =
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Ocular-tracking index Manual-control indexYears of
experience r pone-tailed n r pone-tailed n

≥3 0.36 0.044 23 0.098 0.33 22
≥4 0.41 0.029 22 0.13 0.29 21
≥5 0.64 0.0013 20 0.19 0.22 19
≥6 0.77 <0.001 18 0.39 0.061 17
≥7 0.77 <0.001 17 0.37 0.077 16
≥8 0.74 <0.001 16 0.36 0.094 15
≥9 0.81 <0.001 14 0.33 0.13 13
≥10 0.85 <0.001 12 0.41 0.11 11

Table 2. Pearson’ r and p value for the correlation between
ocular-tracking performance index and hit rate (left) and
between manual-control performance index and hit rate (right)
for each experience level.

–0.15, p = 0.49). This was expected because increased
age per se does not correlate with improved baseball
hitting performance (e.g., Ng, 2017).

We then explored the predictive power (r2) of the
ocular-tracking and manual-control performance
indices on hit rate as a function of experience level
(Figure 6d), with the cohort of baseball players with
experience level N defined as those with N or more
years of experience in playing baseball (Table 2). The
predictive power for both indices on hit rate shows
a significant linear increase with experience level
(ocular tracking: Pearson’s r(23) = 0.92, pone-tailed <
0.001; manual control: Pearson’s r(22) = 0.84, pone-tailed
= 0.0048). However, ocular-tracking performance
indices showed systematically larger power than did
manual-control performance indices in predicting
hit rate. In fact, the correlation between hit rate and
ocular-tracking performance index was significant at all
experience levels, whereas that was never the case for
manual-control performance index (Table 2).

Discussion
It has been reported that compared with nonathletes,

baseball players have greater dynamic visual acuity,
presumably due to an improved ability to track moving
targets with their eyes (Uchida et al., 2012). Our
ocular-tracking results provide direct evidence for
this view, showing that baseball players outperformed
nonathletes in ocular tracking of an unpredictably
moving target with, on average, 4% shorter pursuit
latency, 11% larger steady-state pursuit gain, 19%
smaller direction noise, 39% smaller vertical-horizontal
direction asymmetry, 25% larger speed responsiveness,
and 22% smaller saccadic amplitudes with 16%
smaller direction dispersion. For our manual-control
task, baseball players showed 11% smaller overall

performance error, 37% larger response amplitude, and
15% shorter response delay compared with nonathletes.
The frequency (Bode) analysis further revealed that
they were especially more sensitive to motion signals
at the three highest frequencies tested (i.e., 0.74 Hz,
1.28 Hz, and 2.19 Hz) than nonathletes. It has been
reported that apart from an improved level of physical
strength, individuals with ball sports experience
outperform nonathlete healthy controls in perception,
anticipation, and decision-making functions (for
a review, see Yarrow, Brown, & Krakauer, 2009).
Our results extend these findings by showing that
baseball players also have superior basic visuomotor
skills compared with healthy nonathletes, manifested
in both their ocular-tracking and manual-control
performance.

The shorter pursuit latency and manual response
delay observed for our sample of baseball players is
consistent with the reported shorter visuomotor delay
observed in tennis experts when performing a simulated
ball interception task (Le Runigo, Benguigui, & Bardy,
2010). Note that pursuit latency, even in our sample of
nonathletes (median: 152 ms), is still shorter than the
average reaction time (around 200 ms) of highly skilled
professional cricketers batting balls with unpredictable
movement (McLeod, 1987). This confirms that eyes are
faster than hands when responding to unpredictable
target motion.

