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Abstract

Hyperglycemia, oxidative stress and renin-angiotensin system (RAS) dysfunction have been 

implicated in diabetic nephropathy (DN) progression, but the underlying molecular mechanisms 

are far from being fully understood. In addition to the systemic RAS, the existence of a local 

intrarenal RAS in renal proximal tubular cells has been recognized. Angiotensinogen is the sole 

precursor of all angiotensins (Ang). Intrarenal reactive oxygen species (ROS) generation, Ang II 

level and RAS gene expression are up-regulated in diabetes, indicating that intrarenal ROS and 

RAS activation play an important role in DN. The nuclear factor erythroid 2-related factor 2 

(Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is one of the major protective 

processes that occurs in response to intracellular oxidative stress. Nrf2 stimulates an array of 

antioxidant enzymes that convert excessive ROS to less reactive or less damaging forms. Recent 

studies have, however, revealed that Nrf2 activation might have other undesirable effects in 

diabetic animals and in diabetic patients with chronic kidney disease. This mini-review 

summarizes current knowledge of the relationship between ROS, Nrf2 and intra renal RAS 

activation in DN progression as well as possible novel target(s) for DN treatment.
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Introduction

Diabetes is an epidemic disease that is imposing a heavy healthcare burden globally. Its 

incidence is continuing to rise unabated. According to recent estimates by the International 

Diabetes Federation, the number of people with diabetes will surge from 382 to 592 million 

in less than 25 years. Diabetes and its associated complications caused 5.1 million deaths in 
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2013 [1]. Diabetic nephropathy (DN), a clinical syndrome, is the result of gluco-lipotoxicity. 

It impacts the kidneys, eliciting progressive renal insufficiency, persistent albuminuria, 

hypertension and decreased glomerular filtration rate (GFR) [2]. DN affects approximately 

one-third of people with type 1 or type 2 diabetes mellitus (T1D and T2D respectively) [3]. 

It is the most common cause of end-stage renal disease (ESRD) in the West and possibly 

throughout the world, accounting for more than 50% of all patients with ESRD. Although 

insulin and oral anti-diabetic drugs, along with diet and exercise, are the cornerstones of 

diabetes mellitus and DN treatment [4,5], their underlying mechanisms remain incompletely 

understood.

The Renin-Angiotensin System (RAS)

The RAS is a hormonal system that regulates sodium balance, body fluid homeostasis and 

arterial pressure [6]. All RAS components have been identified in the kidneys [7], including 

mRNA and protein of angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), 

angiotensin-converting enzyme 2, angiotensin II (Ang II) receptor subtypes 1 and 2 (AT1R 

and AT2R) as well as Ang 1–7 receptor (MasR). In the kidneys, Agt is expressed 

predominantly in renal proximal tubular cells (RPTCs): it is converted into inactive Ang I by 

renin and then into biologically-active Ang II by ACE. Ang II could be further cleaved to 

Ang 1–7. Intrarenal RAS gene expression is elevated in diabetes [8], strongly indicating that 

intrarenal RAS activation plays a significant role in DN progression including interstitial 

tubule-fibrosis and tubular atrophy [9].

Hypertension usually accompanies diabetes mellitus, which increases kidney damage when 

normo-albuminuria evolves to macro-albuminuria [10]. Ang II, the main product of RAS 

activation, contributes to various physiological and pathological renal and cardiovascular 

mechanisms through AT1R stimulation [11]. It has been reported that early streptozotocin 

(STZ)-induced diabetes down-regulates rat kidney AT2R and increases AT1R [12]. 

Moreover, several studies have shown that AT2R expression is augmented by insulin 

treatment [13] and down-regulated by Ang II infusion or epidermal growth factor treatment 

[14]. Arresting the effects of RAS activation with either ACE inhibitors [15] to decrease Ang 

II production or with angiotensin-receptor blockers (ARBs) to block AT1R activation, leads 

to lower intraglomerular pressure [16], reduced systemic hypertension and, consequently, 

decreased renal interstitial fibrosis.

