
REVIEW
published: 12 April 2022

doi: 10.3389/fnmol.2022.850849

Edited by:

Zongduo Guo,
First Affiliated Hospital of Chongqing

Medical University, China

Reviewed by:
Yujie Chen,

Army Medical University, China
Zhen-Ni Guo,

First Affiliated Hospital of Jilin
University, China

*Correspondence:
Shuai Zhou

zshuai_kmust@163.com

Specialty section:
This article was submitted to
Brain Disease Mechanisms,

a section of the journal
Frontiers in Molecular Neuroscience

Received: 08 January 2022
Accepted: 23 February 2022

Published: 12 April 2022

Citation:
Luo C, Zhou S, Yin S, Jian L, Luo P,
Dong J and Liu E (2022) Lipocalin-2

and Cerebral Stroke.
Front. Mol. Neurosci. 15:850849.
doi: 10.3389/fnmol.2022.850849

Lipocalin-2 and Cerebral Stroke
Chao Luo1, Shuai Zhou1,2*, Shi Yin1, Lipeng Jian1, Pengren Luo1, Jigeng Dong1 and
Erheng Liu1

1Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,
2Department of Neurosurgery, The First People’s Hospital of Yunnan Province, Kunming, China

Stroke is a common and devastating disease with an escalating prevalence worldwide.
The known secondary injuries after stroke include cell death, neuroinflammation, blood-
brain barrier disruption, oxidative stress, iron dysregulation, and neurovascular unit
dysfunction. Lipocalin-2 (LCN-2) is a neutrophil gelatinase-associated protein that
influences diverse cellular processes during a stroke. The role of LCN-2 has been widely
recognized in the peripheral system; however, recent findings have revealed that there
are links between LCN-2 and secondary injury and diseases in the central nervous
system. Novel roles of LCN-2 in neurons, microglia, astrocytes, and endothelial cells have
also been demonstrated. Here, we review the evidence on the regulatory roles of LCN-2
in secondary injuries following a stroke from various perspectives and the pathological
mechanisms involved in the modulation of stroke. Overall, our review suggests that
LCN-2 is a promising target to promote a better understanding of the neuropathology
of stroke.

Keywords: cerebral stroke, lipocalin-2 (LCN-2), blood brain barrier, central nervous system, secondary injury, iron
dysregulation, neurovascular unit (NVU)

INTRODUCTION

Stroke is a common, destructive disease arising from vascular anomalies and has a high disability
and mortality rate. Cerebral strokes can be classified into ischemic and hemorrhagic strokes.
Changes in ischemic stroke caused by the loss of blood flow, glucose, and oxygen due to vascular
obstruction, including triggering a series of oxidative, biochemical, and hormonal responses,
ultimately lead to microvascular damage and blood-brain barrier (BBB) disruption. The mass effect
of hematoma in hemorrhagic stroke and a series of intertwined degenerative cascades, including
inflammation, red blood cell degradation, and iron deposition, and thrombin production, with the
presence of some ischemic lesions distant from the ischemic focus and other pathophysiological
mechanisms, such as oxidative stress and apoptosis, lead to the destruction of the BBB, cerebral
edema, and hydrocephalus, among others, forming a vicious circle.

Lipocalin-2 (LCN-2), a 25 kDa protein, is involved in various biological reactions. As an
immunomodulator, dysregulation of LCN-2 plays a vital role in several pathogeneses. Moreover,
LCN-2 is involved in the pathophysiological processes of secondary injury after stroke. Here, we
review the role of LCN-2 in pathophysiological processes, such as neuroinflammatory responses,
dysregulation of intracellular iron levels and oxidative stress, and BBB and neurovascular unit
(NVU) dysfunction. Additionally, we review the link between LCN-2 and cells. These findings
contribute to a better understanding of the mechanisms underlying the involvement of LCN-2 in
secondary injury after stroke, providing a potential target for stroke therapy.
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ORIGIN, STRUCTURE, AND ROLE OF
LCN-2 IN CEREBRAL STROKE

