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Reduced somatostatin signalling leads to
hypersecretion of glucagon in mice fed a
high-fat diet
Joely A. Kellard 1, Nils J.G. Rorsman 1, Thomas G. Hill 1, Sarah L. Armour 2, Martijn van de Bunt 3,
Patrik Rorsman 1,4,5, Jakob G. Knudsen 1,2,*,7, Linford J.B. Briant 1,6,**,7
ABSTRACT

Objectives: Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we
explored alpha-cell function in female mice fed a high-fat diet (HFD).
Methods: Female mice expressing the Ca2þ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then
conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas.
Results: In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse
pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2þ ([Ca2þ]i) oscillation frequency and amplitude.
This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2þ]i oscillations were higher than those in CTL
alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that
this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice
was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2þ]i activity from HFD alpha-cells, in contrast to observations
in CTL mice.
Conclusions: These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to
somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD.
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1. INTRODUCTION

Type 2 diabetes (T2D) is characterised by elevated circulating glucose.
Lack of insulin plays an important role in the development of hyper-
glycaemia and glucose intolerance in T2D. However, it is also recog-
nized that abnormal glucagon secretion contributes to the development
of glucose intolerance and that T2D is best characterised as a bihor-
monal disorder [1,2].
Glucagon is secreted from alpha-cells of the pancreatic islets when
plasma glucose falls below w4 mM. Glucagon secretion is regulated
within the islet by both intrinsic and paracrine mechanisms [3].
Glucose can directly inhibit glucagon secretion, but there is still no
consensus about the nature of this intrinsic mechanism(s) [3e10]. In
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particular, glucose has been proposed to increase the intracellular ATP
and that this, via closure of plasmalemmal ATP-regulated Kþ (KATP)
channels, results in membrane depolarization and reduction in action
potential height (due to voltage-dependent inactivation of the Naþ

channels involved in action potential firing). This culminates in reduced
activation of voltage-gated Ca2þ channels and, consequently, exocy-
tosis of glucagon-containing granules [11]. However, glucose has also
been demonstrated to intrinsically inhibit glucagon secretion by a
mechanism involving store-operated channels [12] or altered cAMP
signalling (see [9] and reviews [13,14]). Glucagon release is also
influenced by local paracrine signals. These include somatostatin
[15,16] and insulin [17,18] from islet delta- and beta-cells,
respectively.
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Table 1 e Body composition analysis of mice on HFD and CTL diet for 12
weeks by EchoMRI�.

Parameter CTL (n ¼ 6) HFD (n ¼ 6) P

Weight (g) 20.77 � 0.35 26.25 � 1.69 0.0035
Fat % 20.33 � 2.46 32.88 � 4.19 0.0273
Lean mass % 69.50 � 2.09 59.50 � 3.24 0.0268
Total water % 57.16 � 4.42 48.63 � 5.61 0.0151
Fat (g) 4.21 � 0.49 8.90 � 1.59 0.0183
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In some patients with T2D, the normal relationship between plasma
glucose and glucagon is reversed and hyperglycaemia stimulates
rather than inhibits glucagon secretion [11,19]. The dysregulation of
glucagon secretion in T2D is detectable even prior to the onset of
diabetes; hyperglucagonaemia is observed in obese patients [20,21]
and patients with impaired fasting glycaemia [22]. Although it is clear
that glucagon is central in the aetiology of T2D, we still do not un-
derstand how glucagon secretion is affected by the changes in whole
body metabolism that precede the onset of the disease. In particular,
the impact of high-fat diet (HFD) feedingdwidely regarded as a model
of prediabetes [23]don glucagon secretion is not well characterised.
Exposure of whole islets to high levels of palmitate for up to 72 h
changes insulin, glucagon, and somatostatin secretion [24,25] as well
as the whole-islet gene expression [26] and metabolism [27,28].
Furthermore, isolated islets from HFD mice exhibit elevated glucagon
secretion when exposed to high glucose concentrations [29]. However,
the mechanism by which this elevation occurs remains unresolved and
obscured by the conflicting in vivo observations that circulating
glucagon is increased [29], decreased [30], or unchanged [31] in HFD
mice. Here, we investigate the effects of HFD feeding on alpha-cell
function and the paracrine regulation of glucagon secretion.

2. METHODS

2.1. Ethics
Experiments were conducted in strict accordance with the UK Animals
Scientific Procedures Act (1986) and the University of Oxford ethical
guidelines. All work was approved by the Local Ethical Committee.

2.2. Animals
Mice expressing GCaMP3 specifically in alpha-cells were generated by
crossing Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze mice (Jackson Laboratory
No. 014538) with mice carrying an insert containing glucagon
promoter-driven iCRE (Tg(Gcg-icre)12Fmgb mice; see [32]). Heterozy-
gous breeding was set up to produce in mice heterozygous for the
Tg(Gcg-icre)12Fmgb and the Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze allele.
iCRE was always and only passed down through the father. All mice
used in this study were 16e18 weeks old and fully backcrossed to a
C57BL/6J background. Given the large differences in body weight,
blood glucose, and the response to HFD feeding between sexes, we
chose to restrict our study to female mice. Unless otherwise indicated,
animals had ad libitum access to food and water. All animals were
housed in an SPF facility on a 12:12 h light:dark cycle at 22 �C. In all
cases where animals fasted, food was removed at 08.30 a.m. (30 min
into the light phase). Immediately after weaning, mice were fed either a
high-fat (HFD) (% kcal: protein 18.3, carbohydrate 21.4, fat 60.3;
TD.06414, Envigo) or a control diet (CTL) (% kcal: protein 20.5, car-
bohydrate 69.1, fat 10.5; TD.08806 Envigo) for 12 weeks. Mice were
cohoused by diet and litters were mixed to avoid litter-specific effects
of diet.

