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Abstract: Fucosylation is a post-translational modification of glycans, proteins, and lipids that is
responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O’-
linkages to glycans, and variations in fucosylation linkages, has important implications for cancer
biology. This review focuses on the roles that fucosylation plays in cancer, specifically through
modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation
patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will
be discussed.
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1. Introduction

Fucose is a natural deoxyhexose sugar with similar structure to glucose, except for its lack of
a hydroxyl group on carbon 6. Mammalian cells utilize fucose in the L-enantiomer form, whereas
other deoxyhexoses are used in the D-enantiomer. L-Fucose is incorporated onto glycoproteins during
the synthesis of N- and O-linked glycans in mammalian cells [1,2]. Fucosylated glycans elicit a range
of functions from regulating inflammatory responses, signal transduction, cell growth, transcription,
and adhesion [3]. For example, cell-cell interactions can be partially modulated by the presence of
L-fucose specific-lectin-like adhesion molecules on the cell surface [4]. In addition, the fucosylation
of cell membrane receptors and proteins, including EGFR, TGFβ, Notch, E-cadherin, integrins, and
selectin ligands, has been reported to influence their ligand binding, dimerization, and signaling
capacities [5–8].

Cancer is characterized by the deregulation of otherwise normal cellular and molecular processes,
which can restrict or suppress tumorigenesis, resulting in altered growth, survival, metabolism,
and metastasis [9]. Post-transitional modifications, including fucosylation, represent an important
regulatory layer that is subject to perturbation during carcinogenesis and tumor progression. Increasing
numbers of studies have identified important and specific roles for fucosylated glycoconjugates in
tumorigenesis and how they correlate with the established hallmarks of cancer [10]. Deregulation
of fucosylation has been reported in several cancer types, and the resulting divergent functional
consequences are likely attributed to the presence/absence of specific structural types of fucosylation
branching that can differentially influence protein function [11,12]. Increased fucosylation has
been attributed to metastatic properties such as, for example, enhancing adhesion of metastatic
cancer cells to endothelia cells [1,4,13]. However, fucosylation has also been reported to suppress
motility in cancers such as melanoma [14,15], oral/head and neck [16], and hepatocellular carcinoma
(HCC) [17]. Here, we have examined and summarized the literature in order to highlight alterations
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in fucosylation across various cancer types and whether fucosylation branches are associated with
divergent pathological phenotypes.

2. Fucose Metabolism

In mammalian cells, fucosylation starts with substrate (GDP-fucose) generation, which can occur via
the de novo and/or salvage pathways (Figure 1). In the de novo pathway, GDP-mannose in the cytosol is
converted to GDP-4-keto-deoxymannose by GDP-mannose 4,6-dehydratase (GMD). The keto intermediate
is rapidly converted to GDP-4-keto-6-deoxygalactose by the NADP(H)-binding epimerase-reductase
FX protein to GDP-fucose [1]. In the salvage pathway, L-fucose is transported into the cytosol from the
extracellular space or from lysosomal compartments, by mechanisms that remain relatively undefined
in mammalian cells [18]. Free L-fucose in the cytosol is phosphorylated by fucokinase (FUK). The
resulting fucose-1-phosphate is converted to GDP-fucose by GDP-pyrophosphorylase [1]. GDP-fucose
is then transported into the Golgi apparatus, where it is used as a substrate for protein fucosylation
that is mediated by fucosyltransferases. Alternatively, GDP-fucose can also be conjugated onto proteins
by Protein O-fucosyltransferases (POFUTs) in the endoplasmic reticulum [19–21]. A recent study
by Ng et al. reported that human patients with pathogenic mutations in FUK present with severe
developmental impairments including encephalopathy, hypotonia, and seizures [22]. These data suggest
tissue type-dependent reliance on de novo synthesis vs. salvage pathway-derived GDP-fucose.

The main source of L-fucose for the salvage pathway comes from diet, predominantly from
plant sources such as seaweed [23]. However, when dietary sources are insufficient, L-fucose can be
catabolized from preexisting fucosylated glycoconjugates or supplemented by the de novo pathway. The
glycoconjugates are endocytosed and catabolized in lysosomes, where fucosidases liberate L-fucose
from the glycans, rendering them once again useable via the salvage pathway. This mechanism
has been reported to generate sufficient GDP-fucose to sustain physiological functions of the cell
when de novo pathway activity is insufficient or pathologically abrogated, provided that exogenous
supraphysiological L-fucose concentrations are available to cells [1,24].
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3. Fucosyltransferases: Architects of Fucosylation Branching

Fucose can be conjugated onto oligosaccharides in the following specific orientations: α(1,2),
α(1,3), α(1,4), and α(1,6) orientations, where the first carbon of fucose is bound to the (1,2), (1,3), (1,4),
or (1,6) carbon of galactose or N-acetylglucosamine (GlcNAc) [25,26]. The α-fucose conjugations can
occur at core or terminal positions along glycans (Figure 2). Core fucosylation has been reported to
play important roles in influencing the signaling capacity of membrane-bound proteins including
EGFR. T cell receptors are heavily core fucosylated, which ensures proper activation and downstream
signaling [27]. Notably, only FUT8 has been identified to mediate core fucosylation (via “N’-linkages”),
wherein fucose is conjugated to a primary N-acetylglucosamine branch (GlcNAc) on N-glycans [28].
Terminal fucosylation refers to fucose conjugated to GlcNAc monosaccharides (also known as α(1,3) or
α(1,4) branching) or to galactose residues (also known as α(1,2) branching) (Figure 2) [2,28].
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Figure 2. Fucosyltransferases and their associated conjugated fucose structures.