LCN-2 is a member of the lipocalin protein family. There are
significant differences in the amino acid sequences of each
member of the family, with <20% sequence homology between
its members. LCN-2 has various biological functions. As an
immunomodulator, alterations in LCN-2 levels are supposedly
critical in many pathological processes. For instance, studies
on humans indicated slightly elevated levels of LCN-2 in the
plasma of patients with mild cognitive impairment (Choi et al.,
2011) and the local concentration of LCN-2 in the brain tissue
of patients with multiple sclerosis (Al Nimer et al., 2016). In
a cerebral stroke, many cells express LCN-2. LCN-2 expression
following ischemic stroke was reportedly increased both in the
sera and brain, where it was localized to infiltrating neutrophils,
cerebral endothelium, and a subset of astrocytes (Zamanian
et al., 2012; Wang et al., 2015). LCN-2 expression was also
found in astrocytes, microglia, neurons, and endothelial cells
following intracerebral hemorrhage (ICH) in mice (Ni et al.,
2015). However, LCN-2 is considered to be mainly expressed in
astrocytes (Chia et al., 2011; Bi et al., 2013; Dong et al., 2013; Jin
et al., 2014b; Table 1).

LCN-2 AND VARIOUS
PATHOPHYSIOLOGICAL PROCESS

LCN-2 and NVU Dysfunction
NVU is defined by its function and anatomy (Harder et al.,
2002) and is composed of endothelial cells, basement membrane,
neurons, astrocytes, and pericytes (Amarenco et al., 2009;
Abbott and Friedman, 2012; Gautam et al., 2020). It represents
a conceptual framework that includes neurons and adjacent
blood vessels (Iadecola, 2017). The interaction between the
various components of NVU is extremely important and is
gradually gaining attention (Lo and Rosenberg, 2009). The BBB
and cerebral blood flow are precisely controlled by the NVU,
thereby maintaining a homeostatic brain microenvironment
(Armulik et al., 2010; Zlokovic, 2011). The disruption of the
BBB, which is the core structure of the NVU, is an important
part of early brain injury (Keep et al., 2018). In the study on
the pathological mechanism of white matter damage caused
by subarachnoid hemorrhage, LCN-2 was found to play an
important role in the initiation and development of acute
BBB disruption. LCN-2 deletion attenuates acute BBN leakage
following subarachnoid hemorrhage (Egashira et al., 2016; Du
et al., 2019). Another experiment showed that LCN-2 deficiency
attenuated SAH-induced disruption of the white matter BBB,
which further confirmed the effect of LCN-2 on the BBB in the
opposite direction (Pang et al., 2017; Toyota et al., 2019). This
dysfunction may be due to kainic acid-induced leakage of the
BBB in the hippocampus (Shin et al., 2021).

TABLE 1 | Source of LCN-2 after stroke.

Ischaemia stroke Infiltrating neutrophils, cerebral endothelium and a subset
of astrocytes