2.3. Glucose tolerance test
Following 6 h of fasting, animals received an intraperitoneal (i.p.) in-
jection of D-glucose (2 g/kg; IPGTT). Blood glucose concentrations were
measured at 0, 15, 30, 60, and 120 min after the injection. A sample
was also taken 15 min prior to the injection (“Rest”). Blood samples
(25 mL) were obtained by tail vein puncture at 0 and 30 min in EDTA-
coated capillary tubes. Whole blood was immediately mixed with 5 mL
of aprotinin (1:5, 4 TIU/mL, SigmaeAldrich, UK) and kept on ice until it
was centrifuged at 2600 g at 4 �C. Plasma was then removed and
stored at �80 �C.
2
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2.4. Fed plasma measurements
Tail vein blood samples were also taken from ad libitum fed mice with
free access to water, housed in their home cage. Blood samples were
taken at 09:00, 13:00, and 17:00 and processed as described
previously.

2.5. Insulin tolerance test
Following 4 h of fasting, animals received an i.p. injection of insulin
dosed on total body weight (0.75 U/kg total body weight; Actrapid,
Novo Nordisk). This insulin tolerance test (ITT) involved measuring
blood glucose concentrations at 0, 15, 30, 60, and 120 min after the
injection. At fixed time points following the injection, 25 mL of blood
was obtained and processed as above.
In an additional experiment, mice were given an insulin bolus where
the insulin was dosed on lean mass. Initial experiments using
EchoMRI� (EchoMRI LLC, USA) demonstrated that CTL mice were
69.5 � 2.1% lean mass, whereas HFD-fed mice were 59.5 � 3.2%
lean mass (P ¼ 0.023, n ¼ 6 CTL and 6 HFD mice, unpaired t-test;
Table 1). Therefore, for the lean mass-based insulin injections, CTL
mice received 0.75 U/kg total body weight, whereas HFD-fed mice
received 0.64 U/kg, thereby giving the mice the same dose of insulin
per gram lean mass (1.08 U/kg lean mass).

2.6. Islet isolation
Mice were culled by cervical dislocation. Pancreatic islets were iso-
lated by liberase digestion followed by manual picking. Isolated islets
were, pending the experiments, maintained in short-term (<24 h)
tissue culture in RPMI 1640 (11879-020, Gibco, Thermo Fisher Sci-
entific) containing 1% penicillin/streptomycin (1214-122, Gibco,
Thermo Fisher Scientific), 10%FBS (F7524-500G, SigmaeAldrich),
and 11 mM glucose prior to the measurements.

2.7. Static secretion experiments
Islets isolated from HFD and control mice were incubated in 11 mM
glucose media. All secretion experiments were conducted on the day of
islet isolation, following 1e2 h culture. Size-matched batches of 20
islets were then preincubated in 0.2 mL KRB (in mM; 140 NaCl, 5 KCl,
1.2 MgCl2, 2.6 CaCl2, 1 NaH2PO4, 5 NaHCO3, and 10 HEPES (pH 7.4))
with 2 mg/mL BSA (S6003, SigmaeAldrich) and 3 mM glucose for 1 h
at 37 �C. Following this, islets were subjected to 1 mM or 6 mM
glucose KRB with 0.2% BSA for 1 h. The supernatant was removed,
quickly frozen, and stored at �80 �C. For the measurement of total
glucagon and insulin contents, the islets were lysed in HCl:ethanol
(1:15) at the end of the experiment, sonicated and stored at �80 �C.

2.8. The in situ perfused mouse pancreas
Briefly, the aorta was ligated above the coeliac artery and below the
superior mesenteric artery and then cannulated. The pancreas was
perfused with KRB containing varying concentrations of glucose and
somatostatin-14 (Tocris, Cat. No 1157) as indicated in the figures, at a
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Ig (primary) Ig (secondary)

Chicken anti-GFP (Life Technologies,
A10262)

Goat anti-chicken 488 nm (Invitrogen,
A11029)

Mouse anti-glucagon (SigmaeAldrich,
G2654)

Goat anti-mouse 568 nm (Invitrogen,
11032)

Guinea pig anti-insulin Goat anti-guinea pig 633 nm
Rabbit anti-somatostatin Goat anti-rabbit 488 nm
Rabbit anti-SSTR2 (Abcam, ab134152) Vector Labs DyLight Kit (DK-1488)

Stained sections were imaged using a BioRad Radiance 2000 Scanning Laser Confocal
Microscope.
Primary and secondary antibodies used for the staining of mouse pancreases. All
dilutions are 1:500.
speed of 1.34 mL/min/mg pancreas weight using an Ismatec REGLO
Digital MS2/12 peristaltic pump. Pancreatic weight was estimated
from the whole body weight as previously described [33,34]. The
perfusate was maintained at 37 �C using a Warner Instruments
temperature control unit TC-32 4B in conjunction with an in-line heater
(Warner Instruments P/N 64-0102) and a Harvard Apparatus heated
rodent operating table. The effluent was collected in intervals of 1 min
into 96-well plates which were kept on ice and contained aprotinin.
Samples were subsequently stored at �80 �C pending analysis of
glucagon content.

2.9. Hormone measurements
Plasma insulin and glucagon were determined using insulin and
glucagon mouse sandwich ELISA (10-1113-01 and 10-1281-01 from
Mercodia, Sweden). Insulin and glucagon concentrations from ex vivo
islet experiments were measured using mouse/rat insulin-glucagon
sandwich ELISA (K15145C, Mesoscale Discovery, USA), and somato-
statin concentration was determined using radioimmunoassay (Life
Science AB, Sweden). Glucagon concentrations from the perfusate of
the in situ perfused mouse pancreas were measured using the U-plex
Glucagon ELISA (K1515YK, Mesoscale Discovery). All measurements
were conducted according to the manufacturers’ protocols.