Terminal fucosylated structures are highly diverse, contributing to the generation of Lewis antigens
on a multitude of proteins [29]. The topological landscape of fucosylated glycans and their functional
consequences are dictated by fucosyltransferases (FUTs). Methods for detecting specific fucosylated
structures include mass spectrometry, as well as binding/pulldown approaches using lectins with
binding affinities for fucosylated structures (Table 1).

Fucosyltransferases are membrane-bound proteins residing in the endoplasmic reticulum and
Golgi. To date, 11 FUTs and 2 protein O-fucosyltransferases (POFUTs) have been discovered. FUTs
and POFUTs transfer fucose using GDP-fucose as a substrate to oligosaccharides, glycans, lipids,
and proteins to form fucosylated glycoconjugates [21,28,30,31]. Additionally, fucose can be directly
O-link conjugated onto serine or threonine residues of Epidermal Growth Factor (EGF)-like repeats
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by POFUT1 and Thrombospondin Type 1 (TSR) repeats by POFUT2 [19–21,28]. The vast array of
FUT-mediated fucosylation (and fucosylated target proteins) has been extensively characterized in
non-cancer, particularly immunological, contexts. However, many of the immune proteins known to be
fucosylated might also play roles in cancer. For example, the expression of Lewis (Le) antigens, which
are oligosaccharide-based blood antigens containing differing orientations of fucosylation (Figure 3),
correlate with cancer stage, tumor cell differentiation, decreased survival, and metastasis [32].

Table 1. Lectins commonly used in for the detection of specific branches of fucosylation.

Fucosylation α(1,2) α(1,3/4) α(1,6)

Ulex Europaeus Agglutinin 1 (UEA-1) X

Aleuria Aurantia Lectin (AAL) X X

Lens Culinaris Agglutinin (LCA) X

Lotus Tetragonolobus Lectin (LTL) X

Cancers 2019, 11, x 4 of 25 

Fucosyltransferases are membrane-bound proteins residing in the endoplasmic reticulum and 
Golgi. To date, 11 FUTs and 2 protein O-fucosyltransferases (POFUTs) have been discovered. FUTs 
and POFUTs transfer fucose using GDP-fucose as a substrate to oligosaccharides, glycans, lipids, 
and proteins to form fucosylated glycoconjugates [21,28,30,31]. Additionally, fucose can be directly 
O-link conjugated onto serine or threonine residues of Epidermal Growth Factor (EGF)-like repeats 
by POFUT1 and Thrombospondin Type 1 (TSR) repeats by POFUT2 [19–21,28]. The vast array of 
FUT-mediated fucosylation (and fucosylated target proteins) has been extensively characterized in 
non-cancer, particularly immunological, contexts. However, many of the immune proteins known 
to be fucosylated might also play roles in cancer. For example, the expression of Lewis (Le) 
antigens, which are oligosaccharide-based blood antigens containing differing orientations of 
fucosylation (Figure 3), correlate with cancer stage, tumor cell differentiation, decreased survival, 
and metastasis [32]. 

 
Figure 3. Lewis antigens commonly found in on the surface of cancer cells. 

Fucosyltransferases can generally be grouped by the fucosylation linkages that they mediate 
(Table 2). FUT1 and FUT2 mediate α(1,2) fucosylation on terminal galactose residues on both O- 
and N-linked glycans. FUT3-7 and FUT9-11 are responsible for the addition of fucose to GlcNAc 
monosaccharides in α(1,3) and α(1,4) orientations on O- and N-glycans. FUT8 is the only transferase 
that has been shown to conjugate fucose to the initial GlcNAc residue on N-glycans in α(1,6) 
branching (core fucosylation) structures. Although extensive studies have investigated the 
structural fucosylation linkages and functional effects mediated by these FUTs, the fucosylated 
targets are largely not well characterized. 
  

Figure 3. Lewis antigens commonly found in on the surface of cancer cells.

Fucosyltransferases can generally be grouped by the fucosylation linkages that they mediate
(Table 2). FUT1 and FUT2 mediate α(1,2) fucosylation on terminal galactose residues on both O-
and N-linked glycans. FUT3-7 and FUT9-11 are responsible for the addition of fucose to GlcNAc
monosaccharides in α(1,3) and α(1,4) orientations on O- and N-glycans. FUT8 is the only transferase
that has been shown to conjugate fucose to the initial GlcNAc residue on N-glycans in α(1,6) branching
(core fucosylation) structures. Although extensive studies have investigated the structural fucosylation
linkages and functional effects mediated by these FUTs, the fucosylated targets are largely not
well characterized.



Cancers 2019, 11, 1241 5 of 25

Table 2. Fucosylation linkages, associated FUTs, and targets

Structural Linkage FUTs Targets & Functions Refs

α(1,2)
FUT1

H, ABO, and Lewisy (Ley) antigen synthesis; endothelial
cell tube formation; leukocyte-synovial fibroblast
proliferation/adhesion; thymocyte maturation (T cell
receptor signaling/apoptosis)

[33–36]

FUT2 leftH and ABO antigen synthesis [37–40]

α(1,3)
α(1,4)

FUT3 Lea, Leb, Lex, and sialyl-Lex (sLex) antigen synthesis [31,41]

FUT4/5 Sialylated precursor selectin ligands (leukocyte biology);
Lea, Leb, Lex, and sialyl-Lex (sLex) antigen synthesis [28,30,31,42–44]

FUT6 Lex and sLex antigen synthesis [28,31,45]

FUT7 Sialylated precursor selectin ligand synthesis (leukocyte
biology) [1,31,46]

FUT9 Lex antigen synthesis [31]

FUT10/11 Lex and sLex [47,48]

α(1,6) FUT8 TGFβR; EGFR; METR; E-cadherin, T-cell receptor [3,6,11,27,31,49–
52]

