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Lipopolysaccharide (LPS) is a potent endotoxin on the outer membrane of gram-
negative bacteria. Heptosyltransferase I (HpeI) takes part in the synthesis of LPS. In
this study, we first collected the protein sequences of HpeI homologs from the human
microbiome. The collected HpeI sequences was classified based on sequence similarity,
and seven clusters of HpeI were obtained. Among these clusters, proteins from Cluster
3 were abundant in the human mouth, while Clusters 1, 6, and 7 were abundant in
the human gut. In addition, proteins from Cluster 1 were mainly from the order of
Enterobacterales, while Cluster 6 and 7 were from Burkholderiales. The correlation
analysis indicated that the total abundance of HpeIs was increased in patients with
cardiovascular disease and liver cirrhosis, and HpeI in Cluster 1 contributed to this
increase. These data suggest that HpeI homologs in Cluster 1 can be recognized as
biomarkers for cardiovascular disease and liver cirrhosis, and that reducing the bacterial
load in Cluster 1 may contribute to disease therapy.

Keywords: gut microbiota, lipopolysaccharide, heptosyltransferase, health, disease

INTRODUCTION

Lipopolysaccharide (LPS), a biomolecule component, is abundant on the bacterial cell surface and
is critical to the resistance of bacterial cells to environmental stress. LPS is also an important
endotoxin found in bacterial infections of the intestines, gums, skin, and other tissues (Raetz
and Whitfield, 2002). It is a pathogen-associated molecular pattern (PAMP) molecule composed
of three structural domains: hydrophilic polysaccharides or oligosaccharide core, O-antigen, and
lipophilic lipid A (immunostimulatory component) (Rosenfeld and Shai, 2006). In the human
gut, LPS is primarily derived from Bacteroidales, and an immunosuppressive effect exists in the
total LPS in the intestinal tract of adults (d’Hennezel et al., 2017). Injecting LPS into animals
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can cause fever as it is a pyrogenic substance. Since there are
fewer bacteria that produce a lot of LPS, the amount of LPS
in the intestinal tract may be low. However, bacterial LPS was
found to be involved in the occurrence and development of
many diseases such as chronic inflammation of the intestines,
liver damage, diabetes, Alzheimer’s, and Parkinson’s disease
(Gomes et al., 2017; Wassenaar and Zimmermann, 2018). By
optimally controlling intestinal LPS activity, local intestinal
integrity and systemic host homeostasis may be maintained.
Proteus produces a proto-inflammatory LPS, which can
induce a strong inflammatory response, causing septic
shock and even death. On the other hand, bacteria such as
Bacteroides produce an anti-inflammatory LPS, which exhibits
antagonistic activity in response to a pro-inflammatory response
(Lin et al., 2020).

The biosynthesis of LPS is triggered by the continuous
addition of sugar moieties. The formation of the LPS core
region depends on the process of adding multiple heptose
sugars catalyzed by heptatransferase (Hep). Currently, four
types of Heps are found in all gram-negative bacteria (Cote
and Taylor, 2017). In the process of adding the first two
sugars to the catalytic core, HepI and HepII always exist,
while HepIII and HepIV are only identified in certain
species (Reeves and Wang, 2002). The structure of HepI–
IV are very similar as they all contain glycosyltransferase
structure folds (Grizot et al., 2006). Cells lacking HepI
show truncated LPS, which makes them more susceptible to
hydrophobic antibiotics (Coleman and Leive, 1979). A recent
study confirmed the interaction between LPS and the antibiotic
during antibiotics transport at single molecule level (Wang J.
et al., 2020).

HepI transfers the heptosyl unit from ADP-L-glycerol-
β-D-mannose-heptose to the fifth position of Kdo2-lipid A.
Therefore, highly truncated gram-negative bacteria may be
caused by the inhibition of HepI, causing them to respond
to the complement system, cationic antimicrobial peptides,
vaccine-derived antibodies, phagocytosis, and the innate immune
system (Wang et al., 2015; Kong et al., 2016; Blaukopf et al.,
2018). Considering the importance of HepI, we analyzed
the abundance of it in the human gut microbiome. We
further investigated the relationship of the abundance of
HpeI with diseases, which showed that HepI abundance is
highly associated with cardiovascular disease (CVD) and liver
cirrhosis (LC).

MATERIALS AND METHODS

Sequence Information of HpeIs in Human
Intestinal Microflora
The HpeI sequences were retrieved from the InterPro database
(version: 86) and the results belonging to the human intestinal
microflora were retained for further analysis (Blum et al., 2020).
According to the above method, the sequence similarity network
(SSN) and phylogenetic tree of HpeIs in the intestinal microflora
were constructed (Zallot et al., 2019).