2.10. GCaMP3 imaging and calculation of [Ca2þ]i spike frequency
and amplitude
Time-lapse imaging of the intracellular GCaMP3 was performed on the
inverted Zeiss AxioVert 200 microscope, equipped with the Zeiss LSM
510-META laser confocal scanning system, using a 40�/1.3 NA
objective. The chamber was continuously perfused at a rate of 200 mL/
min with KRB solution (described above) containing 2 mg/mL BSA
(S6003, SigmaeAldrich), glucose, and other compounds as indicated
in the figures. All solutions were corrected for osmotic differences with
mannitol. GCaMP3 was excited at 488 nm and fluorescence emission
was collected at 530 nm at a frequency of 1.28 Hz. Fiji (http://fiji.sc/Fiji)
was used to identify and measure the intensity of the GCaMP3 signal in
individual regions of interest (cells) over time. Given that the specificity
of CRE is not 100%, we expected a number of GCaMP3þ cells to be
non-alpha-cells. Therefore, only GCaMP3þ cells that (a) were active at
1 mM glucose and (b) exhibited an increase in Ca2þ in response to
adrenaline (5 mM) in the presence of high glucose (15 mM; see [35])
were considered alpha-cells. This process consistently resulted in the
removal of w10% of the GCaMP3þ cells, in keeping with the speci-
ficity of this iCRE line that we report here (as outlined in Figure 5A and
the associated text in the Results section). Spikes in GCaMP3 were
manually annotated using Spike2 (http://ced.co.uk/) and defined as
being spikes if their amplitude was >20% the amplitude of a period of
noise. Spike frequency was calculated from this annotated data, and
spike amplitude was calculated from the spike-triggered average of
the fluorescence signal over a fixed time window (10 time-steps).

2.11. Perforated patch-clamp recordings
Islets isolated from chow-fed as well as CTL and HFD mice were used
for electrophysiological recordings. These recordings (in intact islets)
were performed at 33-34 �C using an EPC-10 patch-clamp amplifier
and PatchMaster software (HEKA Electronics, Lambrecht/Pfalz, Ger-
many). Unless otherwise stated, recordings were made in 3 mM
glucose. Currents were filtered at 2.9 kHz and digitized at> 10 kHz. A
new islet was used for each recording. Membrane potential (Vm) re-
cordings were conducted using the perforated patch-clamp whole-cell
technique as previously described [36]. The pipette solution contained
(in mM) 76 K2SO4, 10 NaCl, 10 KCl, 1 MgCl2$6H20, and 5 HEPES (pH
MOLECULAR METABOLISM 40 (2020) 101021 � 2020 The Author(s). Published by Elsevier GmbH. This is
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7.35 with KOH). For these experiments, the bath solution contained
(mM) 140 NaCl, 3.6 KCl, 10 HEPES, 0.5 MgCl2$6H20, 0.5 Na2H2PO4, 5
NaHCO3, and 1.5 CaCl2 (pH 7.4 with NaOH). Glucose was included in
the extracellular medium at the indicated concentrations. Amphotericin
B (final concentration of 25 mg/mL, SigmaeAldrich) was added to the
pipette solution to give electrical access to the cells (series resistance
of<100 MU). Alpha-cells were confirmed by the presence of GCaMP3
or RFP. In WT islets, alpha-cells were identified by the presence of
action potential activity at 3 mM glucose and ion channel properties
[37]. In some recordings, GCaMP3 was also simultaneously recorded
with a Hamamatsu ORCA 2, operated with MicroManipulator.
The frequency of action potential firing was calculated in MATLAB v.
6.1 (2000; The MathWorks, Natick, MA, USA). In brief, a peak-find
algorithm was used to detect action potentials. This was then used
to calculate firing frequency and correlate average firing frequency
(calculated every 2 s) with the GCaMP3 signal.

2.12. Immunofluorescent staining
Whole pancreases were harvested and fixed in 4% PFA for up to 24 h
before embedding in wax; 5-mm-thick sections were cut and stained
using the antibodies indicated below.
2.13. Statistics
All data are reported as mean values � SEM unless otherwise stated.
Statistical significance was defined as P < 0.05. All statistical tests
were conducted in Prism 8.0 (GraphPad Software, San Diego, CA,
USA). For two groupings, a t-test was conducted. A ManneWhitney
test was conducted for data not normally distributed. For more than
two groupings, a one-way ANOVA was conducted. If there were two
independent variables, a two-way ANOVA was conducted. If the data
passed normality criteria (D’Agostino’s test of normality and Bartlett’s
test of equal variances), a parametric test was conducted with the
appropriate post hoc test (Tukey or Sidak). If the normality criteria were
not met, a KruskaleWallis test with Dunn’s multiple comparison test
was conducted.

3. RESULTS

3.1. HFD alters glucose homeostasis and plasma glucagon
concentration in vivo
Following weaning, female mice were fed either a HFD (60% dietary
calories from fat) or a CTL diet (10% calories from fat) for 12 weeks.
HFD feeding resulted in an increase in body weight and fat mass
(Figure 1A and B and Table 1). To determine whether HFD feeding
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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A B C