O-fucosylation POFUT1/2 Epidermal Growth Factor-like and Thrombospondin
Type 1 repeats of proteins [19–21]

4. Serum Fucose and Fucosylated Glycoconjugates

Suboptimal diagnostic modalities represent an ongoing clinical challenge, hampering timely and
efficient detection and treatment of cancer until it has progressed to advanced stages. The development
of innovative early detection approaches is crucial for improving survival probability and the quality
of life for cancer patients. Recently, the profiling of cancer patient sera for altered glycosylation
states/levels of secreted proteins has emerged as a promising new diagnostic approach. Methods of
detection have included high performance liquid chromatography (HPLC), liquid chromatography
(LC), mass spectrometry (MS), matrix assisted laser desorption/ionization (MALDI), or combinations
therein. In Table 3, we summarize findings from studies comparing serum fucose and fucosylated
glycan profiles from healthy individuals vs. breast, oral/head and neck, HCC, ovarian, CRC, pancreatic,
lung and prostate cancer patients. Several of these studies suggest diagnostic potential for serum
L-fucose levels, which have been found to be elevated in cancer patient sera in breast [53–55], oral/head
and neck [56–61], HCC [62–65], CRC [66,67], and ovarian [55,68] cancer patients compared with
healthy individuals. Specific fucosylated glycoconjugates have been found to also have potential
diagnostic utility. For example, fucosylated haptoglobin correlates with poorer survival probability,
reduced responsiveness to therapy, and increased metastatic burden in breast [31], HCC [69–71],
ovarian [31,55,72], CRC [67], pancreatic [73], and lung [31,74] cancer patients. Similar to haptoglobin,
levels of serum fucosylated α-fetoprotein are also increased in HCC patients have been reported to
correlate with poor survival outcomes, increased disease recurrence, and portal vein thrombosis [31,75].

Table 3. Altered serum fucosylation profiles in cancer patients.

Cancer Type Changes in Serum Fucosylation Refs

Breast

• Increased free L-fucose [53,54]
• Increased serum FUT activity [76]
• Increased fucosylated haptoglobin [77]
• α(1,3) fucosylation is increased in cancer patients [54,55]

Oral/Head & Neck • Increased free L-fucose [56–61]
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Table 3. Cont.

Cancer Type Changes in Serum Fucosylation Refs

Liver

• Increased free L-fucose [62,63]
• Increased fucosylated haptoglobin [69–71,78]
• Core fucosylation of haptoglobin is increased in cancer patients [69]
• Increased fucosylated α-fetoglobin in serum of cancer patients [3,31,75]

Ovarian

• Increased free L-fucose [68]
• FUT3 found to be circulating in serum [55]
• Increased levels of fucosylated proteins in cancer patients [79]
• Increased fucosylated haptoglobin [31,55,72]

Prostate

• Increased levels of fucosylated proteins in cancer patients [80]
• PSA from patient serum is α(1,2) fucosylated [81]
• PSA from patient serum is α(1,6) fucosylated [82]
• Core fucosylation of PSA in urine decreases as disease progresses [83]

Colorectal

• Increased free L-fucose [66]
• Increased serum FUT activity [4]
• Increased fucosylated haptoglobin [67]
• α(1,3) fucosylation is increased in cancer patients [67]

Pancreatic • Increased fucosylated haptoglobin [73]

Lung
• Smoking increases the level of fucosylated proteins in cancer patients [84]
• Increased fucosylated haptoglobin [31,74]
• Increased core fucosylation of serum E-cadherin in cancer patients [51]

Importantly, specific cancer types, such as lung cancer, can be further segregated into subgroups
by fucosylation status. For example, a MALDI-MS comparison of the sera from former and current
smokers with non-small cell lung carcinoma (NSCLC) revealed that fucosylated glycans were increased
in current smokers [84]. Notably, serum fucose/FUT activity has been reported to associate with
prognosis/therapeutic responsiveness in some cancers. Breast cancer and CRC patients undergoing
chemotherapy or surgical resection, respectively, exhibit reduced serum FUT activity after therapy,
suggesting (i) that serum FUT activity predominantly originates from the tumors, and (ii), that serum
FUT activity/fucosylation levels might reflect therapeutic responsiveness [4,76]. Consistent with this
notion, serum levels of α(1,3) fucosylation in breast and ovarian cancer patients are elevated during
tumor progression but are significantly reduced in patients who responded to chemotherapy [55].

Despite growing evidence that aberrant fucosylation correlates with staging in several cancer
types, the nature of correlative vs. causative relationship between differences fucose linkages on
serum glycoconjugates and cancer is poorly understood. For example, whereas the α(1,2)-fucosylated
serum species of prostate specific antigen (PSA) has been reported to exhibit stronger correlation
with the presence of prostate cancer than total PSA, the α(1,6)-fucosylated species correlates
with metastasis [81–83,85]. Increased serum α(1,3)-fucosylated sLex antigen or α(1,6)-fucosylated
haptoglobin levels are associated with the presence of breast cancer or HCC, respectively [54,70].
Similarly, core fucosylated α-fetoprotein has exhibited clinical utility in the early detection of
HCC [3]. Interestingly, increased serum levels of fucosylated E-cadherin also correlates with stage-
independent poor prognosis in lung cancer patients [51]. The diversity of linkage types and the largely
unknown/uncharacterized fucosylated proteins and their functional contributions to cancer represent
an area of opportunity for important and clinically relevant basic research.