Using Healthy Human Intestinal
Metagenome Data to Determine HpeI
Gene Abundance
According to previous reports, Short, Better Representative
Extract Dataset (ShortBRED) was used to analyze the abundance
of HpeI genes (Blum et al., 2020). Briefly, ShortBRED-
Identify found peptide markers of the HpeI cluster, and the
comprehensive protein reference catalog is UniRef90. After
obtaining the markers, we used ShortBRED-Quantify to count
the relative abundance. The study was conducted on the website1.
Finally, the Reads per kilo base per million mapped reads
(RPKM) values were converted into copies of each microbial
genome (Levin et al., 2017).

Analysis of the Abundance of HpeI Gene
in Human Intestinal Metagenomics
Under Disease Conditions
The dataset of human fecal metachondrial body related to
diet were downloaded from the Sequence Read Archive (SRA)
of NCBI. Only information from non-antibiotic/probiotic-
treated cases and the use of the Illumina sequencing platform
were included in this study. In NCBI’s SRA, the whole
genome sequencing dataset was downloaded, which was about
disease-related human fecal metagenomes (Supplementary
Table 1). The host and data selected for analysis were from
non-antibiotic/probiotic treatment and Illumina sequencing
platforms, respectively. Quality trimming was performed using
Sickle software,2 and the quality threshold and minimum
lengths was 30 bp to homogenize the different data sets. The
remaining sequencing reads were of high quality and were
mapped to the nucleotide sequences of HpeIs that we have
previously reported using the Burrows-Wheeler Alignment-
Maximal Exact Matches (BWA-MEM) algorithm (Li and Durbin,
2009). The SAMTools is applied to remove results that showed
mapping quality number (MAPQ) that is greater than 60
(Li et al., 2009). The number of reads is calculated by
BEDtools.3 The taxonomic classification read was recognized
by the Kaiju program (Menzel et al., 2016). The read
counts of HpeIs were standardized and visualized by the R
programming language.

Statistical Analysis
R (version 3.6.1) was used for the statistical analysis. The
normality of HpeI abundance was evaluated using the
Shapiro–Wilk test. The analysis of the difference in HpeI
abundance between the test subjects and the control group
was performed using the paired Wilcoxon signed-rank
test because the results did not have a normal distribution
(Wirbel et al., 2019).

1www.hmpdacc.org
2https://github.com/najoshi/sickle
3https://bedtools.readthedocs.io/
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FIGURE 1 | Intestinal HepI clustering based on sequence similarity network and phylogenetic tree. (A) HepI from the human gut microbiome analyzed to create the
network (e-value < 10−3, sequence identity > 45%). The results showed 1,613 nodes and one node represents one protein sequence. Nodes from the same order
paint the same color in the network. (B) Evolutionary relationships of HepIs in different clusters. Maximum-likelihood phylogenetic tree for the selected HepIs from
each clusters were generated using MEGA 7.0.

RESULTS

Clustering and Phylogenetic Tree of Gut
HepI
HepI was placed in the InterPro consortium with accession
number IPR011908. We collected all the protein sequences from
IPR011908 using InterPro 86 (June 3, 2021). The sequences
from the bacteria originating from the human microbiome was
further collected, and a total of 1613 sequences were obtained
(Supplementary Dataset 1). As shown in Figure 1A and
Supplementary Figure 1, a criterion of 45% sequence identity
was used to generate the SSN of intestinal HepI, which separated
the 1613 sequences into seven clusters. The criterion was chosen
as the classification of the proteins that fit the bacteria origin
at the order level of taxonomy. The sequences were clustered
together with 40% sequence identity. On the other hand, the
sequences were separated into 10 clusters with 50% sequence
identity. The first cluster among the seven clusters using 45%
sequence identity contained sequences from Enterobacterales
and Pseudomonadales. The second and third clusters were from
Campylobacterales, while the sequences in the second cluster
was from Helicobacter. The proteins in the third cluster were
from Campylobacter. The fourth cluster comprised proteins from
the order of Neisseriales. The proteins in the fifth, sixth, and
seventh clusters were all from Burkholderiales. As a result of the
phylogenetic analysis, the fourth, fifth, sixth, and seventh clusters
formed a clade that was close to cluster 1. The proteins from
clusters 2 and 3 form two other clades (Figure 1B).

Abundance of HepI in Healthy Cases
The abundance of gut HepI in 380 metagenomes was studied
using ShortBRED in healthy cases (Figure 2). Data were obtained
from different human body sites: vaginal fornix, stool, and facial
parts such as the buccal mucosa and anterior nares. Only HepIs

from clusters 1, 3, 6, and 7 in the SSN were found in the healthy
group. Enzymes from Cluster 1 were the most widely distributed
in the human microbiome, including the buccal mucosa and
stool. Cluster 3 was also found in supragingival plaques with a
relatively high amount. In contrast, Clusters 6 and 7 were highly
abundant only in the stool.