Hemorrhage stroke Astrocytes, microglia, neurons and endothelial cells

Several neutrophils infiltrate and damage the BBB
(Wang Z. et al., 2020) during a stroke. Additionally, matrix
metallopeptidase 9 (MMP-9) could be involved in the LCN-
2-mediated BBB damage (Turner and Sharp, 2016; Figure 1).
LCN-2 can combine with MMP-9 through disulfide bonds to
reduce the degradation of MMP-9 and prolong its activity,
thereby enhancing the damaging effect of MMP-9 on the BBB
(Weng and Chou, 2015). Endothelial cells mainly constitute
specialized membranes around blood vessels, and their damage
can result in the destruction of the BBB (Armulik et al., 2010).
Interestingly, LCN-2 may regulate endothelial cells in the BBB
(Gasterich et al., 2021; Figure 1). LCN-2 induces the expression
of vascular endothelial growth factor A (VEGFA), which affects
vascular permeability either directly or via astrocytes (Kim
et al., 2017). HIF-1α induces the expression of both LCN-2 and
VEGFA in astrocytes. In LCN-2–/– mice, the hypoxia-induced
expression of VEGFA is suppressed in the astrocytes, indicating
that LCN-2may be an upstream signaling factor for VEGFA. The
upregulation of VEGFA reduces the levels of ZO-1, occludin,
and claudin-5 and alters their distributions (Mondal et al., 2020;
Wang G. et al., 2020; Yang et al., 2020), thereby increasing
the permeability of the BBB and leading to abrogation of the
NVU (Figure 1). As immune cells in the central nervous system
(CNS), astrocytes can control the contraction and relaxation of
pericytes and smooth muscle cells, thereby regulating cerebral
blood flow (Janzer and Raff, 1987; Zonta et al., 2003). Microglia
is not classically included as a part of the NVU; however, it is
closely related to the structure and function of the NVU. They
can modulate the innate immunity of astrocytes by releasing
various signaling molecules (Kirkley et al., 2017; Liu L. R. et al.,
2020). Studies have shown that LCN-2 can activate glial cells,
release pro-inflammatory factors, and cause damage to neurons
(Han et al., 2014). The chemokines released by LCN-2 after
activating glial cells can also induce the infiltration of leukocytes
(Tuttolomondo et al., 2014; Jayaraj et al., 2019), thus causing
BBB leakage. Several red blood cells and damaged cells enter the
brain tissue through the damaged BBB, further increasing the
damage to neurons. Neurons play an important role in the NVU.
Research has shown that LCN-2 can not only damage neurons
through glial cells but can also directly trigger oxidative stress
and apoptosis of nerve cells (Huang et al., 2020), which may be
caused by the transportation of a large amount of iron into the
cell (Shin et al., 2021). Therefore, the various components of
the NVU are closely related in terms of structure and function
to maintain the stability of brain functions. After a stroke, the
damaging effect of LCN-2 renders the NVU susceptible to
continuous damage, which in turn aggravates the secondary
damage following the stroke.

LCN-2 and Neuroinflammation
Neuroinflammation plays an important role in brain injury
caused by hemorrhagic stroke (Wang and Doré, 2007). Studies
have shown that LCN-2 is mainly expressed in astrocytes (Chia
et al., 2011; Bi et al., 2013; Dong et al., 2013; Jin et al., 2014b)
and is neurotoxic (Bi et al., 2013). However, other studies have
found that inflammatory cells, such as microglia and neutrophils
(Lee et al., 2007; Rathore et al., 2011; Jang et al., 2013b), can
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FIGURE 1 | LCN-2 can damage neurons through multiple pathways. On one hand, Lipocalin-2 can transport iron into neurons by binding to LCN-2R, leading to the
accumulation of intracellular iron, which in turn triggers ferroptosis and oxidative stress in neurons. On the other hand, LCN-2 can activate glial cells to release
pro-inflammatory factors, which in turn damage neurons. LCN-2 has several ways to damage the BBB. First, it can promote the release of VEGFA from astrocytes,
disrupt tight junctions between endothelial cells, and ultimately lead to leakage of the blood-brain barrier (BBB). Second, LCN-2 can bind to matrix metallopeptidase
9 (MMP-9), resulting in persistent BBB damage. Moreover, LCN-2 could induce neutrophil adhesion and damage the BBB. VEGFA, vascular endothelial growth
factor A; LCN-2, lipocalin-2; LCN-2R, lipocalin-2 receptor; NVU, neurovascular unit; BBB, blood-brain barrier.

also express LCN-2. The effects of LCN-2 on microglia are
complex. LCN-2 can increase the expression of M1-related genes
in cultured mouse microglia. The expression of M1-related
genes in microglia was significantly reduced in LCN-2-deficient
mice, following lipopolysaccharide (LPS) injection (Jang et al.,
2013b). LCN-2 expression is sensitive to cytotoxic agents,
and inflammatory activation of microglia can lead to LCN-2
upregulation. Meanwhile, LCN-2 expression in BV-2 microglia
induces changes in cell morphology. Microglial activation after
ICH was weaker in LCN-2 knockout mice than in wild-type
(WT) mice (Ni et al., 2015). This difference in microglial
activation may contribute to differences in brain injury between
WT and LCN-2 knockout mice after ICH.