5. α(1,2) Fucosylation

α(1,2) fucosylation exhibits seemingly divergent effects in cancer progression. Whereas it is
tumor suppressive and reduced in melanoma [14,15,86–88], oral/head and neck [16], gastric [89], and
HCC [17,63] carcinomas, it is tumor-promoting and increased in bladder, breast, epidermoid, ovarian,
and prostate tumors (Table 4) [33,90–93].
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Table 4. Alterations and roles of α(1,2) fucosylation in tumors.

Cancer Type Alterations and Roles of α(1,2) Fucosylation Refs

Melanoma

• α(1,2) fucosylation inhibits tumor formation [14,15,87]
• 25% of melanoma cell lines lack FUT1 expression [11,94]
• FUT1 expression is decreased in tumors [14,95]
• α(1,2) fucosylation inhibits invadopodia & invasion [87]

Oral/Head & Neck
• α(1,2) fucosylation inhibits tumor formation
• FUT1 expression is decreased in tumors [16]
• α(1,2) fucosylation high in tumors, lost at invading front

Gastric • α(1,2) fucosylation inhibits tumor formation [89]

Hepatocellular • α(1,2) fucosylation inhibits tumor formation [17,63]
• FUT1 expression is decreased in tumors [63]

Ovarian • α(1,2) fucosylation is increased by FUT1 upregulation [96]

Prostate • α(1,2) fucosylation is increased by FUT1 upregulation [81,85]

Colorectal
• α(1,2) fucosylation increased in tumor tissues [15,97–99]
• FUT1 expression attenuates adhesion and metastasis to the liver

Pancreatic
• α(1,2) fucosylation is decreased in primary tumor tissues. [86,100–102]
• FUT1 expression decreases metastatic adhesion [86]

Breast
• FUT1 mRNA is upregulated in adriamycin-resistant cells [92]
• α(1,2) fucosylation regulates autophagic flux [91]

Bladder • α(1,2) fucosylation promotes cell adhesion [93]

Epidermoid • α(1,2) fucosylation promotes cell proliferation [90]

To date, α(1,2) fucosylation levels in cancer correlate with, and appear most likely regulated by,
FUT1. The downregulation of FUT1, and consequently of α(1,2) fucosylation, has been attributed,
at least in pancreatic cancer, to constitutive Hif1α-mediated transcriptional suppression, suggesting
that in pancreatic cancer, hypoxia suppresses cell surface α(1,2) fucosylation, which promotes cancer
cell motility and migration [101]. We recently reported that FUT1-mediated α(1,2) fucosylation
abrogates invadopodia formation/ECM degradation and inhibits melanoma cell motility and tumor
growth/metastasis in vivo [14,87,88]. These findings indicate that reduced FUT1 expression, and
consequently, loss of α(1,2) fucosylation, promotes melanoma invasiveness/progression by enhancing
invadopodia formation. The cell-based studies and in vivo xenograft models are consistent with
findings from OSCC and HCC cells, supporting the roles of FUT1 and α(1,2) fucosylation in suppressing
tumor progression and metastasis.

In contrast to melanoma, OSCC, and HCC, α(1,2) fucosylation is increased and elicits tumor-
promoting effects in bladder, breast, epidermoid, ovarian, and prostate tumors, where it stimulates
cellular proliferation, adhesion, invasion, metastasis, and drug resistance [11,33,91,93,103–106].
In ovarian [96] and prostate [85] tumors, increased α(1,2) fucosylation is linked to upregulation
of FUT1 and promotes TGFβ signaling, cellular proliferation, and impairs apoptosis [36,96,107].
The precise molecular mechanisms remain unclear and likely require functional players beyond
TGFβRI/II. For example, in ovarian cancer, FUT1 promotes upregulation of MUC1, which stimulates
proliferation, invasion, and metastasis [108]. In breast cancer, FUT1 promotes mTOR activity and
lysosomal and autophagosomal dynamics via α(1,2) fucosylation of lysosome-associated membrane
protein (LAMP) 1 [91].

However, α(1,2) fucosylation/FUT1 can also elicit seemingly divergent tumor-suppressive or
tumor-promoting effects in cancer. For example, the ectopic expression of FUT1 in CRC cells perturbs
their stromal interactions in vitro and impairs metastatic capacity in vivo [17,97,109]. Although α(1,2)
fucosylation thus appears to be tumor-promoting in CRC, it has also been reported to be upregulated
in patient-derived CRC tissues compared to normal tissues [97–99]. This dichotomy might be due
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tumor stage-specific functions/effects of FUT1, where loss of α(1,2) fucosylation is required before
metastatic cells can adhere to new sites. The expression of FUT1 is decreased in pancreatic primary
tumor cell lines compared to normal tissue, but the ectopic re-expression of FUT1 in the metastatic
pancreatic cancer cells inhibits metastasis by enhancing the cell surface abundance of Ley and inhibiting
E-selectin-mediated adhesion [17,86]. Together, these studies suggest that α(1,2) fucosylation plays
crucial tumor suppressive roles during initiation and that its loss promotes metastatic progression.

Given the remarkable heterogeneity between cancer types, further studies will be crucial for
elucidating the specific fucosylated proteins (e.g., key upstream receptors, stromal-interacting
membrane proteins etc.) that mediate the divergent effects elicited by α(1,2) fucosylation to
promote/suppress tumor progression. Furthermore, the identification of cancer signaling pathways
that are significantly altered by α(1,2) fucosylation, together with the identification of key fucosylated
proteins mediators, might yield useful insights for the stratification/therapeutic intervention for subsets
of cancer.