HepIs Abundance in the Human Gut
Under Disease Conditions
Considering that LPS is associated with diabetes and liver-
related diseases (Su, 2002; Bala et al., 2011; Pastori et al., 2017),
the relationship between HepI abundance and diseases was
studied. Metagenomic sequencing datasets linking human health
with Type 2 diabetes (T2D), CVD, and LC were collected
(Supplementary Table 1). The T2D datasets were obtained from
both China and Sweden (n = 240, n = 226 CTRLs). The datasets
of CVD and LC were all from China (n = 214, n = 171 CTRLs
for CVD, n = 123, n = 114 CTRLs for LC). We mapped genes
to the intestinal metagenomic datasets to quantify the abundance
of the total HepI genes and calculated the significance of their
value (Figure 3). The results showed that there was no significant
difference in HepI abundance between healthy participants and
T2D patients. However, HepI abundance in the CVD and LC
subjects was significantly higher than that in the healthy controls
(p = 4.6e-8 and p = 0.00013, respectively). Based on these
analyses, we found that the abundance of HepI genes in the
gut was positively related to CVD and LC. We further analyzed
the taxonomic distribution of HpeIs in the cohorts. The data
showed that HepIs in the gut are mainly from the order of
Enterobacterales and Burkholderiales (Supplementary Figure 2).
Comparison of the abundance of HpeIs in the T2D datasets
showed that both abundances of HpeI in Enterobacterales and
Burkholderiales did not show significant difference between
healthy participants and T2D patients. However, the abundance
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FIGURE 2 | HepI abundance in the human microbiome datasets of healthy subjects. (A) Heatmap of the distribution and abundance of HepI clusters analyzed by
ShortBRED, which include vaginal fornix, stool and facial parts such as the buccal mucosa, anterior nares, tongue dorsum. (B) Boxplots of clusters 1, 6, and 7
across different body sites.
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FIGURE 3 | Comparison of the total abundance of HepIs in the human gut
microbiome between a healthy group and a disease group. The metagenomic
datasets are from the disease conditions; Type 2 diabetes T2D (A),
cardiovascular disease CVD (B), and liver cirrhosis LC (C). The paired
Wilcoxon test was used to calculate the p-value for significant analysis.

of HpeI in Enterobacterales in the patients of CVD and LC
increased significantly (p = 2.8e-10 and p = 9.5e-4, respectively).
This data suggested that HpeI in Enterobacterales is much closely
associated with the two disease conditions.

The Relationship Between the Difference
Cluster of Gut HepIs and Human
Diseases
The distribution and abundance of Clusters 1, 6, and 7 in
the healthy intestinal metagenomes indicated that the HepI in
different clusters might play different roles in certain disease
states. We then mapped the HepI in Clusters 1, 6, and 7 to the
datasets mentioned above (Figure 4). Similar to the difference in
the total abundance of HepI in T2D datasets, the abundance of
HepI in Clusters 1, 6, and 7 between the healthy controls and
T2D participants did not show any significance. In the case of
CVD, the HepI in Cluster 1 increased significantly in the patients
compared with the healthy participants (p = 3.9e-10), and there
was no significant difference in the HepI in Clusters 6 and 7
between healthy and CVD subjects. The HepI in Cluster 1 in the
patients with LC also showed a significant increase in comparison
with the controls. In addition, the HepI in Clusters 6 and 7
in the dataset did not show any significant differences. These
results suggested that the abundance difference of HepI in the
gut between the healthy participants and CVD/LC patients was
mainly due to the enzymes from Cluster 1.

DISCUSSION

Intestinal microbial LPS is not only considered to be one of
the most effective factors for activating innate immune signal
transduction, but is also considered as an important medium
for the microbiome affecting host physiology (d’Hennezel et al.,
2017). LPS from E. coli increases gut tight junction permeability
and intestinal inflammation in a Toll-like receptors 4 (TLR4)-
related manner, which is regulated by the activation of the focal
adhesion kinase 1 signaling pathway (Guo et al., 2015). However,
the capacity to trigger the activation is structure-dependent,
which determines whether LPS is classified as an antagonist or
an agonist (Munford, 2008; Di Lorenzo et al., 2019). Lipid A with
bis-phosphorylated hexa-acylated motifs (such as E. coli lipid A)

acts as an agonist of the TLR4/myeloid differentiation factor 2
complex and has a certain function of immune stimulation (Di
Lorenzo et al., 2017). Next, few LPS compounds could bind TLR4
and compete with toxic LPS with an antagonistic property, thus
preventing downstream inflammatory responses (Di Lorenzo
et al., 2017). The structure of hexa-acylated LPS from E. coli is
distinct from penta- and tetra-acylated lipid A of Bacteroides,
which are the dominant species in the human gut microbiota.
Our study shows that HepI can be found in Enterobacteriaceae,
but not Bacteroides. This suggests that HepI may be one of the
factors affecting the structure of LPS.