In ischemic stroke, pro-inflammatory mediators regulated by
LCN-2 play a key role in ischemia-reperfusion injury (Iadecola
and Anrather, 2011). Afterastroke, iNOS expressed in microglia,
astrocytes, endothelial cells, and infiltrating neutrophils releases
large amounts of nitric oxide (NO; Iadecola and Anrather, 2011).
NO reacts preferentially with reactive oxygen species (ROS)
and forms peroxynitrite anion (ONNO−), which is a cytotoxic
mitochondrial enzyme and genetic material. Inhibition of iNOS
production by infiltrating neutrophils and brain endothelial
cells provides prolonged neuroprotection after transient and
permanent cerebral ischemia (Garcia-Bonilla et al., 2014). The
level of interleukin-6 (IL-6), a pro-inflammatory cytokine, is
elevated in plasma and brain 3–24 h after experimental stroke
(Clark et al., 1999). Previous study results showed that in vitro

exposure to IL-6 disrupted the integrity of the BBB by reducing
the transendothelial electrical resistance (TEER) of the brain
endothelial cells of rats (de Vries et al., 1996). CCL2 (monocyte
chemoattractant protein 1, MCP-1) and CCL9 (macrophage
inflammatory peptide gamma, MIP-1γ) are chemokines that are
upregulated after ischemic stroke in humans (García-Berrocoso
et al., 2014) and rodents (Shao et al., 2018). Furthermore, a
previous study showed the involvement of CCL2 and its receptor
‘‘CCR2’’ in leukocyte trafficking after stroke (Conductier et al.,
2010). Furthermore, studies have shown that genetic deletion
of CCL2 (Hughes et al., 2002) and CCR2 (Dimitrijevic et al.,
2007) reduces BBB permeability, accumulation of immune cells
in ischemic brain tissue, and subsequent cerebral infarction
(Chu et al., 2014). The role of CCL9 in stroke has not
been investigated; however, deficiency of its receptor ‘‘CCR1’’
attenuates neutrophil adhesion to the vascular endothelium and
migration to post-ischemic tissues (Reichel et al., 2006). In
summary, these studies suggest that genetic or pharmacological
inhibition of these pro-inflammatory mediators (iNOS, IL-6,
CCL2, and CCL9) provides neuroprotection against stroke,
which can affect pro-inflammatory mediators by modulating
LCN-2.

Studies have shown that activated glial cells release cytokines
and chemokines, which infiltrate leukocytes (Tuttolomondo
et al., 2014; Jayaraj et al., 2019) and induce neuroinflammatory
responses. Moreover, cytokines can damage neurons and destroy
vascular and nerve coupling of the NVU (Figure 1). White blood
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cells can destroy the structure of the BBB, causing its leakage.
Some studies have demonstrated that LCN-2 can promote
the pro-inflammatory activation of glial cells and enhance the
infiltration of neutrophils and macrophages into the brain under
certain conditions.