6. α(1,3) and α(1,4) Branching

Compared to α(1,2) fucosylation, more consistent pathological effects have generally been
reported for α(1,3/4) fucosylation across different cancer types. α(1,3/4) fucosylation is upregulated in
breast [110–112], liver [63,113], ovarian [114,115], CRC [97], pancreatic [100,116,117], gastric [118,119],
lung [120], and prostate [121–123] cancers compared with normal tissue counterparts (Table 4). Several
of the above-mentioned studies focused on a single or a few FUTs using RT-PCR, Le antigen IHC
staining, ELISAs with corresponding lectins, and/or lectin microarrays and have reported that increased
levels α(1,3/4) fucosylation contribute to metastasis. As detailed in Table 5, several FUTs can mediate
α(1,3/4) fucosylation that confers tumorigenic properties.

Table 5. Alterations of α(1,3/4) fucosylation tumors.

Cancer Type Changes in α(1,3/4) Fucosylation Reference

Breast

• α(1,3/4) fucosylation upregulated in tumor tissue

[110–112]

Melanoma [124]

Oral/Head & Neck [125]

Liver [63,113]

Ovarian [114,115]

Prostate [121–123]

Colorectal [97]

Pancreatic [100,116,117]

Gastric [118,119]

Lung [120]

Of the FUTs that mediate α(1,3)- and/or α(1,4)-fucosylation, FUT3, 4, 6, and 7 are most frequently
reported as upregulated across cancer types. Of the other FUTs, FUT5, FUT10, and FUT11 have
been reported to contribute to cell adhesion and metastasis through the generation of sLex and sLea

antigens [111,119]. In breast cancer cells, increased FUT4, 5, 6, 10 and 11 levels correlate with increased
migration and proliferation and the increased expression of angiogenesis-related genes including
VEGFA, VEGFR1, VEGFR2, and FGF2. Pharmacological inhibition of fucosylation using 2-fluorofucose,
a fucosyltransferase inhibitor, blocks breast cancer cell migration and proliferation and is associated
with attenuated RTK, MAPK and p38 signaling [111]. In ovarian cancer cells, FUT3, 4, and 9 promote
motility by mediating the α(1,3) and α(1,4) fucosylation of specific Le antigens [115,126].

FUT3 has generally been reported as a crucial mediator of tumor-promoting signaling. In CRC,
FUT3 is required for TGFβ signaling, as knockdown of FUT3 inhibits fucosylation of TGFβR1 and
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attenuates Smad2 signaling, consequently decreasing migration and invasion [127]. Loss of FUT3
across several tumor cell lines/types has been reported to decrease migration [119,127], invasion [127],
TGFβ signaling [127], interaction with E-selectin [116,119,123,125], metastatic potential in vivo [116],
and drug resistance [128]. In contrast, the ectopic overexpression of FUT3 amplifies sLex levels [122,124]
and promotes cellular adhesion [122], tumor growth [122], and metastasis [122,124].

FUT4 is upregulated in several cancer types and has been shown to promote proliferation [129],
invasion [125,130], tumor growth [129,130], and drug resistance [128,131]. Consistent with pro-
tumorigenic function, loss of FUT4 in melanoma cells inhibits proliferation and tumor growth and is
associated with reduced EGFR and MAPK signaling [129]. FUT4 is also implicated in drug resistance.
For example, the ectopic expression of FUT4 in multidrug-resistant HCC cells enhances activation
of pro-survival signaling including the PI3K/AKT pathway [131]. However, FUT4 has been reported
to elicit anti-tumor effects. For example, the ectopic expression of FUT4 in A549 lung cancer cells
suppresses EGFR signaling and invasive capacity [6]. It is possible that opposing tumorigenic vs.
tumor-suppressive functions of FUT4 are elicited in stage- and context-specific manners. Recently,
FUT4 expression was shown to be regulated by several miRNAs, which are downregulated in breast
cancer tissues [92,130,132], highlighting one mechanism by which FUT4 fucosylation is enhanced in
breast cancer tissues. It is possible that other FUTs are subject to similar mechanisms of regulation.

FUT6 has also been reported to elicit similar pro-tumorigenic roles as FUT4 in various cancer
types [113,125,127,131,133]. Like FUT3, FUT6 also fucosylates sLex antigens, amplifying cellular
adhesion and promoting metastasis, with concomitant upregulation of pro-tumorigenic TGFβ
signaling [127].

FUT7 is upregulated in HCC [134–136], lung, [137] and prostate [133] carcinomas and elicits
tumor-promoting effects. The ectopic expression of FUT7 promotes adhesion, colony formation,
invasion, proliferation and survival [108], and migration [133,134,138], whereas its knockdown reverts
these effects. Although the effects appear to require p38 and JNK, the direct underlying mechanisms
are currently not known [136].

In summary, α(1,3/4) fucosylation, which is mediated by FUTs 3-7 and 9-11, is generally increased
and elicits tumor-promoting effects in the cancers discussed above. This has been evidenced by the
fact that these FUTs mediate the production of several Lewis antigens, including sLex, which have
been demonstrated to promote metastatic capacity. Specifically, sLex, which is upregulated in cancer
cells, can promote metastasis by binding to E-selectin, which is expressed on endothelial cells. This
interaction can slow the rolling speed of cancer cells along the vascular endothelium under shear forces,
enhancing the ability of circulating tumor cells to extravasate from the vasculature into surrounding
tissues [116,119,121,123,134]. In addition to increasing sLex levels, several α(1,3/4) FUTs can alter
cell surface receptor (e.g., growth factor receptor)-mediated signaling, which is important for tumor
development. Future comprehensive studies are required to dissect the probable complex functional
redundancy among the α(1,3/4) FUTs to determine their specific cancer type- and stage-specific
functional contributions. Ultimately, the elucidation of the pathological contributions of α(1,3/4) FUTs
is important for developing novel therapeutic targets and strategies.