D E F

Figure 1: HFD feeding evokes hyperglucagonaemia in vivo. A. Increase in bodyweight in response to high-fat diet (HFD) or control diet (CTL). Two-way repeated measures
ANOVA; *P < 0.05. Data are presented as mean � SEM. B. Total body fat as % of total body weight in response to CTL or HFD at 12 weeks on diet. Unpaired t-test; *P < 0.05.
Data are presented as mean � SEM. C. Fed blood glucose during the day for mice on the CTL (N ¼ 15) or HFD (N ¼ 14). Two-way repeated measures ANOVA; *P < 0.05. Data are
presented as mean � SEM. D. Same as C but plasma glucagon. Two-way repeated measures ANOVA; *P < 0.05. E. The glucagon:glucose ratio for mice in the CTL and HFD.
Ratios are calculated from all 3 time points from C and D. Unpaired t-test; *P < 0.05. Data are presented as mean � SEM. F. Same as C but plasma insulin, CTL (n ¼ 6e7 mice)
and HFD (n ¼ 9e14 mice). Two-way repeated measures ANOVA; *P < 0.05. Data are presented as mean � SEM.
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affected glycaemia, we measured blood glucose and plasma glucagon
in ad libitum fed animals over several time points during the light
phase. Blood glucose was not different between CTL and HFD mice at
any time (Figure 1C). Despite this, HFD mice had higher plasma
glucagon levels than CTL mice at the beginning of the light phase
(09:00 am; Figure 1D). We analysed the glucagon:glucose ratio from all
time points and found that it was higher in HFD mice (Figure 1E),
supporting the notion that the relationship between glucagon and
glucose was altered in HFD mice. Insulin is a known paracrine inhibitor
of glucagon [2,17,18], but the levels of circulating insulin were in fact
elevated in response to HFD feeding (Figure 1F), making it unlikely that
the elevated plasma glucagon in HFD mice was secondary to reduced
plasma insulin.
An increase in plasma glucose during a glucose tolerance test reduces
circulating glucagon. This suppression is impaired in diabetic patients
[38,39] and conditions of impaired fasting glycaemia [40,41]. HFD
mice had impaired glucose tolerance and plasma glucose concen-
tration was increased from 15 mM to 25 mM at 30 min (Figure 2A).
Plasma glucagon was reduced to the same extent as in CTL mice
(Figure 2B).
As glucagon is a counterregulatory hormone, we also explored whether
glucagon was inappropriately secreted in HFD-fed mice during insulin-
induced hypoglycaemia in response to an insulin tolerance test (ITT;
Figure 2C). When insulin was dosed according to the total body weight,
there was no difference in absolute glucagon (Figure 2D).
4
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During an ITT, the majority of glucose is taken up by skeletal muscle
[42]. In the ITT (Figure 2C), the insulin dose was calculated based on
total body weight. However, because of the drastic difference in body
composition between the diets (Table 1), this leads to an artificially
high insulin dose in the HFD mice. To understand whether the higher
insulin bolus in the HFD mice resulted in a greater increase in
glucagon during the ITT, we also dosed insulin based on the esti-
mated lean body mass (Figure 2E and F). Blood glucose levels were
similar in the two groups 30 min after the insulin bolus, but plasma
glucagon was elevated more in response to insulin in the HFD mice
than in the CTL mice (Figure 2E and F), suggesting that the coun-
terregulatory stimulation of glucagon secretion is increased in the
HFD mice.
Finally, to understand how the relationship between glucose and
glucagon was changed with HFD feeding, we combined all glucose and
glucagon data from the ITT (dosed on total body weight) and glucose
tolerance test (GTT) experiments (Figure 2G). This demonstrated that
in vivo glucagon closely follows an exponential relationship with
glucose in CTL mice (R2 ¼ 0.84), with the glucose concentration
required to reduce glucagon by 50% (‘half-life’) ¼ 1.04 mM. The
relationship was markedly different in the HFD-fed mice (R2 ¼ 0.40),
with a greater-than doubling in the glucose concentration required to
suppress plasma glucagon by 50% (2.44 mM). These data suggest
that glucagon is inadequately suppressed by glucoseda reported
defect of TDM [8,43].
MOLECULAR METABOLISM 40 (2020) 101021
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2HFD: R =0.41, 
Half-life =2.44 (1.63, 3.71)

2CTL R t 
Half-life =1.04 (0.70, 1.39)

A B

C D

E F

G

Figure 2: Counterregulatory glucagon secretion is elevated in response to HFD
feeding. A. Blood glucose of mice in response to an i.p. GTT (2 mg/kg) in mice on a
CTL (n ¼ 12) or HFD (n ¼ 13) diet. Two-way repeated measures ANOVA; *P < 0.05.
Resting value (Rest) is following a 6 h daytime fast. Data are presented as
mean � SEM. B. Glucagon data from A. Two-way repeated measures ANOVA; *P <

0.05. n ¼ 11 for each diet. Data are presented as mean � SEM. C. Blood glucose
following an i.p. insulin tolerance test (ITT) in mice fed a control (CTL, n ¼ 5) or high-fat
diet (HFD, n ¼ 5). Insulin was dosed based on total body weight (0.75 U/kg). Data are
presented as mean � SEM. D. Plasma glucagon for data in a for 10 CTL and 11 HFD
mice. Two-way repeated measures ANOVA; *P < 0.05. Data are presented as
mean � SEM. E. Blood glucose following an ITT dosed on lean mass (1.08 U/kg lean
mass) in 5 CTL and 5 HFD mice. Two-way repeated measures ANOVA; *P < 0.05. Data
are presented as mean � SEM. F. Plasma glucagon for data in c. Two-way repeated
measures ANOVA; *P < 0.05. G. Plot of blood glucose versus plasma glucagon for all
in vivo data (including at rest, during GTT and during i.p. ITT dosed on total body
weight). A single-phase decay exponential (A exp (- a [G]); parameters A and a; [G] is
the plasma glucose concentration) was fit to the CTL data (R2 ¼ 0.83) and HFD data
(R2 ¼ 0.41). The ‘half-life’ (t1/2) of the exponential decay is the glucose required to half
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3.2. Intrinsic effects in islets drive the elevated plasma glucagon in
the HFD-fed mice
To determine whether the elevated plasma glucagon was due to the
changes intrinsic to the islet, we measured glucagon secretion from
isolated islets as well as from the in situ perfused mouse pancreas. In
the perfused pancreas, glucagon secretion evoked by lowering plasma
glucose from 6 to 1 mM was higher in the HFD mice than in the CLT
mice (Figure 3A and B). The increased glucagon secretion was also
observed in static incubations of isolated islets exposed to 1 and 6 mM
glucose (Figure 3E and F). Finally, insulin secretion from the perfused
mouse pancreas (Figure 3C and D) and isolated islets (Figure 3G and H)
was (if anything) slightly (but nonsignificantly) elevated in the HFD-fed
animals, making it unlikely that the hypersecretion of glucagon is due
to the reduced paracrine signalling from neighbouring beta-cells.

