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The applications of stainless steel are one of the most reliable
solutions in concrete structures to reduce chloride-induced
corrosion problems and increase the structures service life,
however, due to high prices of nickel, especially in many civil
engineering projects, the austenitic stainless steel is replaced by
the ferritic stainless steels. Compared with austenite stainless
steel, the ferritic stainless steel is known to be extremely resistant
of stress corrosion cracking and other properties. The good
corrosion resistance of the stainless steel is due to the formation
of passive film. While, there is little literature about the
electrochemical and passive behavior of ferritic stainless steel in
the concrete environments. So, here, we present the several
corrosion testing methods, such as the potentiodynamic measure-
ments, EIS and Mott–Schottky approach, and the surface analysis
methods like XPS and AES to display the passivation behavior of
430 ferritic stainless steel in alkaline solution with the presence of
chloride ions. These research results illustrated a simple and facile
approach for studying the electrochemical and passivation
behavior of stainless steel in the concrete pore environments.

& 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
vier Inc. This is an open access article under the CC BY license

Luo).

www.elsevier.com/locate/dib
www.elsevier.com/locate/dib
http://dx.doi.org/10.1016/j.dib.2015.08.016
http://dx.doi.org/10.1016/j.dib.2015.08.016
http://dx.doi.org/10.1016/j.dib.2015.08.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2015.08.016&domain=pdf
mailto:luohong2001@hotmail.com
http://dx.doi.org/10.1016/j.dib.2015.08.016


H. Luo et al. / Data in Brief 5 (2015) 171–178172
Specifications table
Subject area
 Material science

More specific subject area
 Corrosion science

Type of data
 Table, image

How data was acquired
 Electrochemical workstation, X-ray photoelectron spectroscopy, Auger Electronic Spectrometer

Data format
 Raw, analyzed

Experimental factors
 Environment, potential

Experimental features
 Artificial passive film growth

Data source location
 Hohai University, Nanjing, China

Data accessibility
 Data are available here with this article
Value of the data
�
 The immersion time plays important roles in evolution of passive film composition and corrosion resistance.
�
 The passive film of ferritic stainless steel presenting a thinner n-type layer in the simulated concrete pore environments
and its primary constituents of passive film is (Cr, Fe)-oxides, however, there is no chloride ions incorporation into the
passive film.
�
 The data presented here can be used to characterize the passive behavior and passive film composition of ferritic stainless
steel in the concrete environments.

1. Data, experimental design, materials and methods [1]

1.1. Materials and solutions

Here, the testing specimens were cut from a sheet of 430 ferritic stainless steel with the thickness
of 5 cm. The nominal chemical composition (wt%) of the stainless steel were as follows: C 0.035, Si
0.50,Cr 17.30, Ni 0.14, Mn 0.35, S 0.004, P 0.029 and Fe balance. The specimens size were 1 cm�1 cm,
then ground sequentially from 400 to 2000 grit SiC paper, polished with 0.1 μm alumina powder,
degreased with alcohol and deionised water, then, dried in cooling air. The testing solution is the
saturated calcium hydroxide solution, it were prepared to simulate the electrolytes contained in the
pores of concrete environment, meanwhile, the 1% sodium chloride was added in to the solution, to
observe the effect of chloride on its passive film. All the solutions were prepared with double distilled
water, and the pH value of testing solution was 13, which was regularly checked using a Mettler pH
meter. More important, the solutions were used immediately after preparation to avoid carbonation
effects and all reagents were of at least ACS grade.
2. Electrochemical measurements and surface characterization

2.1. Electrochemical behavior measurements

The electrochemical measurements were performed by using the PAR 2273 electrochemical
workstation at ambient temperature (25 1C). The standard three electrodes cell corrosion testing
system, a platinum foil and a saturated calomel electrode (SCE), which connected to the cell via a Luggin
capillary, were used as the counter and reference electrodes, respectively. Before test, the solution was
purged with pure nitrogen for 1 h, and the gas flow was maintained during the whole testing. Prior to
electrochemical experiment, samples were initially reduced potentiostatically at -0.8 V for 20 min to
remove air-formed oxides. The electrochemical impedance spectroscopy (EIS) measurement started after
the stable of open-circuit potential (OCP), the frequency of EIS was swept from 100 kHz down to
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10 mHz, at 10 data cycles/decade, with the applied AC amplitude of 10 mV. The impedance spectra were
collected for increasing immersion times from 12 h to 480 h, and the impedance data were fitted by
Zsimpwin software. The capacitance test was carried out at a fixed frequency of 1 kHz during a 50 mV/
Step in the potential range from �1.0 to 1.2 V (vs. SCE). Potentiodynamic polarization tests were carried
out using a scan rate of 1.0 mV s�1 starting from �0.6 V vs. OCP to transpassive potential. Each
experiment was repeated several times under the same conditions to control the reproducibility, keeping
the error of several fitting parameters less than 5%.