Reactive Oxygen Species (ROS)

Living organisms produce ROS as a result of normal cellular metabolism. ROS steady-state 

levels are required for cell proliferation, differentiation [17] and degradation of misfolded/

damaged proteins by ubiquitin and 26S proteasome [18]. In contrast, excessive ROS 

production damages cellular components, such as DNA, proteins and lipids [19]. Superoxide 

(O2•−), hydrogen peroxide (H2O2) and nitric oxide are free radicals essential for normal 

physiological development, but also mediate cellular damage in disease states [20]. Cellular 

sources of ROS production include plasma membrane nicotinamide adenine dinucleotide 

phosphate oxidase (NADPH oxidase), intracellular cytosolic xanthine oxidase, peroxisomal 

oxidases, endoplasmic reticular oxidases and mitochondrial electron transport constituents 

Abdo et al. Page 2

J Diabetes Metab. Author manuscript; available in PMC 2015 July 22.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



[19]. Mitochondrial electron transport of aerobic respiration, considered to be the main 

source of ROS, has been implicated in many disorders [21,22]. It has been estimated that 0.2 

to 2% of the oxygen consumed by mitochondria is reduced to O2•− [23].

Oxidative stress occurs in cellular systems when the production of free radical moieties 

exceeds the antioxidant capacity of those systems, evoking a shift in balance between 

oxidants/antioxidants in favour of oxidants [24]. In certain pathological conditions, 

increased generation of ROS and/or antioxidant defence system depletion generate enhanced 

ROS activity and oxidative stress, resulting in tissue damage. Several systemic diseases, 

such as hypertension, diabetes mellitus, metabolic syndrome and infections, induce renal 

oxidative stress [25]. Excessive ROS production in the kidneys has been reported in different 

hypertensive animal models [26,27], including Ang II-induced hypertensive rats [28], N-

omega-nitro-L-arginine-induced hypertensive rats [29], Dahl salt-sensitive hypertensive rats 

[30] and spontaneously hypertensive rats [31]

Nrf2 Activation and Redox Balance

Oxidative stress is the most common cause of tissue injury. In order to maintain redox 

homeostasis balance to prevent cellular damage, an intracellular antioxidant system, i.e., 

Nuclear factor erythroid 2-related factor 1–3 (Nrf 1–3), is activated to detoxify the potential 

harmful substance. Nrf1, Nrf2 and Nrf3 genes encode a member of the cap ‘n’ collar basic-

region leucine zipper family, which is vital in regulating antioxidant gene expression [32], 

development and redox balance [33]. Nrf1 is an important player in redox balance during 

development [34]. Homozygous Nrf1 null mice die in utero [35], while Nrf2- and Nrf3-null 

mice develop normally with no obvious phenotypic differences compared to wild type 

controls [36,37]. Nrf2-deficient female mice develop lupus-like autoimmune nephritis [38]. 

Nrf1 and Nrf2 deficiency, however, has been shown to culminate in early embryonic 

lethality and severe oxidative stress [39]. Nrf2 is a transcriptional factor consisting six 

evolutionarily highly conserved domains, Neh1–6 [40] that activates the transcription of an 

array of antioxidant genes [41]. Several reports showed that Nrf2 activation may protect 

against human disease such as cardiovascular disease [42], cancer [43], neurodegenerative 

diseases [44] and chronic kidney disease [45].