3.3. Alpha-cell dysfunction is associated with altered intracellular
Ca2þ signalling
Electrical activity is an important determinant of alpha-cell glucagon
secretion. We first conducted patch-clamp electrophysiology of alpha-
cells from CTL and HFD mice (Figure 4A and B). In the islets from both
CTL and HFD mice, alpha-cells generate electrical activity at 1 mM
glucose. We quantified the effects of diet on the action potential fre-
quency (Figure 4C), amplitude (Figure 4D), and peak voltage
(Figure 4E) in both 1 mM and 6 mM glucose. Of these parameters, the
only statistical difference we observed was that between the action
potential frequency at 6 mM glucose between the CTL and HFD mice. It
is clear that the responses to glucose concentrations were variable.
This same variability in the effects of glucose on the frequency and
amplitude of the electrical activity in alpha-cells is evident in the
literature; for example, studies report that high glucose decreases
[44,45], increases [11,46], or does not change [47] action potential
firing frequency in alpha-cells from wild-type mice. In our HFD alpha-
cells, this may reflect the known variability in the metabolic response
to high-fat feeding [48]. The perforated patch-clamp technique is
challenging and has low throughputdreflected in our low sample size
of cells recorded in both glucose conditions. Furthermore, it restricts
the study of alpha-cells to those on the outer layer of the islet. We
wanted to investigate alpha-cell function with a technique that could
capture this variability with adequate statistical power. Alpha-cells
exhibit oscillations in intracellular Ca2þ ([Ca2þ]i) and changes in
[Ca2þ]i drive glucagon secretion [49]. We performed parallel mea-
surements of electrical activity and [Ca2þ]i in islets from mice
expressing the genetically encoded Ca2þ indicator GCaMP3 under the
Gcg promoter. We confirmed that electrical activity is correlated with
[Ca2þ]i activity (Figure 4FeH). We conducted a cross-correlation of
instantaneous firing frequency (calculated over a 2-second window)
with the GCaMP3 signal and observed that they are highly correlated
(R2 ¼ 0.6, Figure 4G,H), demonstrating that [Ca2þ]i serves as a high-
throughput proxy for electrical activity. We then ascertained that
GCaMP3 was correctly targeted to the alpha-cells; we found that
84 � 2% GCGþ cells expressed GCaMP3 (n ¼ 3, Figure 5A).
Conversely, 86 � 7% of GCaMP3þ cells were GCGþ and only 6 � 3%
(all n ¼ 3 mice) were INSþ. We then fed mice expressing GCaMP3 in
alpha-cells a CTL or HFD. In islets isolated from CTL mice, sponta-
neous [Ca2þ]i oscillations were observed at 1 mM glucose which were
suppressed in frequency and amplitude when glucose was increased
to 6 mM glucose (Figure 5B,C, and E). However, there was no ‘typical’
alpha-cell Ca2þ signature; the changes in both frequency and
glucagon secretion. For CTL, this was 1.04 (95% CI: [0.70, 1.39]) mM glucose, and for
HFD, this was 2.44 [1.63, 3.71] mM glucose (N ¼ 91 CTL mice and N ¼ 90 HFD mice).
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Figure 3: Glucagon secretion from ex vivo islets or the in situ perfused mouse pancreas is elevated in response to HFD. A. Glucagon measured in the perfusate of the
perfused mouse pancreas from mice fed a control (CTL) or high-fat diet (HFD). n ¼ 8e9 mice in each group. Two-way repeated measures ANOVA; *P < 0.05. Data are presented
as mean � SEM. B. Data from a but average steady-state values over each condition. Two-way repeated measures ANOVA; *P < 0.05. Data are presented as mean � SEM. C.
Steady-state insulin measured in the perfusate of the perfused mouse pancreas from mice fed a control (CTL) or high-fat diet (HFD). n ¼ 4 CTL mice and n ¼ 5 HFD mice. Two-
way repeated measures ANOVA (significant source of variation: diet, P ¼ 0.21; time, P ¼ 0.012; interaction, P ¼ 0.22). Data are presented as mean � SEM. D. Data from c but
average steady-state values over each condition. Two-way repeated measures ANOVA, P > 0.2. Data are presented as mean � SEM. E. Glucagon secreted from isolated islets
from CTL and HFD mice (n ¼ 13 replicates from 6 mice). Two-way repeated measures ANOVA. Although there was no difference within a glucose concentration according to post
hoc analysis, there was an overall main effect between the diets (*P < 0.05). Data are presented as mean � SEM. F. Glucagon content from isolated islets from CTL and HFD mice
(n ¼ 25 replicates from 6 mice). Unpaired t-test (P ¼ 0.92). Data are presented as mean � SEM. G. Same as c but insulin secretion (n ¼ 15 replicates from 6 mice). Two-way
repeated measures ANOVA; *P < 0.05. Data are presented as mean � SEM. H. Same as d but insulin content (n ¼ 24 replicates from 6 mice). Unpaired t-test (P ¼ 0.51). Data are
presented as mean � SEM.
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amplitude were extremely variable. In HFD islets, [Ca2þ]i oscillations
were also observed at 1 mM glucose but these were much less
affected by elevation of glucose to 6 mM (Figure 5B and C). We
quantified this in a large number of CTL alpha-cells (n ¼ 508 cells/7
mice) and HFD alpha-cells (n ¼ 561 cells/7 mice). This analysis
revealed that despite the great variability, the frequency of [Ca2þ]i
oscillations was reduced by increasing glucose from 1 to 6 mM in both
CTL and HFD islets (Figure 5C). However, the median frequency in
6 mM glucose was 2-fold higher in the HFD alpha-cells than in the CTL
alpha-cells. Furthermore, a larger proportion of alpha-cells remained
active at 6 mM glucose in islets from HFD-fed compared to the CTL-fed
mice (Figure 5D). It is notable that in CTL islets w60% of alpha-cells
remained active at 6 mM glucose (albeit at an extremely low oscillation
frequency). Although glucose suppressed [Ca2þ]i oscillation amplitude
in both the CTL and HFD alpha-cells, alpha-cells from the HFD-fed
mice had higher spike amplitudes than those from the CTL mice at
both 1 and 6 mM glucose (Figure 5E).