2.2. The AES and XPS characterization

Before the experiments, the surface pre-treatment is very important. A negative potential was
applied to remove the surface oxide layer, and then immersion in the solution for 3 h at OCP in order
to form of a stationary passive film. The AES depth profiles were measured with a scanning Auger
microprobe with a coaxial electron gun and a cylindrical mirror analyzer. The sputtering rate, as
determined on a thermal oxidation SiO2/Si standard, was approximately 2 nm/min. The chemical
composition of the passive film was investigated by XPS with a monochromatic Al Kα radiation source
and a hemispherical electron analyzer operating at the pass energy of 25 eV. The curve fitting was
performed by the commercial software Xpspeak version, which contained the Shirley background
subtraction and Gaussian–Lorentzian tail function for better spectra fitting.
3. The electrochemical behavior of ferritic stainless steel in the simulated concrete media

3.1. The passivation behavior of ferritic stainless steel

The anodic potentiodynamic curves can provide some important features concern with the
electrochemical behavior of stainless steel in certain environments. Fig. 1 shows the potentiodynamic
polarization curves of 430 ferritic stainless steel in alkaline solution. It can be seen that ferritic
stainless steel displays typical passive behavior, the curves pass through active region, active passive
transition region, passive region and transpassive region with increasing potential from free corrosion
potential to anode direction. As shown in the Fig. 1, the passive region of 430 ferritic stainless steel in
alkaline solution is from about the �0.52 V to 0 V. At the same time, an important feature revealed by
the curves is an anodic oxidation peak at �0.2 V reveals that chromium oxide dissolution is taking
place through the Cr3þ to the Cr6þ when the material suffers high anodic polarizations.
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Fig. 1. Potentiodynamic polarization curve of 430 ferritic stainless steel in the saturated calcium hydroxide solution with the
presence of chloride ions at the scanning rate 0.5 mV/S.
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3.2. The stability of passive film of ferritic stainless steel

Electrochemical impedance spectroscopy is very useful tools to study the stability of the stainless
steel in different environments. Fig. 2 presents the open-circuit impedances spectra as a Nyquist
diagram of 430 ferritic stainless steel at different immersion time into alkaline solution. It is clearly
observed that all the electrochemical impedance plots with different immersion time were
characterized by the presence of single unfinished semi-circle arc, which is attributed to charge
transfer process occurring at the metal/electrolyte interface or related to the surface film property [2].
It is showing that they have the similar corrosion mechanisms. In the Nyquist diagram, the evolution
of the overall impedance shows higher values with the immersion time increases, revealing an
enhancement of passive film protective behavior in this type of environment. As can be seen in the
Fig. 2(a), the global impedance increases during first immersion time, that is to say, with the
immersion time from the first 12 h to 156 h, the overall impedance increase as the immersion
increase. However, after the immersion time exceed 156 h, it slightly decreases, as can be seen in the
Fig. 2(b), it revealing that the surfaces are more susceptible to pitting attack. From the above, the
passive film of ferritic stainless steel formed in alkaline solution showed a similar evolution with time.
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Fig. 2. Nyquist plots of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions after different
immersion time.



Fig. 3. Equivalent circuit of the analysis of impedance spectra.
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Fig. 4. Mott–Schottky approach for passive film formed on the surface of ferritic stainless steel in alkaline solution at open
circuit potential.
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Fig. 3 exhibits the equivalent circuit of fitting EIS experimental results. Based on this model, it
assumes that the passive film can't be considered as a homogeneous layer but rather as a defective
layer. As is presented in Fig. 3, the equivalent circuit consists of the solution resistance Rs connected in
series with two time constants R1[Q1(R2Q2)]. In the first process (R1Q1) at higher frequencies, the
parameter Q1 represents capacitive behavior of the formed passive film, coupled with a resistance due
to the ionic paths through the oxide film R1. In the second detected process, Q2 represents the
capacitive behavior at the interfaces and R2 for the corresponding charge-transfer resistance.