Regulation of Nrf2 activation

Nrf2 activation is predominantly regulated by it cytosolic partner, Nrf2 adaptor or Kelch-like 

ECH-associated protein 1 (Keap1). Keap1 is a protein of five domains: two protein protein 

interaction motifs, the Kelch domain, the intervening region (IVR), and the BTB domain 

[46]. Keap1 acts as a cytosolic repressor for Nrf2 in the cytoplasm. Several models have 

been proposed to understand the mechanism of Nrf2 activation. Under normal physiological 

conditions, the BTB domain of Keap1 interacts with the Neh2 domain of cytoplasmic Nrf2 

and forms complexes with Cullin 3-based E3 ligase [47]. These complexes promote Nrf2 

degradation via the ubiquitin proteasome system [48]. In response to oxidative stress or 

chemo-preventive compounds, Nrf2 dissociates from Keap1 and translocates to the nucleus 

[49]. However, if Keap 1 binds to other proteins, Nrf2 does not ubiquitinated but activated in 

a non-canonical, cysteine-independent manner. For example, Lau et al. [50] demonstrated 
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that deregulation of autophagy pathway causes the accumulation of p62 (an autophagic 

protein) that directly interacts with Keap1, resulting in the inhibition of Keap1-mediated 

Nrf2 ubiquitination. In addition, Nrf2 has been shown to be regulated at transcriptional level, 

independent of the Keap1 mechanism. Studies by Kawak et al [51] demonstrated that Nrf2 

undergoes autoregulation: Nrf2 binds to its own promoter and induce its own transcriptional 

activity. Post-translation modifications also play a significant role in Nrf2 function and 

localization. For example, Nrf2 phosphorylation by protein kinase C at serine 40 residue is 

critical signaling event to regulate cellular antioxidant response [52]. Furthermore, 

acetylation-deacetylation of the Nrf2 regulates its transcriptional activity and 

nucleocytoplasmic localization [53]. Natural or synthetic chemopreventive agents, such as 

curcumin, flavonoids, oltipraz, butylatedhydroxyanisole, and bardoxolone methyl stimulate 

Nrf2 activation and nuclear translocation. Within the nucleus, Nrf2 forms a heterodimer with 

Maf protein and bind to regulatory sequences in the promoter region of various genes, 

known as antioxidant response elements (AREs). A series of antioxidant and cellular 

protective genes containing AREs in their promoters have been identified; such as 

glutathione peroxidase, superoxide dismutase, catalase (Cat), heme-oxygenase, NADPH-

quinoneoxidoreductase 1 and glutamate-cysteine ligase [54,55]. Moreover, it has been found 

that activation of Nrf2 signaling attenuates NFkappaB-inflammatory response and elicits 

apoptosis [56].

Recent studies, however, revealed that Nrf2 may also affect none-oxidant genes expression. 

For example, Pendyala et al. [57] demonstrated in human lung endothelium, by chromatin-

immunoprecipitation assay, that Nrf2 binds to ARE regions in NADPH oxidase-4 (Nox4) 

gene promoter and up-regulates its activity. NADPH oxidase-1, -2 and -4 (Nox1, Nox2 and 

Nox4) have also been shown to be expressed in the renal cortex and Nox4 is the most 

common isoform expressed in the kidneys [58,59]. Nox4 contributes to basal ROS 

production through its constitutive activity and increases ROS generation when stimulated 

by Ang II, glucose, and growth factors [60–62]. Our study in the renal proximal tubules 

(RPTCs) of diabetic Akita mice (a murine model of T1D) has disclosed that Nrf2 

translocates to the nucleus with markedly enhanced NADPH oxidase activity as well as 

Nox4 mRNA expression compared to non-Akita mice, suggesting that Nrf2 induction of 

Nox4 expression and activity might be responsible, at least in part, for elevated ROS levels 

[63]. Intriguingly, these changes are normalized by overexpressing catalase (Cat) in RPTCs 

of Akita mice, lessening Nrf2 translocation to the nucleus [63]. These observations indicated 

that constitutive Nrf2 accumulation does not necessary induce absolute protection from 

environmental influences. Indeed, study has shown that hyperoxia stimulates Nrf2 

translocation to the nucleus, and Nrf2 knockdown of Nrf2 gene expression by small 

interfering RNA (siRNA) attenuates hyperoxia-induced Nox4 expression, suggesting that 

Nrf2 may up-regulates Nox4 gene expression in certain physiological conditions [57].