7. α(1,6) Fucosylation

FUT8 is the only fucosyltransferase known, to date, to conjugate fucose onto core GlcNAc residues of
N-glycans. Extensive studies in melanoma [95], breast [139], liver [63,95,140], ovarian [68], cervical [141]
CRC [97,142,143], pancreatic [117], gastrointestinal [89,144–146], thyroid papillary [147–149], and
lung [52,150–152] cancers have highlighted core fucosylation and specific core fucosylated proteins as
prognostic serum and tissue biomarkers (Table 6).

Generally, core fucosylation has been reported to be increased in tumor tissues compared to
normal tissues, suggesting tumor-promoting functions. Several studies have reported that the silencing
of FUT8 in cultured prostate, melanoma, lung, breast, and HCC cancer cells that express high levels
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of FUT8 inhibits invasion [95,140], migration [140,153], proliferation [52,140], colony formation [52],
tumor growth [5,50,95], and metastasis [5,95].

Table 6. Alterations of core fucosylation in tumors.

Cancer Type Changes in α(1,6) Fucosylation Reference

Breast

• Core fucosylation increased in tumor tissue

[139,154]

Melanoma [95]

Liver [11,63,140,155]

Ovarian [11,68,141,156]

Cervical [141]

Colorectal [11,97,142,143]

Pancreatic [117]

Lung [52,150–152]

Gastric
• Core fucosylation increased in tumor tissue [89,145]
• Core fucosylation decreased in tumor tissue [144,146]

Prostate • Core fucosylation increased in castrate resistant tissue [157]

The specific functional effects elicited by core fucosylation are attributed to its regulation to a
number of important growth factor signaling pathways including those mediated by TGFβ [5,158],
EGFR [6,50,158,159], VEGFR [158], and c-Met [50] (Figure 4). Fucosylation also impacts the activity/

signaling of other plasma membrane proteins including β1-integrin [159], β-catenin [155,160], and
E-cadherin [52,160]. Knockdown or inhibition of FUT8/suppression of core fucosylation attenuates
these signaling pathways, suppressing cancer growth/survival in vitro models of lung cancer and
HCC. [6,50] In addition, FUT8 knockdown or lectin blockade (i.e., incubation of cells with unconjugated
LCA lectin, which binds/blocks α(1,6) linkages) inhibits breast cancer stemness and EMT [154].
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However, gastrointestinal cancer studies have reported discrepant findings, where three studies
have reported reduced core fucosylation in tumors [144,146,161], whereas two reported increased core
fucosylation in tumors [89,145]. Interestingly, a number of studies have reported low levels of core
fucosylation in gastric cancer cells [146,162], giant lung cancer cells [163], and HCC cells [164] and
that the overexpression of FUT8 in those cancer cells suppresses proliferation, tumor formation, and
metastasis. The mechanism(s) underlying these differences, as well as the pathological contexts and
functional roles remain unclear, in large part because our understanding of how FUT8 is regulated
remains limited.

At the transcriptional level, FUT8 has been reported to be transcriptionally activated by p53 [165].
As p53 is often inactivated in cancer, aberrant upregulation of FUT8 might be attributed to the activity
of other as-of-yet undefined transcription factors. Post-transcriptionally, FUT8 has been reported to be
regulated by miR-122 and miR-34, which bind to the 3′ UTR of FUT8 mRNA transcripts, inhibiting its
expression, and consequently, reducing core fucosylation [166]. The roles of these and other miRNAs
in the control of FUT expression and fucosylation in cancer remain to be determined. Furthermore, the
contributions of these FUT8-regulating mechanisms likely vary by pathological context, resulting in
diversity of core fucosylation across cancers.

The divergent regulation of FUT8 and resulting core fucosylation levels can be regulated in stage-
and other clinical context-specific manners. The stage-wise importance and contributions of core
fucosylation to tumorigenesis has been clearly illustrated in a mouse model of HCC development,
where FUT8 activity is required for the development of well-vascularized tumors, whereas knockout
of FUT8 completely abolishes tumor formation [50]. In the context of cancer cell responses to
therapies, FUT8 has been reported to promote drug resistance. FUT8 expression is increased in
drug resistant HCC cells, and its knockdown attenuates Akt-mediated survival signaling [131].
In prostate cancer, FUT8 is upregulated in castration-resistant cells and can mediate the survival
and proliferation of non-resistant cells in castrate-(hormone-depleted) conditions [157]. Interestingly,
a commonly administered opioid analgesic for cancer patients, fentanyl, was reported to promote
breast cancer progression by upregulating FUT8 and enhancing α(1,6) fucosylation, highlighting the
unanticipated and confounding effects that therapeutic clinical agents have on fucosylation [154].
These findings prompt the question of whether pain management agents inadvertently promote core
fucosylation-mediated cancer progression. How fucosylation and which FUTs are affected by opioids
and other supportive agents represents an important and understudied area. Importantly, as FUT8 is
the only known fucosyltransferase to mediate core fucosylation, it might prove to be a valuable target
for cancer therapy.

8. O-Fucosylation

O-fucosylation has been extensively studied for its biological functions in protein folding,
secretion [167,168], and in the regulation of Notch signaling [169–173]. Given these biological roles,
O-fucosylation is anticipated to impact several functional hallmarks and signaling pathways in cancer
that have yet to be defined. Currently, limited data supports this notion. in vitro studies have revealed
that aberrant expression of POFUT1 promotes tumorigenic behavior in HCC lines by altering Notch
signaling, and in addition, upregulated POFUT1 expression in human HCC tissue specimens correlates
with poor overall survival outcomes and increased recurrence rates [174]. In contrast, increased
POFUT1 expression in breast cancers is intriguingly associated with longer relapse free and overall
survival [175]. The divergent effects of O-fucosylation between different cancer types highlights the
need for further studies to elucidate the underlying mechanistic differences.