3.4. HFD islets exhibit somatostatin resistance and impaired
somatostatin secretion
Alpha-cells are under strong paracrine regulation from neighbouring
somatostatin-secreting delta-cells [51,52]. Long-term exposure in vitro
of islets to the nonesterified fatty acids oleate or palmitate has been
shown to reduce somatostatin (SST) secretion [25]. We, therefore,
hypothesised that the increase in glucagon secretion and [Ca2þ]i
oscillatory activity at 6 mM glucose may be due to lowered somato-
statin (SST) secretion. Indeed, glucose-stimulated SST secretion was
30% lower in islets isolated from HFD-fed animals at both 1 mM and
15 mM glucose (Figure 6A). There was no change in the SST content
6
� 2020 The Author(s). Published by Elsevier G
between CTL (175� 14, 34 islets/3 mice) and HFD (193� 13 pg/islet,
31 islets/3 mice, P ¼ 0.35) mice, nor was there a change in delta-cell
number in HFD islets (Supplementary Figure 1).
To determine whether the reduced SST secretion explained the lack of
inhibition of glucagon secretion by glucose, we compared [Ca2þ]i
oscillatory activity in the CTL and HFD mice before and after phar-
macological inhibition of somatostatin signalling in the islet. Mouse
alpha-cells express primarily SST receptor 2 (SSTR2; see [7,53]). We,
therefore, inhibited SST signalling using the SSTR2 inhibitor
CYN154806 (CYN) and measured [Ca2þ]i oscillation frequency. At
6 mM glucose (a concentration associated with stimulation of so-
matostatin secretion in mouse islets; see Walker et al. [54]), the
addition of CYN increased [Ca2þ]i oscillation frequency significantly in
alpha-cells from the CTL mice but not in those from the HFD mice
(Figure 6B and C). We also tested the capacity of exogenous SST to
suppress alpha-cell [Ca2þ]i oscillation at 1 mM glucose. Whereas SST
had a strong inhibitory effect in the CTL islets, the effect was much
weaker in the HFD islets (Figure 6D and E). In the CTL islets, SST
produced a concentration-dependent suppression of [Ca2þ]i oscillatory
activity but this effect was less pronounced in the HFD islets where
[Ca2þ]i oscillations persisted at the high SST concentration tested
(10 nM).
Collectively, the effects of CYN154806 and exogenous somatostatin on
[Ca2þ]i indicate that the alpha-cells have become resistant to SST. We
further explored this possibility using the perfused mouse pancreas.
We first determined the IC50 of SST-induced suppression of glucagon
to be 21 pM in the chow-fed WT mice (Figure 7A). Accordingly, the
addition of 25 pM of SST at 1 mM glucose resulted in a 60% sup-
pression of glucagon secretion in the CTL mice (Figure 7B). In the HFD
MOLECULAR METABOLISM 40 (2020) 101021
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Figure 4: Electrical activity in CTL and HFD alpha-cells. A. Perforated patch-clamp recording of membrane potential (Vm) from 4 alpha-cells from CTL mice. Note the
variability in the response to high (6 mM) glucose. 6G ¼ 6 mM glucose, and 1G ¼ 1 mM glucose. B. Recording of Vm from HFD 4 alpha-cells from HFD mice. Note the
variability in the response to high (6 mM) glucose. C. Firing frequency in 1 and 6 mM glucose (3e6 cells from 3 CTL mice and HFD mice). Unpaired t-test; *P < 0.05. Note that
the lines indicate which data points are the same cell. The remaining cells were only recorded in 6 mM glucose. D. Action potential amplitude in 1 and 6 mM glucose (3e6
cells from 3 CTL and 3 HFD mice). Unpaired t-test, all P > 0.11. Note that the lines indicate which data points are the same cell. The remaining cells were only recorded in
6 mM glucose. E. Peak potential in 1 and 6 mM glucose (3e6 cells from 3 CTL and 3 HFD mice). Unpaired t-test, all P > 0.3. Note that the lines indicate which data points are
the same cell. The remaining cells were only recorded in 6 mM glucose. F. Dual recording of GCaMP3 and Vm from an alpha-cell from a standard rodent chow-fed mouse. The
upper trace is lVm, and below is a raster plot of action potentials with average firing frequency (calculated over a 2 s interval) and then the GCaMP3 signal from this cell. Note
the correlation in average firing frequency and GCaMP3. Recording conducted in 3 mM glucose. G. Cross-correlation of GCaMP3 signal and average firing frequency. The
threshold for the cross-correlation being deemed significant was R2 ¼ 0.1. The lags were 1 time step (2 s). H. Maximum cross-correlation from 5 alpha-cells from 2 mice. All
recordings conducted in 3 mM glucose.
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Figure 5: Alpha-cells from HFD mice exhibit elevated [Ca2D]i oscillations ex vivo. A. Staining of GCaMP3, glucagon, insulin, and an overlay in islets from GcgCre�/þ x floxed
GCaMP3 mice. Representative of 65 cells from 3 mice. The percentage of cells that were GCaMP3þ and Gcgþ was 84 � 2%. Data are presented as mean � SEM. B. Glucose-
dependent intracellular Ca2þ (GCaMP3; [Ca2þ]i) signals in an alpha-cell from a mouse fed a control diet (CTL) and high-fat diet (HFD). 1G ¼ 1 mM glucose, and 6G ¼ 6 mM
glucose. C. Frequency of [Ca2þ]i oscillations in response to 1 and 6 mM glucose (n ¼ 508 cells from 7 CTL mice, and n ¼ 561 cells from 7 HFD mice). Data are shown as
median � quartiles. Two-way repeated measures ANOVA; *P < 0.05. Significance for HFD and CTL at 1 mM glucose is P ¼ 0.092. D. Percentage of alpha-cells exhibiting [Ca2þ]i
oscillations in CTL and HFD islets at 6 mM glucose. Unpaired t-test; *P < 0.05. Data are presented as mean � SEM. E. [Ca2þ]i spike amplitude in response to 1 and 6 mM glucose
(n ¼ 125 cells from 4 CTL and HFD mice). Data are shown as median � quartiles. Two-way repeated measures ANOVA; *P < 0.05. F. Raster plot of [Ca2þ]i signal from 40 alpha-
cells from an islet from one CTL mouse. G. Average (�SEM) [Ca2þ]i response for all alpha-cells shown in F. H. Raster plot of [Ca