LCN-2 and Oxidative Stress
Oxidative stress plays a critical role in stroke (Rodrigo et al.,
2013; Wang et al., 2018; Fumoto et al., 2019; Reiche et al.,
2019). Moreover, LCN-2 plays an important role in oxidative
stress. We reviewed the existing basic studies and found that few
studies investigate the role of LCN-2 in oxidative stress following
stroke; however, many conclusions have been drawn from
oxidative stress after other nervous system diseases, which may
indicate the direction for the study of oxidative stress following
stroke with LCN-2. For example, in the experiment of nerve
injury caused by KA, LCN-2 deficiency was found to reduce
oxidative stress response (Shin et al., 2021). Leptin-deficient
obese ob/ob mice show that LCN-2 is robustly induced in the
hippocampus following obesity, and acts in an inflammatory
manner by increasing BBB leakage and iron accumulation-
induced oxidative stress (Jin et al., 2020). The mechanism
underlying this phenomenon could involve the transformation
of LCN-2 into an unfolded state by iron-loaded siderophores,
leading to an increase in the intracellular levels of ROS (Huang
et al., 2020; Figure 1). In an experiment using a mouse model
of NASH, LCN-2 in the systemic upregulates the expression
of the LCN-2 receptor (24p3R) in brain cells and secretes
the damage-associated molecular pattern protein (DAMP), a
high mobility group box 1 (HMGB1) that subsequently induces
oxidative stress and nod-like receptor protein 3 (NLRP3)
inflammasome activation on the brain cells (Mondal et al., 2020).
Therefore, LCN-2 may promote oxidative stress and prevent
oxidation. These findings suggest that LCN-2 may be used as a
biomarker to identify oxidative stress. The protracted periods of
oxidative stress and neuroinflammation provide an opportunity
for therapeutic interventions. Immunotherapy designed to target
pro-inflammatory mediators as a means of improving stroke
outcome has, therefore, attracted considerable scientific attention
(Yu et al., 2013; Lambertsen et al., 2019).

LCN-2 and Iron Dysregulation
An increase in total iron content is observed in the lesion area
in cases of both hemorrhagic and ischemic strokes (Tuo et al.,
2017; Liu R. et al., 2020). The release of red blood cells primarily
contributes to the presence of free iron after stroke. A large
amount of free iron enters the brain parenchyma through the
disrupted BBB and promotes ROS production by the Fenton
reaction that induces oxidative stress and ferroptosis (Figure 1).
Iron can also directly initiate toxic reactions, damage nerve cells,
and cause NVU dysfunction (Righy et al., 2016; Liu J. et al.,
2020). Furthermore, iron plays a major role in brain damage
after ICH (Wagner et al., 2003; Xi et al., 2006). Brain non-heme
iron increases after ICH in rats, and brain iron overload causes
brain edema in the acute phase of ICH and brain atrophy
thereafter (Xi et al., 2006; Keep et al., 2012). An iron chelator,
deferoxamine, alleviates ICH-induced brain edema, neuronal

death, brain atrophy, and neurologic deficits in rats and pigs
(Xi et al., 2006; Keep et al., 2012; Xie et al., 2014). Clinical
data also suggest that iron plays a role in ICH-induced brain
injury. For example, clot lysis is associated with perihematomal
edema development (Wu et al., 2006). Recent studies showed
that high levels of serum ferritin, an iron storage protein, are
independently associated with poor outcomes and severe brain
edema in ICH patients (Mehdiratta et al., 2008; Pérez de la
Ossa et al., 2010). LCN-2 is an acute-phase protein that is
upregulated in inflammation, infection, and various injuries
(Jha et al., 2015). It binds siderophores, which are secreted by
microorganisms to scavenge iron (Goetz et al., 2002). However,
evidence demonstrating the involvement of LCN-2 involved in
iron homeostasis is increasing. A study showed that LCN-2 could
be involved in cellular uptake or clearance of iron depending on
iron status (Devireddy et al., 2005). Another report suggested that
LCN-2 could mediate an alternative, transferrin-independent
pathway for cellular iron delivery (Yang et al., 2002). In rats,
LCN-2 is upregulated after ICH and may play a role in handling
iron that is released from the hematoma during clot resolution
(Dong et al., 2013). However, whether such a role is beneficial or
detrimental is uncertain.