LPS can promote lipid accumulation in adventitial fibroblasts
of humans and increase oxidative stress in atherosclerotic
lesions. It can further increase the mortality and morbidity of
atherosclerosis-related cardiovascular disease (Wang et al., 2012).
Inflammation and oxidative stress caused by LPS also results
in acute liver injury and failure (Jiang et al., 2018). Our data
indicate that HepIs located in Cluster 1 are significantly related
to both CVD and LC, suggesting that these enzymes and the
bacteria encoding the enzymes can be used as potential markers
for these diseases. Furthermore, inhibition of enzyme activity
or reduction of bacterial load in the gut can be considered as
an option to treat related diseases. The study to screen and
design the inhibitors of HepIs has been performed and showed
application potential for antimicrobial development (Wang A.
et al., 2020).

Dietary factors may be related the abundance of HpeI and
LPS in the human gut. It has been reported that dietary style,
such as Western diet, high calorie diet, high fat diet (HFD),
may increase the LPS abundance in both human and mice (Fuke
et al., 2019; Bai et al., 2020). On the other hand, high-grain diet,
probiotics, prebiotics, and polyphenols could reduce the level
of LPS in goat liver (Chang et al., 2015; Fuke et al., 2019). In
addition, HFD markedly alters the composition of microbiota
with enriching the orders Enterobacterales (Calibasi-Kocal et al.,
2021). Taken together, these studies suggested HFD-induced
increase of Enterobacterales may produce more LPS synthesized
by HpeI, and inhibition of HpeI increase and activity could
contribute the related diseases.

Our data suggested that HpeI-encoding Enterobacterales
increased in the gut of the patients with LC. Other studies showed
that E. coli, Klebsiella pneumoniae, and other Enterobacterales
are the most common and are responsible for up to 50%
in patients with cirrhosis (Fernández et al., 2021). While
both bacteria from Enterobacterales and Burkholderiales
increased in the gut of CVD patients. These studies are
also consistent with our conclusion and suggested that the
increased bacteria, LPS, and HpeIs can be used as biomarker
for the diseases. However, gene transfer occurs frequently
in the gut microbiome (Groussin et al., 2021), suggesting
biomarker based on bacteria species may not reflect the
real function of strains. While the structure of the LPS is
also very complex and the physiology function of each LPS
may be diverse. Considering the specificity of enzymes to
catalyze the reactions in the gut, we suggested that classified
enzymes catalyzing different reactions are potentially precise
biomarker for diseases.
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FIGURE 4 | Comparison of the abundance of HepIs from different clusters in the human gut microbiome between a healthy group and a disease group. The
metagenomic datasets from the disease conditions; Type 2 diabetes T2D (A), cardiovascular disease CVD (B), and liver cirrhosis LC (C) are used to map the genes
of HepIs from Cluster 1, 6, and 7. The paired Wilcoxon test was used to calculate the p-value for significant analysis.

The relationship between the abundance of microbiota in the
gut and the diseases has been widely studied. Compared with
the research analyzing the abundance of microbiota, relatively
few studies between the functional genes from gut microbes
and the diseases are performed. In the present study, we set up
the relationship between the abundance of microbial HpeIs and
the diseases, including CVD and LC. However, there are some
limitations of the study. First, HpeIs might be also related to other
diseases, such inflammation, immune disorders, neurological
diseases, etc., considering the importance and diversity function
of LPSs. Further study should be performed to analyze the
association between HpeIs and the diseases. Second, the HpeIs in
different clusters in the study might catalyze different reactions
and form different structures of LPS. Thus, further experiments
should be performed to confirm the function of HpeIs.

In conclusion, microbial LPSs in the human gut have
considered as an endotoxin, while HpeI is the key enzyme
catalyzing the synthesis of LPS. In the present study, we collected
the sequences of HpeI from gut microbiota and separated
them into 7 clusters. The HpeIs in the first cluster showed the
highest amount in the human gut, which were mainly from
Enterobacterales. Further study showed that the abundance of

HpeIs in the Cluster 1 was positive associated with the CVD and
LC. On the basis of the results, we proposed that the HpeIs in the
Cluster 1 could be considered as a biomarker and therapy target
for the diseases.
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