2þ]i signal from 51 alpha-cells from an islet from
one HFD mouse. I. Average (�SEM) [Ca2þ]i response for all alpha-cells shown in I.
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Figure 6: HFD results in changes in SST secretion. A. Somatostatin (Sst) secretion from islets isolated from control (CTL) and high-fat diet (HFD) fed mice (n ¼ 16 replicates
from 5 HFD and 5 CTL mice). t-test; *P < 0.05. Data are presented as mean � SEM. B. [Ca2þ]i signal (GCaMP3) from an alpha-cell from a CTL mouse and an HFD mouse in
response to the SSTR2 antagonist CYN154806 (100 nM). Recording in 6 mM glucose. C. Average alpha-cell [Ca2þ]i oscillation frequency in CTL and HFD islets in response to the
SSTR2 antagonist CYN154806 (100 nM). Recording in 6 mM glucose. n ¼ 224 cells from 5 CTL mice and n ¼ 220 cells from 5 HFD mice. Data are shown as median � quartiles.
D. [Ca2þ]i signal (GCaMP3) from an alpha-cell from a CTL mouse and an HFD mouse in response to 1, 5, and 10 nM Sst. Recording in 1 mM glucose. E. Average alpha-cell [Ca2þ]i
oscillation frequency in CTL and HFD islets in response to 1, 5, and 10 nM SST. n ¼ 192 cells from 3 CTL mice and n ¼ 233 cells from 5 HFD mice. Two-way RM ANOVA; *P <

0.05. Data are shown as median � quartiles.
mice, glucagon secretion at 1 mM glucose was 100% higher than that
in the CTL mice and the response to exogenous somatostatin was
markedly curtailed with no statistically significant inhibition of
Figure 7: HFD results in changes in SST resistance. A. Dose response curve for SST on
diet. n ¼ 3 mice. Data are presented as mean � SEM. B. Glucagon measured in perfusate
group. Data are presented as mean � SEM. C. Glucagon secretion from isolated islets fro
Staining of imbedded pancreata from CTL- and HFD-fed mice, for glucagon (red) and SS
intensity was normalised to the number of cells expressing SSTR2. n ¼ 20 islets from 2

MOLECULAR METABOLISM 40 (2020) 101021 � 2020 The Author(s). Published by Elsevier GmbH. This is

www.molecularmetabolism.com
glucagon secretion detected (Figure 7B). In the isolated islets,
glucagon secretion in both the CTL and HFD mice was suppressed by
SST (25 pM) but was higher in the HFD islets (Figure 7C).
glucagon secretion measured in the perfusate from mouse pancreas in mice fed a chow
from CTL and HFD mice in response to 25 pM STT at 1 mM glucose. n ¼ 9 mice in each
m 3 CTL and 3 HFD mice. t-test, *P < 0.05. Data are presented as mean � SEM. D.
TR2 (green). Scale bar is 50 mm. E. Analysis of SSTR2 staining intensity from i. The
mice in each group. Data are presented as mean � SEM.
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The above findings demonstrate that, in response to HFD feeding, not
only is SST secretion from delta-cells reduced but also alpha-cells
become resistant to SST. We reasoned that a reduction in SSTR2
expression may underlie the observed resistance. However, SSTR2
staining in CTL and HFD pancreases revealed no differences
(Figure 7D,E), in line with recent reports from obese human donors [55].