Overall, these results indicate that LCN-2 plays a role in
iron-mediated brain injury after ICH. Until now, the detailed
mechanism of iron delivery through LCN-2 has not been
fully elucidated. In previous studies, LCN-2 was considered a
mediator of an alternative, transferrin-independent pathway for
cellular iron delivery (Yang et al., 2002). Iron is suggested to bind
to an LCN-2-associated small molecular weight siderophore,
transferred into cells through 24p3R, an LCN-2 cell-surface
receptor, and subsequently released, resulting in an increased
intracellular iron concentration (Flo et al., 2004; Devireddy
et al., 2005). LCN-2 deficiency can block the pathway of LCN-
2-dependent intracellular iron transportation, as suggested by
the reduced iron-induced ferritin synthesis, and alleviate brain
injury. However, studies showed that LCN-2 could regulate
the intracellular iron concentration, and LCN-2 deficiency can
increase the cellular iron levels in sepsis (Srinivasan et al., 2012).
Thus, the role of LCN-2 in iron transport requires further study.

LCN-2 and Brain Cell Death
Unlike other CNS diseases, a stroke leads to the death of
numerous brain cells (Lee et al., 2007, 2012; Bi et al., 2013; Jang
et al., 2013a; Jin et al., 2014a,b; Wang et al., 2015; Kim et al., 2016,
2017; Bhusal et al., 2019; Chen et al., 2019, 2020; Deng et al., 2019;
Braga et al., 2020), which can be directly or indirectly mediated
by LCN-2. As mentioned earlier, LCN-2 can activate glial
cells to release pro-inflammatory factors that directly damage
neurons. Additionally, LCN-2 can induce leukocyte infiltration
as well as neuroinflammation by releasing chemokines following
the activation of glial cells. LCN-2 can also directly trigger
oxidative stress and apoptosis in neural cells. When LCN-2
is ectopically expressed by the 24p3R gene in iron-deficient
cells, it further reduces intracellular iron levels. In cell types,
such as astrocytes, neurons, and neural stem cells, cellular iron
deprivation mediated by LCN-2 leads to apoptosis (Devireddy
et al., 2001, 2005; Lee et al., 2009, 2012; Ferreira et al., 2018a).
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Furthermore, LCN-2 induces the expression of the proapoptotic
protein Bim, which causes apoptosis (Devireddy et al., 2005;
Lee et al., 2012). However, other studies indicate that Bim is
not essential for LCN-2-mediated apoptosis (Lee et al., 2007;
Naudé et al., 2012). LCN-2 can also directly initiate neuronal
death via mitochondria-related pathways (Chen et al., 2020):
this phenomenon is believed to occur through the mitochondrial
apoptotic pathway (Iurlaro and Muñoz-Pinedo, 2016; Hetz
and Papa, 2018). Endoplasmic reticulum stress-induced cell
death occurs through the ATF4/CHOP or IRE1/JNK pathways.
However, another study indicated that tunicamycin-induced
LCN-2 cells produce a stronger endoplasmic reticulum stress
response than WT cells. Moreover, LCN-2 acts as a protective
factor and cells lacking LCN-2 are more prone to injury
(Borkham-Kamphorst et al., 2020). Recombinant LCN-2 directly
induces apoptosis in dopaminergic neurons in a dose-dependent
manner (Weng et al., 2021). Additionally, LCN-2 can induce cell
death by promoting the accumulation of intracellular iron (Xu
et al., 2012; Ni et al., 2015; Dekens et al., 2018).

However, there are some controversies regarding the
promotion of apoptosis by LCN-2 in brain cells. First, the idea
that LCN-2 can directly initiate apoptosis is controversial. LCN-2
can initiate cell death via inflammation or cytotoxicity (Lee
et al., 2007, 2009, 2012; Naudé et al., 2012; Mesquita et al.,
2014). Moreover, many studies have shown that LCN-2 can
significantly induce cytotoxicity (Bi et al., 2013;Wang et al., 2015;
Kim et al., 2016, 2017). Second, the cell types in which LCN-2
can mediate toxicity are unclear, with different experiments
producing different results. For example, a study found that
LCN-2 affects the survivability of neurons (Bi et al., 2013), while
other studies suggested that LCN-2 increases the sensitivity of
astrocytes and microglia to cell death (Lee et al., 2007, 2009;
Mesquita et al., 2014; Mike et al., 2019). The differences between
these results may be due to variations in methodologies. For
example, in vivo and in vitro experiments yield different results.
Finally, while most of the studies emphasize the cytotoxic effects
of LCN-2, high levels of LCN-2 may stimulate the glial cells to
transform into cells that protect neurons (Xing et al., 2014). The
high levels of LCN-2 may indicate SOS for the damaged neurons.