It has been reported that with the increase
of hand-eye coordination training, visual gaze
progressively assists the hand control in a predictive
manner (Sailer, Flanagan, & Johansson, 2005). Our
examination of the correlation between ocular-tracking
and manual-control performance showed that for
the baseball players, better overall ocular-tracking
performance was correlated with better overall
manual-control performance, but this correlation was
absent in the nonathletes. This difference in correlation
explains previous seemingly contradictory findings.
Specifically, Fooken et al. (2016) reported strong
relationship in varsity baseball players between smooth
pursuit accuracy and manual response errors when
anticipating to intercept a moving dot on a computer
screen, whereas Cesqui, Mezzetti, Lacquaniti, and
d’Avella (2015) reported insignificant trial-by-trial
correlation between pursuit quality and catching
performance in healthy nonathletes. Our results, for
the first time, show that both pursuit gain and speed
responsiveness are significantly correlated with the
overall performance error in manual control for baseball
players but not for nonathletes. Together with baseball
players’ superior performance in both ocular tracking
and manual control compared with nonathletes, this
suggests that, in athletes, the correlation between
ocular and manual performance, driven by shared
visual motion processing, is revealed by their having
lower levels of motor noise or other downstream
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inefficiencies that dominate the performance of
nonathletes.

Given that unlike shooting in basketball or putting in
golf, the baseball’s flight trajectory is highly uncertain
and thus the perception and identification of the ball’s
trajectory likely requires effective visual tracking,
several studies examined whether expert baseball
players could use eye and head movements to track the
ball better than novices. Hubbard and Seng (1954) first
used 35-mm films of professional batters to determine
at what intervals during the ball’s flight gross eye and
head movements occurred. They found that batters
could not keep their eyes on the ball until the point of
contact (i.e., no pursuit eye movements were observed
within roughly 150–200 ms prior to contact). This is not
surprising because when a 100-mph fastball passes the
batsman, the visual angular velocity is around 500°/s
while the fastest pursuit eye movements recorded in
humans are only about 90°/s (Watts & Bahill, 1990).
Hubbard and Seng (1954) did not examine eye tracking
in nonathletes. Bahill and LaRitz (1984) compared
eye movements made by Brian Harper, a major league
player, with those of college novice hitters. They
confirmed the observations of Hubbard and Seng but
also found that Harper could track the ball longer than
the novice hitters.

Surprisingly, despite the previous studies that found
that baseball players show better pursuit of a flying
baseball than do nonathletes, none examined whether
this ocular-tracking performance could predict batting
performance. Our study is the first to explore that
possibility. Our results show that two basic visuomotor
capabilities, ocular tracking and manual control, are
unaffected by baseball experience. They nevertheless
both become more correlated with batting accuracy
with increasing baseball experience. In particular,
ocular-tracking performance becomes a significant
predictor of batting accuracy across players with ≥ 3
years of experience, accounting for more than 70%
of the variance in batting performance across players
with ≥ 10 years of experience. On the other hand, there
is no significant correlation between manual-control
performance and batting accuracy at any level of
experience. This shows that ocular-tracking capability is
highly sensitive in predicting baseball batting accuracy
and can be used to gauge potential future batting
capability of baseball players.

The correlation we found between batting accuracy
and ocular tracking is surprising given the fact that our
ocular-tracking task bears minimal similarity to pursuit
tracking during baseball batting. The fact that we found
such a correlation indicates that our ocular-tracking
task measures fundamental dynamic visual and
visuomotor capabilities that can generalize across tasks
and our oculometric indices are good indicators of such
basic capabilities. Indeed, our ocular-tracking task has
been successfully used to examine perceptual expansion

Figure 7. Illustration of the noise cascade model with additive
noise in manual-control, ocular-tracking, and batting
performance.

of direction space (Krukowski & Stone, 2005), as well
as sensorimotor impairment associated with traumatic
brain injury (Liston, Wong, & Stone, 2017), low-dose
alcohol intake (Tyson et al., 2020), and acute sleep loss
and circadian misalignment (Stone et al., 2019). It is,
however, important to note that none of the baseball
players in the current study were professional, and thus
future research is needed to confirm the generalizability
of our findings to elite professional baseball players and
to skilled performance in other sports.