4. DISCUSSION

Glucagon plays a significant role in the aetiology of diabetes [1] but
little is known about how changes in alpha-cell function manifest in
prediabetes. We have investigated alpha-cell function in female mice
in response to prolonged ingestion of high amounts of fat (60% of total
calories). We found that obese mice become hyperglucagonaemic and
have impaired glucose-dependent inhibition of glucagon secretion.
This echoes what is observed clinically in obese people [20,21]. While
it is hard to find commonalities in the literature regarding HFD-induced
hyperglucagonaemia, our findings suggest that methodological as-
pects such as time of sampling have a strong influence on the level of
circulating glucagon measured. Thus, these findings could potentially
explain why measurements of plasma glucagon in HFD-fed models
differ markedly between studies [29e31,56] and why it has been
difficult relating them to human observations.
Glucagon secretion from alpha-cells depends on changes in [Ca2þ]i.
We now demonstrate that glucose regulates both the frequency and
amplitude of [Ca2þ]i oscillations in alpha-cells. This is, to our knowl-
edge, the first report distinguishing and analysing these two compo-
nents of the Ca2þ signal and demonstrating that glucose exerts
statistically significant effects on these two key parameters in the
regulation of glucagon secretion that have previously escaped detec-
tion. Unlike previous studies, this study has sufficient statistical power
to detect an average change despite significant cell-to-cell variability;
we have analysed [Ca2þ]i in a much large number of alpha-cells (>500
for frequency and >120 for amplitude) than that analysed in earlier
studies. Given that alpha-cell [Ca2þ]i and average action potential firing
frequency were well correlated, the effects of HFD feeding on alpha-cell
electrical activity can be extrapolated from this large [Ca2þ]i dataset.
With respect to the increase in [Ca2þ]i spike frequency, one would
expect that the average alpha-cell action potential firing frequency
should also be increased in response to HFD feeding. Indeed, this was
something we observed in our small dataset of patch-clamped cells
from HFD mice. Regarding the increase in [Ca2þ]i spike amplitude in
HFD-fed mice, the fact that the [Ca2þ]i signal is correlated with the
average potential firing frequency suggests that alpha-cells from HFD-
fed mice should exhibit more bursts of electrical activity. Given that
SSTR2 activation evokes hyperpolarization of the cell membrane [57],
this increase in bursting could reflect the reduction in SST secretion
rather than increased SST resistance. Interestingly, not only did the
activity of single alpha-cells change with HFD feeding but also the diet
changed the proportion of active alpha-cells. This could account at
least for some of the changes in frequency and indicates that the
threshold for alpha-cell activity has been changed by HFD feeding.
These findings suggest that several regulatory mechanisms underlie
the changes in [Ca2þ]i and glucagon output observed with HFD feeding.
Alpha-cells are under strong paracrine regulation of SST [15,17]. A
recent study suggested that delta-cell [Ca2þ]i oscillatory activity is
reduced after HFD feeding [58], in keeping with the reduction of so-
matostatin secretion we observe. We note that the effects of HFD on
somatostatin secretiondwhen mice remain largely normoglycae-
micdare different from those observed once hyperglycaemia has
developed [59]. Not only was somatostatin secretion reduced in HFD
10
� 2020 The Author(s). Published by Elsevier G
mice, but also their alpha-cells were much less sensitive to SST in the
present study, with Ca2þ oscillation frequency persisting in HFD islet
when exposed to SST. Supporting this, a recent investigation of
exocytosis in >20 TDM human islet preparations of dispersed alpha-
cells also observed SST resistance [60]. Our staining of Sstr2, together
with other studies in human islets from obese donors [55], suggests
that hyperglucagonaemia in prediabetes is not due to a reduction in
SSTR2 protein. However, given the reported [60] reduction in alpha-
cell SSTR2 protein expression (although a previous study [55] re-
ported an increase in SSTR2 mRNA in islets from T2D human donors),
we suggest that the reduction in SSTR2 protein in diabetes is sec-
ondary to the as-yet-unknown primary change in SST signalling in the
prediabetic state. In human alpha-cells from intact islets, a high
concentration of SST (30 nM) partially (70%) inhibits glucagon
exocytosis [57]. Therefore, part of the resistance to SST in the HFD
alpha-cells may be due to an effect on the sensitivity of the exocytotic
machinery to SST. Intestinal D-cells secrete long-form SST (SST-28),
which is distinct from that which is produced and secreted by
pancreatic delta-cells (SST-14; see [53,61], and [62]). As intestinal
lipids stimulate GLP-1 and GIP release from the rat gut [63] and these
hormones are elevated in rats fed an HFD [64], it is possible that gut
SST-28 is similarly increased in response to high-fat feeding. An in-
crease in circulating SST-28 may desensitise the alpha-cell SSTR2
receptor and/or exocytotic machinery to islet SST and result in the SST
resistance we observe.
Although alpha-cells demonstrate SST resistance in response to HFD
feeding and SST secretion is reduced in 1 mM glucose, this cannot
fully explain the increased alpha-cell [Ca2þ]i oscillation amplitude and
glucagon secretion at 1 mM glucose, where there is very little SST
secretion. In rats, SST has recently been reported to inhibit glucagon
secretion at 3.5 mM glucose [65]. As [Ca2þ]i amplitude was increased
with HFD at 1 mM glucosedsomething known to be under the control
of intrinsic fuel-sensing mechanisms [11,36]dwe suggest that the
hyperglucagonaemia present in 1 mM glucose may be driven by
changes in alpha-cell metabolism. Fatty acid oxidation in alpha-cells
has been shown to regulate the amplitude of [Ca2þ]i oscillations
[36]. Therefore, the hyperglucagonaemia observed at 1 mM glucose in
HFD alpha-cells may be due to an increase in beta-oxidation, which is
an important driver of glucagon secretion [27,28].
In the current study, we did not observe SSTR2 to be located at the
membrane in our mouse pancreas sections. This is in contrast to
previous findings [60], which used the same antibody and demon-
strated membrane localization of SSTR2 in human pancreas sections.
The antibody is widely used and has been carefully validated [66].
Interestingly, SST secretion in mice is stimulated at >4 mM glucose
[67]. Therefore, in living mice, where the circulating glucose con-
centration is 6e7.5 mM, the intraislet concentration of SST must be
considerable and the ligand would be present in the preparations we
have stained here. This may account for the compartmental differ-
ences in the staining of SSTR2 in alpha-cells.
The delta-cell is seemingly a key integrator and relay of circulating
satiety and fuel signals to the islet alpha- and beta-cells, as it has been
shown to express many GPCRsdincluding ghrelin receptors [68,69]
and leptin receptors [70]. The NEFA-responsive G-protein-coupled
receptor GPR120 is also expressed in delta-cells and its activation
results in a reduction of SST secretion [71]. The elevation in circulating
NEFAs in HFD-fed mice would be expected to chronically reduce the
output from delta-cells, explaining the hyperglucagonaemia observed
under physiological glucose concentrations. In conclusion, these
findings link delta-cell dysfunction and SST resistance in alpha-cells
directly to metabolic disease and demonstrated the importance of
MOLECULAR METABOLISM 40 (2020) 101021
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


SST for the regulation of glucagon secretion in obesity and
prediabetes.
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