Nrf2 expression in diabetic kidneys

Many studies demonstrated a beneficial effect of Nrf2 activation in none-diabetic kidney. 

Shelton et al. [64] reported that Nrf2 activation protects the kidney against oxidative stress 

that results from ischemic-reperfusion [65,66], renal injury caused by excessive heavy 

metals [67,68], and ameliorate cyclosporine A nephrotoxicity [69].
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In animals with streptozotocin (STZ)-induced diabetes, Nrf2 ablation appears to worsen 

inflammation, oxidative stress, and nephropathy [70,71]. Moreover, dietary supplementation 

with sulforaphane or cinnamic aldehyde (Nrf2 activators) reduces albuminuria and renal 

oxidative damage in STZ-induced diabetic mice [71,72]. It also improves glucose control, 

lowers plasma triglyceride and FFA levels, decreases hepatic lipid accumulation and 

inflammation in both high-fat diet-induced and genetic mouse models of obesity and 

diabetes [73,74]. Thus, Nrf2 appears to be cytoprotective in none-diabetic and diabetic 

animal models.

Nrf2 activation in human chronic kidney disease (CKD)

A phase II trial of bardoxolone methyl (a Nrf2 activator) involving patients with advanced 

CKD and diabetes was carried out based on compelling evidence of the association between 

oxidative stress, inflammation and DN progression. Pergola et al. [75] initiated a small 

clinical trial of 227 T2D patients with moderate to severe CKD (BEAM study) and observed 

that bardoxolone methyl treatment increased estimated GFR in a dose-dependent manner in 

patients at 24 weeks with persistence up to 52 weeks. These encouraging data motivated de 

Zeeuw et al. [76] to investigate the effect of bardoxolone methyl in a phase III clinical trial 

in 2,185 patients from different countries with stage III CKD and T2D (BEACON Study). 

However, the trial was terminated early in October 2012 because bardoxolone methyl 

treatment neither improved renal function nor reduced the risk of ESRD, but was actually 

associated with increased risk of cardiovascular death. In fact, bardoxolone methyl-treated 

patients presented significant increment of estimated GFR, blood pressure (BP) and urinary 

albumin-to-creatinine ratio, with decreased body weight in comparison to the placebo group, 

and acquired a higher risk of cardiovascular events.

Studies were performed in Zucker diabetic fatty (ZDF) rats, a T2D model, to confirm the 

potential effects of bardoxolone methyl in DN. Zoja et al. [77] reported that ZDF rats 

receiving the bardoxolone methyl analogue RTA 405 presented DN deterioration impacting 

the liver. In contrast, a study of RTA 405 and dh404 sponsored by Reata Pharmaceuticals via 

Biomodels LLC in ZDF rats showed heightened urinary albumin/creatinine ratios with both 

compounds, but no adverse effects in the liver [78]. Inconsistencies between these two 

studies were observed. Subsequent analysis by Reata Pharmaceuticals revealed the presence 

of unknown impurities in RTA 405 that they had supplied for both studies. The 

concentrations of these impurities were very low, indicating that they might have been 

extremely toxic. Unfortunately, no further work on ‘pure’ RTA 405 has been reported. 

Whether Nrf2 activation worsens human CKD progression remains uncertain. Despite such 

conflicting results, there is still evidence that Nrf2-dependent events are protective against 

DN progression [70,71,73,74]. These findings led us to investigate whether Nrf2 activator 

treatment would have adverse side-effects in the kidneys by itself or whether Nrf2 pathway 

activation would elevate BP and cause kidney injury. To answer this question, we explored 

the relationship between renal Nrf2 activation and Agt gene expression in the RPTs of wild 

type mice since we previously reported that high glucose stimulated Agt gene expression via 