For example, overexpression of LCN-2 reduces apoptosis in
gastric mucosal cells (Wen et al., 2021). LCN-2 can prolong
the survival of ovarian clear cell carcinoma cells by reducing
iron-related oxidative stress (Yamada et al., 2016). When liver
cells are stressed or damaged, LCN-2 protects them from
apoptosis induced by endoplasmic reticulum stress (Borkham-
Kamphorst et al., 2020). These observations may provide a new
perspective on the role of LCN-2 in neurological diseases and
help explore the mechanism underlying cell death after stroke.

LCN-2 INTERVENTION STRATEGIES

Studies have shown that neutralization of LCN-2 is a
reasonable therapeutic strategy to alleviate reperfusion injury
in stroke. Treatment with LCN-2 mAbs significantly attenuates
LCN-2 mRNA and protein within a clinically relevant time
window; however, targeting LCN-2 to inhibit post-stroke
neuroinflammation may be more beneficial than inhibiting
individual cytokines and chemokines, as LCN-2 may be
responsible for the inflammatory cascade important upstream
regulators of these mediators. Administration of LCN-2 mAb
prior to full post-stroke LCN-2 elevation reduced the levels
of LCN-2 and pro-inflammatory mediators (iNOS, IL-6,
CCL2, and CCL9) and resulted in neutrophil infiltration, BBB
leakage, cerebral infarction induction, and improved functional
outcomes after stroke (Wang Z. et al., 2020). In addition to
neutralizing LCN-2, other therapeutic approaches that inhibit
the expression and secretion of LCN-2 (Cowland et al., 2006) or
interfere with the interaction between LCN-2 and its receptors
(Devireddy et al., 2005) are also potential avenues for therapeutic
development (Suk, 2016).

PERSPECTIVE

There are some controversial results regarding the role of LCN-2
in some pathological processes (Table 2). Several studies have
shown that LCN-2 could aggravate neuroinflammation (Lee
et al., 2011; Jang et al., 2013a,b; Jin et al., 2014a); however,
some studies found that neuroinflammation worsened in the

TABLE 2 | Controversial results of LCN-2 in some pathological processes.

LCN-2 and neuroinflammation LCN-2 could cause neuroinflammation: Lee et al. (2011), Jang et al. (2013a,b), and Jin et al. (2014a)

The absence of LCN-2 could aggravate neuroinflammation: Berard et al. (2012), Nam et al. (2014), Dekens et al. (2018),
and Kang et al. (2018)

LCN-2 does not affect neuroinflammation: Ip et al. (2011), Lattke et al. (2017), Vichaya et al. (2019), and Gasterich et al.
(2021)

LCN-2 and the activation of cells LCN-2 could trigger the classical activation of astrocytes: Zhao et al. (2019)

LCN-2 can reduce inflammation in the astrocytes: Deng et al. (2019)

LCN-2 does not affect the activation of astrocytes but influences that of microglia: Mike et al. (2019)

LCN-2 can affect neutrophil infiltration and microglia/macrophage activation: Zhang et al. (2021)

LCN-2 and oxidative stress LCN-2 is able to promote oxidative stress: Huang et al. (2020), Jin et al. (2020), Mondal et al. (2020), and Shin et al.
(2021)

LCN-2 could reduce oxidative stress: Song et al. (2015), Xiao et al. (2016), Yamada et al. (2016), and Ferreira et al.
(2018a)