9. Potential Therapeutic Utility

In regard to therapeutic approaches and clinical utility, L-fucose, fucose-containing extracts,
inhibitors of fucosylation, and fucosylated liposomes have been investigated as potential therapeutic
agents for various cancer types. The administration of L-fucose has been shown to inhibit cell growth



Cancers 2019, 11, 1241 12 of 25

in vitro [176] and tumor growth in vivo in breast cancer [177], melanoma [14], lung cancer [4], and
Ehrlich carcinoma [178]. As the aberrant expression of certain FUTs appear to elicit tumorigenic effects
in tumor cells, it is not immediately clear how the administration of L-fucose inhibits tumor growth
and progression. One possible explanation is that the administration of L-fucose increases GDP-fucose
substrate availability, boosting the levels of fucosylated glycans with tumor-suppressive properties
compared to those with tumorigenic properties. Another possibility is that the administration of
L-fucose stimulates anti-tumor immunity [14,179]. Further studies of these phenomena are expected
to lead to advances in fucosylation-based therapeutics or dietary interventions for cancer that might
slow/block tumor progression or elicit preventative or therapeutic effects.

Currently, L-fucose is relatively expensive and inefficient to purify, which represents a prohibitive
factor when considering new treatment options [4]. Furthermore, high levels of L-fucose occur
naturally in various species of seaweeds, which can be readily supplemented into current diets.
Seaweed-derived L-fucose extracts (known as fucoidan) have been analyzed and shown to elicit
anti-tumorigenic responses in breast cancer [180–182] and CRC [181,183,184]. Several studies have
reported tumor suppressive properties of fucoidan [185–193]. Fucoidan treatment is associated with
reduced VEGF and Hif1α expression, reduced activation of ERK, inhibited angiogenesis, and attenuated
lung cancer cell proliferation, migration, and tumor volume [185]. Fucoidan treatment can also block
the angiogenesis-promoting abilities as well as the viability of anaplastic thyroid cancer cells [192].
In lung cancer xenograft models, fucoidan significantly attenuates tumor growth by enhancing ER
stress-induced apoptosis. Whereas fucoidan does not affect the proliferation of OSCC cells, it inhibits
their invasive capacity, and further, modulates their interactions with macrophages [186]. Treatment
of melanoma cells with fucoidan is associated with reduced tyrosinase activity and melanin content,
as well as decreased viability [188]. In combination with the ERBB inhibitor lapatinib, fucoidan was
reported to enhance melanoma cell killing without adverse effects in mouse models [191]. Fucoidan also
elicits dose-dependent effects in prostate cancers cells, reducing cell viability/proliferation, migration,
tube formation, tumor volume, and activation of the JAK/STAT pathway. [189] Primary effusion
lymphoma cells treated with fucoidan exhibit inhibited proliferation, tumor burden, and enhanced
apoptosis as evidenced by increased expression of cleaved capsase-3, -8, -9, and cleaved PARP [190].
Although the use of fucoidan appears beneficial in cancer treatment, further studies, such as those
elucidating bioavailability, pharmacokinetics, and pharmacodynamics are required to delineate how
and when they should be administered to patients for maximum benefit.

Within the past decade, inhibitors of fucosylation have emerged as potential therapeutic agents
under investigation for their ability to inhibit cancer progression. Fluorinated and alkynated fucose
analogs have been developed to suppress the synthesis of GDP-fucose, thereby preventing FUTs from
fucosylating glycans [111,159,194–196]. The treatment of breast cancer cell lines with 2-fluorofucose
inhibits sLex antigen expression, leading to reduced adhesion but not viability [111]. The treatment
of HCC cell lines with 2-fluorofucose inhibits core fucosylation, cell proliferation, migration, and
tumor formation [159]. Recently, 6-alkyl-fucose was shown to be a more potent than 2-flurofucose in
inhibiting fucosylation and viability in HCC cells [196]. Further studies aimed at determining how
fucosylation profiles change or are restored in cancer cells after treatment with fucosylation inhibitors
or with L-fucose/fucoidan are expected to clarify how they can be used to help suppress or prevent
which types of cancer.

Immunotherapies and combination treatments are becoming leading topics in cancer treatment.
T cells are one of the cytotoxic populations of the adaptive immune system that require core fucosylation
of the T cell receptor to be activated in disease [197–200]. One of the more extensively investigated
immunotherapies is immune checkpoint blockade, specifically antibodies that target and disrupt
the interaction between programmed death 1 (PD-1) and its cognate ligand (PD-L1). Interestingly,
a defucosylated antibody engineered to disrupt the PD-1/PD-L1 interaction by binding to PD-L1 was
recently reported to more effectively induce T cell response and cytotoxicity against cancer cells than
fucosylated counterparts [201]. Briefly, PD-L1 on the cell surface of tumor cells interacts with PD-1 on
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T cells to induce exhaustion, thus impairing the cytotoxic effects of T cells, [202] leading to immune
evasion and continued tumor growth. PD-L1 on tumor cells is glycosylated, which contributes to
its stabilization at the cell surface [203]. Similar to the glycosylation of PD-L1 in tumor cells, the
fucosylation of PD-1 was recently reported to promote its stabilization and presentation at the surface
of T cells. Murine T cells inhibited for core fucosylation by Fut8 knockout or pharmacological inhibition
(2-fluorofucose) exhibited reduced PD-1 expression and were more cytotoxic and effective at killing
melanoma and lung cancer cells [204]. Investigations examining the clinical efficacy of fucosylation
inhibitors targeting FUT8 in human T cells will need to be conducted.