Fig. 4 shows the Mott–Schottky plots of 430 ferritic stainless steel in alkaline solution at the OCP
condition as can be observed, the curves contained several regions, depending on the film formation
potential, for the potentials above �0.8 V, a straight line with a positive slope, meaning that the
oxides behaves as the n-type semiconductor in this potential region. As is known to all, the passive
film of stainless steel can display both n-type and p-type behavior in different environments [3,4].
However, the shape of Mott–Schottky plot for the passive film formed on alkaline solution is far from
that for the passive film on other conditions. The passive film of 430 ferritic stainless steel in the
alkaline solution is close to the single layered Cr-substituted Fe-oxide rather than the duplex layered
film of inner Cr oxide and outer Fe oxide. Moreover, there is a obviously change in the sign of the
linear region slope at high potentials, going from positive to negative values. This phenomenon
indicates a modification in the electronic properties of the passive film, from n-type to p-type
semiconductivity, and is related to an increase in the conductivity of the film due to the solid state
oxidation. The values of N doping density can be determined from the slope of the experimental C�2

vs. E. According to (1), the slopes of the linear portion of the C�2 vs. E give the charge carrier density N,
from the relation [5]:

N¼ 2
mUeUεUε0

ð1Þ

wherem is the slope of the Mott–Schottky plot in the linear-region of interest, e is the electron charge,
ε the relative dielectric constant of the semiconductor, ε0 the vacuum permittivity. According to the
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calculated results, the values of N are in the range of 1020�1021 cm�3, which are comparable to the
reported values for stainless steel.

3.3. The character of passive film of ferritic stainless steel

3.3.1. The thickness of passive film in simulated concrete pore media
In order to perform a detailed investigation on the distribution of alloying elements in the passive

film after immersion in alkaline solution, the depth profiles of passive film are examined by AES and
the results are depicted in the Fig. 5. It is appeared that the Fe concentration in passive films is about
20–30 at% at the subsurface, and increased gradually with depth, and the Cr contents slightly
increasing with the depth, but for the concentration profile of O rapidly decreases with prolonging the
etching time. The boundary between the oxide layer and the bulk was never sharp, but an interface
with a finite thickness is always observed. Methods developed by Sato and co-worker [6] allowed for
the estimation of the interface position through extrapolation of the oxygen peak, for the boundary
between the oxide layer and the bulk we always took a depth at which the oxygen concentration
dropped to 50% of its maximum value. So, according to this, the thickness of passive film formed in
alkaline solution is approximately 6 nm. As is known to all, the chloride attack is initiated by the
adsorption of chloride ions on a metal surface, and then pitting corrosion occurred due to the local
dissolution of this part. Fig. 4 illustrated the variation in the peak area of chloride in the passive film
with etching time. It can be seen that the peak area of chloride in alkaline solution is slightly higher in
the surface and then decreased to zero with the etching time, no chloride is observed in the
passive film.

3.3.2. The composition of passive film in simulated concrete pore media
Fig. 6 presented all of the metallic and oxidized states of Cr 2p3/2, Fe 2p3/2 and O1s. These results

indicate that the primary constituents of the passive film are chromium oxide and iron oxide species,
respectively [7]. As shown in the Fig. 6(a), Fe 2p3/2 spectra can be separated into several constituent
peaks representing the metallic state (Fe(met)) (707.7 eV), the bivalent (Fe2þ) and trivalent (Fe3þ)
species. The relative peak heights of FeOOH (711.8 eV) and Fe3O4 (708.2 eV) indicate they are the
primary iron oxidized species in the passive film formed in alkaline condition. Fe3O4 is a mixed oxide
composed by Fe2þ and Fe3þ . It is known that the Fe3þ contribution from Fe2O3 and Fe3O4 is difficult
to identify on XPS spectra [8] and a global value for the two iron oxides was considered. The formula
for Fe3O4 may also be written as FeO � Fe2O3, showing one part wustite (FeO) and the other part
hematite (Fe2O3). This refers to the different oxidation states of iron in crystalline structure, not in
solid solution. Fe3O4 has a cubic inverse spinel structure which consists of a cubic close packed array
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Fig. 5. Auger depth profiles of the passive film formed at the surface in alkaline solution with the presence of chloride ions.
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of oxide ions where all the Fe2þ ions occupy half of the octahedral sites. The Fe3þ ions are split evenly
across the remaining octahedral sites and the tetrahedral sites. Fig. 6(b) shows that there exist three
constituent peaks representing metallic state Cr(met) (574.1 eV), Cr2O3 (576.3 eV) and Cr (OH)3
(577.1 eV). The oxidized species are the primary constituents of the passive film. The intensities of the
Cr2O3 states are apparently higher than that of the Cr (OH)3 and Cr(met). The enrichment in Cr oxides
improves the stability of the films. Oxygen species such as O2� and OH� in passive film, playing the
role of connecting metal ions. Fig. 5(c) shows the core-level spectra of the passive film formed in
alkaline environment in the O1s region. The O 1s spectra may also be split into three components O2�

(530.2 eV), OH� (531.8 eV) and H2O (533 eV). It can be seen that OH� is the primary constituent of the
passive film, which corresponds to the formation of Cr(OH)3 and FeOOH. While O2� is also the
primary constituent of the passive film, which corresponds to the formation of Cr2O3, Fe3O4.
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