LCN-2 and iron LCN-2 contributes to iron accumulation: Dekens et al. (2018) and Shin et al. (2021)

The absence of LCN-2 could cause iron accumulation: Nairz et al. (2009, 2015) and Ferreira et al. (2018a)
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absence of LCN-2 (Berard et al., 2012; Nam et al., 2014; Dekens
et al., 2018; Kang et al., 2018). Additionally, other contradictory
studies indicate that LCN-2 does not affect neuroinflammation
(Ip et al., 2011; Lattke et al., 2017; Vichaya et al., 2019; Gasterich
et al., 2021). Next, the effect of LCN-2 activation on cells was
slightly different across various experiments. A recent study
showed that LCN-2 triggered the classical activation of astrocytes
in mice with tMCAO (Zhao et al., 2019), and another study
found that LCN-2 can reduce inflammation in the astrocytes
(Deng et al., 2019). However, Mike et al. found that LCN-2
does not affect the activation of astrocytes but influences the
activation of microglia (Mike et al., 2019). Moreover, LCN-2 is
crucial in the effects of PRX-2 on neutrophil infiltration and
microglia/macrophage activation, and ultimately brain damage
(Zhang et al., 2021). Thus, the contradictory conclusions may
be due to differences in disease models, factors of induced
inflammation, disease stages, and cell types. However, they all
provide valuable contributions to the further understanding of
post-stroke neuroinflammation.

There are also some controversies regarding the role of LCN-2
in oxidative stress. In the conclusions mentioned earlier, LCN-2
is able to promote oxidative stress. However, one study found
that the elevated expression of LCN-2 could reduce oxidative
stress and the resulting cellular damage (Xiao et al., 2016; Yamada
et al., 2016). In another study, knocking out the LCN-2 gene
in mice increased oxidative stress, which could be attributed to
an accumulation of active iron in neural stem cells (Ferreira
et al., 2018a,b). Interestingly, LCN-2 can also exert antioxidant
effects through several mechanisms. Onemechanismmay be that
LCN-2 acts as an antioxidant by inducing the expression of heme
oxygenase 1 (Song et al., 2015; Yamada et al., 2016). Another
mechanism could be the overexpression of LCN-2 eliciting
antioxidant effects by reducing the production of intracellular
iron and protecting against ROS-induced oxidative stress (Xiao
et al., 2016).

These controversial conclusions also exist in studies related
to LCN-2 and iron. A study showed that LCN-2 contributes to
iron accumulation (Shin et al., 2021). Another study validated the
finding that a lack of LCN-2 significantly reduced Alzheimer’s

disease-related hippocampal iron accumulation (Dekens et al.,
2018). However, the absence of LCN-2 caused iron accumulation
in certain cells, such as macrophages, hippocampal neurons, and
neural stem cells (Nairz et al., 2009, 2015; Ferreira et al., 2018a).
These controversial conclusions can provide new ideas for us to
further explore the pathophysiological mechanism of LCN-2 in
brain injury after stroke.

CONCLUSION

Despite the abovementioned controversial conclusions, there is a
consensus that LCN-2 can exacerbate brain injury. Several risk
factors cause an accumulation of LCN-2 in the brain, which
aggravates brain damage. Overall, it can be hypothesized that
an increase in LCN-2 levels in response to injury aggravates the
risk of poor outcomes in stroke, including causing inflammation
in the brain, iron dysregulation, and neurovascular dysfunction.
However, current direct evidence is insufficient. Therefore,
future research should evaluate the direct link between LCN-2
and secondary stroke injuries. Additionally, studies show that
LCN-2 plays contradictory roles, indicating that the function of
LCN-2 is highly complex; thus, it is necessary to further explore
its mechanism of action. The levels of LCN-2may also be affected
by multiple factors, including sex, age, disease type, and cell type.
In summary, we need to further explore the role of LCN-2 in
secondary brain injury after stroke and increase the usage of
LCN-2 levels in the diagnosis and treatment of stroke.
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