If the borderline correlation observed between hit
rate and years of baseball experience is real (Figure 6c),
which is very likely the case, albeit somewhat obscured
in this study because of our skewed sampling (see
Results), a simple linear additive-noise cascade model
can explain and unify our many seemly disparate
findings. Figure 7 illustrates a model with additive
independent noise sources in three visuomotor
branches. The model’s first assumption is that the
three branches share a noisy visual front end that is
the rate-limiting noise in ocular-tracking performance
with the noise in visual motion processing denoted by
ηv. This is supported by the findings that the noise in
pursuit speed (Kowler & McKee, 1987) and direction
(Stone & Krauzlis, 2003) provides indirect yet reliable
measures of the noise in the visual perception of speed
and direction, with little additional noise added by
the oculomotor system. The small noise source in the
oculomotor system (ηo) is given by ηo = ξ o × ηv, with
ξ o the noise scalar for the oculomotor system.

The model’s second assumption is that the motor
system generates additional independent manual motor
noise (ηm) that adds to the overall noise observed in
manual-control performance, which is given by ηm =
ξm × ηv, with ξm the noise scalar for the motor system.
Lastly, the model’s third assumption is that there is
additional independent batting noise (ηb) added to the
batting performance that decreases monotonically with
baseball experience and affects batting accuracy, which
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is given by ηb = (ξ i – ξ s × experience level) × ηv, where
ξ i represents the intercept and ξ s represents the slope of
the linear trend in batting noise.

With the above assumptions, we determined the
four model parameters (ξ o, ξm, ξ s, ξ i) by a best
fit to the 16 data points in Figure 6d using a least
squares procedure with 1,000 Monte Carlo simulations
of the different sources of noise. The reduced χ2

of the model fit was 0.8, indicating that it can
explain the high predictive power of ocular-tracking
over manual-control performance on hit rate that
increases with experience level (see Figure 6d).
With the same fitted parameters, the model also
independently quantitatively reproduces the observed
significant correlation between ocular-tracking and
manual-control performance indices in baseball players
(mean and 95% confidence intervals of Pearson’s r:
0.43 [0.17, 0.65]; see Figure 4c). Last, the model can
also explain the observed insignificant correlation in
nonathletes shown in Figure 4c simply by fitting a new
value of ηm to the nonathlete data to capture the fact
that nonathletes in general have higher manual motor
system output noise (ηm = 8.37 × ηv) than do baseball
players (ηm = 2.06 × ηv), with all other parameters
remaining the same. The higher ηm in nonathletes then
dominates over ηv to conceal any correlation. The lower
ηm in baseball players is presumably due to selection
and training. Note that although this simple linear
additive-noise cascade model with no nonlinearities or
interactions explains our data well, we do not rule out
the possibility that a more complex model with added
nonlinear features, interactions, or nonindependent
or multiplicative noise sources might fit our data
better (at the expense of added complexity). What our
model simulations capture is the fact that the data
of this study can be successfully accounted for when
ocular tracking, manual control, and baseball batting
depend on significant shared noise in upstream visual
processing of motion signals.

In summary, the present study shows that compared
with nonathletes, baseball players have better basic
visuomotor skills in ocular tracking and manual
control due to selection for innate capabilities but
not due to experience in playing baseball. They
both, however, become more correlated with batting
accuracy with increasing baseball experience, with
ocular-tracking capabilities highly predictive of
batting accuracy. Our study thus provides the first
evidence of a reliable visuomotor predictor of batting
accuracy in baseball players, increasingly so with
increasing experience level. The findings of the
current study suggest that the complex, learned skill
of batting is limited by fundamental dynamic visual
and visuomotor capabilities and that this limitation
becomes increasingly apparent with experience, as
extraneous nonvisual sources of performance noise and
inefficiencies are trained out. The findings are consistent

with a common front-end visual motion-processing
element that is performance limiting in athletes for
all three visuomotor tasks, independent of complex
task-specific later processing, decision making, or
motor output.

Keywords: eye movements, manual control, sports
vision, baseball batting, visuomotor control
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