ROS generation [79] and that transgenic mice overexpressing Agt in their RPTCs exhibited 

hypertension, albuminuria and renal injury [80]. Indeed, we found that oltipraz (a Nrf2 

activator) administration heightened both Nrf2 and renal Agt gene expression. Moreover, 
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deletion of Nrf2-response element (RE) sites in the Agt promoter prevented oltipraz 

stimulation of Agt gene transcription in RPTCs [63]. These observations strongly suggest 

that Nrf2 may play dual roles, with stimulation of both antioxidant and hypertensinogenic 

genes, such as Agt, as illustrated in the schematic Figure 1 below:

In conclusion, clinical studies have shown that Nrf2 activation by bardoxolonemethy 

increases systemic hypertension aggravates urinary albumin excretion and augments the risk 

of cardiovascular death in type II diabetic patients with advanced CKD [76]. These 

observations suggest that Nrf2 over-activation may not always exhibit beneficial in diabetes. 

Hyperglycemia-induction of ROS generation and chronic activation of Nrf2 signaling may 

induce intrarenal RAS activation, lending to systemic hypertension, albuminuria and tubular 

apoptosis and atrophy, further aggravate nephropathy progression. Thus, blocking chronic 

Nrf2 activation in diabetic kidneys would be a novel therapeutic target for DN treatment. 

Indeed, the recent study by Tan et al [81] demonstrated that low doses of dh404 lessened and 

high doses worsened diabetes-associated atherosclerosis and kidney disease in STZ-induced 

diabetic apoE−/− mice as well as the study by Vaziri et al. [82] demonstrated that in diabetic 

obese Zucker rats, low doses of dh404 restore Nrf2 activity and ameliorate kidney injury 

whereas high doses of dh404 reinforce proteinuria, renal dysfunction and histological 

abnormalities. These observations strongly suggest the possible dual function of Nrf2 

activation in the diabetic kidney, depending on the level of Nrf2 activation in diabetes.
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Abbreviations

ACE Angiotensin-Converting Enzyme

Agt Angiotensinogen

Ang II Angiotensin II

Ang 1–7 Angiotensin 1–7

ARE Antioxidant Responsive Element

AT1R Ang II subtype 1 receptor

AT2R Ang II subtype 2 receptor

BP Blood Pressure

Cat Catalase

CKD Chronic Kidney Disease

DN Diabetic Nephropathy

ESRD End Stage Renal Disease

Abdo et al. Page 6

J Diabetes Metab. Author manuscript; available in PMC 2015 July 22.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



GFR Glomerular Filtration Rate

HG High Glucose

hnRNP F and hnRNP K Heterogeneous Nuclear Ribonucleoproteins F and K

H2O2 Hydrogen Peroxide

Keap1 Kelch-like ECH-associated Protein 1

NADPH oxidase Nicotinamide Adenine Dinucleotide Phosphate Oxidase

Nrf2 Nuclear Factor Erythroid 2-Related Factor 2

O2•− Superoxide

RAS Renin-Angiotensin System

Res Responsive Elements

ROS Reactive Oxygen Species

RPTs Renal Proximal Tubules

Runx2 Runt-Related Transcription Factor 2

RPTCs Renal Proximal Tubular Cells

STZ Streptozotocin

T1D and T2D Type 1 And Type 2 Diabetes Mellitus

ZDF zucker diabetic fatty rats
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Figure 1. 
Proposed mechanism of Nrf2 activation on Agt gene expression in RPTs: Under normal 

conditions, Nrf2 is bound to Keap1 in the cytoplasm and is subject to ubiquitination and 

proteasome degradation. Upon exposure to high glucose (HG), oxidative stressor or Nrf2 

activators (oltipraz), Nrf2-Keap1 complexes dissociate and Nrf2 translocates to the nucleus. 

Nrf2 binds to Nrf2-REs in the Agt gene promoter, stimulating Agt gene transcription and 

intrarenal RAS activation, and leading to the development of hypertension and nephropathy 

in diabetes. TSS (transcriptional start site)
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