10. Conclusions and Closing Remarks

Cancer development and tumor progression require pathogenic alterations to normal cellular
biology. Increasing research efforts, including those investigating the roles of fucosylation in cancer,
are focusing on determining how aberrant glycosylation mechanistically contributes to tumorigenesis
and metastatic progression (Table 7).

Table 7. Summary of studies that have manipulated FUTs and documented biological outcomes in
tumor cell lines.

Cancer Type Results of FUT Manipulation in Cell Lines Reference

Breast
• FUT4 overexpression promoted invasion & tumor growth [130]
• FUT8 knockdown inhibited tumor growth & metastasis [5]
• FUT8 overexpression promoted EMT and invasion [5]

Melanoma

• FUT1 overexpression inhibited metastasis [15]
• FUT1 overexpression inhibited invadopodia & invasion [87]
• FUT4 knockdown inhibited proliferation & tumor growth [129]
• FUT8 knockdown decreased invasion, tumor growth, & metastasis [95]

Oral/Head & Neck

• FUT1 overexpression suppressed cell growth & invasion; knockdown increased cell
growth &invasion [16]

• FUT3 overexpression promoted invasion [125]
• FUT6 overexpression enhanced adhesion & invasion [125]

Liver

• FUT1 overexpression suppressed adhesion [17]
• FUT6 overexpression increased proliferation, colony formation, & tumor growth [113]
• FUT4, 6, & 8 overexpression amplified drug resistance [131]
• FUT4, 6, & 8 knockdown suppressed drug resistance and inhibited tumor growth [131]
• FUT7 silencing decreased adhesion, migration, & invasion [134]
• FUT7 overexpression amplified proliferation [138]
• FUT8 knockdown inhibited invasion, migration, & proliferation [140]
• FUT8 overexpression suppressed proliferation, tumor formation, & metastasis [164]

Ovarian
• FUT1 overexpression increased proliferation adhesion, invasion, metastasis & resistance [108,205]
• FUT1 overexpression increased colony formation & proliferation [103]

Prostate

• FUT3 overexpression amplified adhesion [133]
• FUT6 overexpression increased migration & metastasis [133]
• FUT7 overexpression enhanced adhesion [133]
• FUT8 knockdown decreased migration [153]
• FUT8 overexpression increased motility [153]

Colorectal

• FUT1 overexpression suppressed adhesion [97]
• FUT1 overexpression inhibited metastasis [109]
• FUT3 & 6 knockdown decreased adhesion, invasion, & migration [127]
• FUT5/6 knockdown inhibited migration and proliferation [206]

Pancreatic
• FUT1 overexpression suppressed adhesion and metastasis [86]
• FUT3 knockdown decreased migration, adhesion, and metastatic colonization [116,207]

Gastric
• FUT3 knockdown decreases migration [119]
• FUT5 knockdown inhibited adhesion & migration [119]
• FUT8 overexpression suppressed proliferation, tumor formation, & metastasis [146]

Lung

• FUT4 overexpression promoted EMT [208]
• FUT7 overexpression increased adhesion, colony formation, invasion, & migration [137]
• FUT8 knockdown decreased proliferation & colony formation [52]
• FUT8 overexpression suppressed proliferation, tumor formation, & metastasis [163]
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Although trends in fucosylated glycan structures have been identified among several cancer types
(Table 8), many questions remain regarding the differential roles of such types of fucosylation in cancer
pathogenesis. Specific fucosylated proteins and the signaling mechanisms that they regulate are just
beginning to be elucidated.

Table 8. Visual summary of fucosylation changes of the branching types in cancer tissues vs. normal
tissues. ↑-increased; ↓-decreased; ↑→↓-increased in primary, decreased in metastasis.

Cancer Type α(1,2) α(1,3/4) α(1,6)

Breast - ↑ ↑

Melanoma ↓ ↑ ↑

Oral/Head & Neck ↓ ↑ -

Liver ↓ ↑ ↑

Ovarian ↑ ↑ ↑

Prostate ↑ ↑ ↑

Colorectal ↓/↑ ↑ ↑

Pancreatic ↑ → ↓ ↑ ↑

Gastric - ↑ ↓/↑

Lung - ↑ ↓/↑

Few studies have investigated the functional contributions of cell surface fucosylation during
different stages of tumorigenesis, from invasion into local tissues, basement membrane, and
the lymphatics and vasculature during metastatic progression [5,87,88,151,159]. Expanding and
determining how such mechanistic insights can be used to improve diagnostic or treatment strategies
for cancer are expected to improve patient outcomes.

Our understanding of the importance of fucosylation in cancer has undergone significant expansion
since studies in the early 1960s. Despite the current complexity of fucosylation and cancer progression,
increasing studies are actively elucidating the underlying mechanisms and applications of L-fucose,
fucose analogs, and specific aspects of fucosylation to enhance the detection of and therapeutic
interventions for multiple cancer types, ultimately aiming to improve clinical outcomes for patients.
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Abbreviations

CRC colorectal carcinoma
EGF epidermal growth factor
ELISA enzyme-linked immunosorbent assay
EMT epithelial-mesenchymal transition
FGF fibroblast growth factor
FUK fucokinase
FUT fucosyltransferase
FX NADP(H)-binding epimerase-reductase
GlcNAc N’-acetylglucosamine
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GMD GDP-mannose 4,6-dehydratase
HPLC high performance liquid chromatography
HCC hepatocellular carcinoma
LAMP1 lysosome-associated membrane protein 1
LC liquid chromatography
MALDI matrix assisted laser desorption/ionization
MS mass spectrometry
NSCLC non-small cell lung cancer
OSCC oral squamous cell carcinoma
POFUT protein-O-FUT
sLe sialyl Lewis
TGFβ tumor growth factor beta
THBS thrombospondin
VEGF vascular endothelial growth factor
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