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Abstract: In order to improve the antifungal activity of new butenolides containing oxime ether
moiety, a series of new butenolide compounds containing methoxyacrylate scaffold were designed
and synthesized, based on the previous reports. Their structures were characterized by 1H NMR,
13C NMR, HR-MS spectra, and X-ray diffraction analysis. The in vitro antifungal activities were
evaluated by the mycelium growth rate method. The results showed that the inhibitory activities of
these new compounds against Sclerotinia sclerotiorum were significantly improved, in comparison
with that of the lead compound 3–8; the EC50 values of V-6 and VI-7 against S. sclerotiorum were
1.51 and 1.81 mg/L, nearly seven times that of 3–8 (EC50 10.62 mg/L). Scanning electron microscopy
(SEM) and transmission electron microscopy (TEM) observation indicated that compound VI-3 had a
significant impact on the structure and function of the hyphal cell of S. sclerotiorum mycelium and the
positive control trifloxystrobin. Molecular simulation docking results indicated that the introduction
of methoxyacrylate scaffold is beneficial to improving the antifungal activity of these compounds
against S. sclerotiorum, which can be used as the lead for further structure optimization.
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1. Introduction

In agricultural development, there is a long history of using pesticides to protect crops
from external stress, including phytopathogen invasion, vicious weed growth and pest
destruction. The large quantity use of pesticides has greatly increased the crop yields,
which made a major contribution to solve the food crisis issue brought about by the world
population growth [1]. Unfortunately, it also has raised some urgent concerns. For example,
the resistance problems of phytopathogens, pests and weeds to the traditional pesticides
are becoming more and more serious alongside the uncontrolled use of pesticides [2,3]. The
commercial strobilurin fungicides have also faced this similar issue in recent years [4].

Strobilurins, the most important class of agricultural fungicides, mimicked the struc-
ture of naturally occurring compounds isolated from several basidiomycete species that
inhabit decaying material in woodland soil [5–7]; therefore, they have been widely used as
agricultural fungicides in many countries [8,9]. These compounds have a similar scaffold,
the (E)-β-methoxyacrylate pharmacophore, for example, trifloxystrobin (TRI), as a member
of the Qo inhibitor group, acts as the inhibitor of mitochondrial respiration system by
blocking electron transfer at the ubiquinol oxidation center (Qo site) of the cytochrome bc1
complex (complex III) [10]. It has been demonstrated that the (E)-β-methoxyacrylate core
is the basic pharmacophore of strobilurin fungicides, which, as well as its attachment to
a structurally diverse side chain, is an effective way to find novel candidates with high
fungicidal activities [11,12]. Recently, several studies have demonstrated that the repeated
field application of strobilurin fungicides has resulted in the resistance development of
several important phytopathogens [13,14]. As a consequence, new types of fungicides must
be highly required and developed to overcome this problem.
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Natural products are one of the important resources in the discovery of novel pes-
ticides [15–19]. Butenolide scaffold is widely found in the natural products [20,21], such
as stypolactone [22], lambertellol A [23], yaoshanenolides A, yaoshanenolides B [24,25]
and others. These natural products have insecticidal [26–28], bactericidal [29–31], antifun-
gal [32,33], antitumor and other excellent biological activities. The commercially available
butenolide pesticides include spirodiclofen [34], spiromesifen [35], spirotetramat [36],
spiropidion [37] and flupyradifurone [38]. Butenolide scaffold is a valuable antifungal
pharmacophore [39,40].

The synthesis and biological activity of new butenolide compounds with the structure
diversity were explored based on the diversity-oriented synthesis strategy in our research
group, and found some compounds exhibit excellent insecticidal and fungicidal activi-
ties [41–45]. For example, some of compounds 1 and 2 had 100% mortality against Myzus
persicae, Mythimna seprata and Plutella xylostella at the concentration of 600 mg/L [42,43],
and some of compounds 3 had a 100% control effects on cucumber downy mildew and
corn rust at a concentration of 400 mg/L [45] (Scheme 1). When R was chlorine atom at the
ortho-position of benzene ring in benzyl group, compound 3–8 exhibited the best in vitro
inhibition against Sclerotinia sclerotiorum with EC50 value of 10.62 mg/L [46]. Based on
the previous work, it was found that if the ortho-position steric hindrance of the benzene
ring was increased, these compounds would exhibit much better fungicidal activities. So,
a new type of butenolide derivatives were designed using the (E)-β-methoxy- acrylate
pharmacophore to replace the chlorine atom at the ortho-position of the benzene ring and
were synthesized (Scheme 2), and their in vitro antifungal activities were evaluated in
this article.
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2. Results and Discussion
2.1. Chemistry

In order to obtain high yields of the key intermediate oximes IV-1~IV-14, 1.2 eq of
NH2OH·HCl was added to complete the reaction (Scheme 3). The single configuration isomer
of the oximes could be afforded by recrystallization with ethyl acetate or CH2Cl2 at 0 ◦C,
and the configuration of the oxime was assured as E-configuration by the X-ray diffraction
analysis of compound IV-6 (Figure 1). It was found that the best reaction condition for
preparing V-1~V-14 was anhydrous acetonitrile as solvent, NaH as the base, and PEG-400 as
the phase transfer catalyst after repeated trials, as in the previous reports [45,46], but the yields
of V-1~V-14 were only 18–36% due to the bigger steric hindrance of the methoxyacrylate
pharmacophore. Compounds VI-1~VI-14 were readily afforded in 75–88% yields by the
aminolysis of V-1~V-14 using the methylamine aqueous solution. In the 1H NMR and 13C
NMR spectra of V-1~V-14, it could be clearly observed that there was characteristic OCH3
signals at δ~4.00 and 63.8–63.9, while the NH protons presented at δ 6.70~6.90, NCH3 at δ
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2.80~2.90 and 33.5–33.8 in the 1H NMR and 13C NMR spectra of VI-1~VI-14. The [M + H]+

quasi-molecular ions were observed in the high resolution mass spectra of V-1~V-14 and
VI-1~VI-14, for example, the [M + H]+ ion at m/z 480.2131 was afforded for compound VI-8.
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2.2. The X-ray Structure Analysis of IV-6

A colorless crystal of (E)-3-(1-(hydroxyimino)ethyl)-5,5-dimethyl-4-phenylfuran- 2(5H)-
one IV-6, suitable for X-ray diffraction analysis, was obtained from a slowly evaporating
ethyl acetate solution. A 0.55 × 0.34 × 0.02 mm3 crystal was selected and mounted on a
Bruker APEX-II CCD diffractometer, equipped with a graphite- monochromatic Mo Kα radi-
ation (λ = 0.71073 Å). The parameters for IV-6 are: formula C14H15NO3, molecular weight
245.27, crystal system tetragonal, a = 0.88563(5) nm, b = 0.88563(5) nm, c = 3.21060(18) nm,
α = 90◦, β = 90◦, γ = 90◦, V = 2.5182(2) nm3, ρ = 1.294 mg/mm3, space group P41212, Z = 8,
µ (Mo Kα) = 0.091 mm−1, F(000) = 1040, S = 1.085. A total of 8339 reflections were collected
at T = 125.50 K; 2427 were independent reflections (Rint = 0.0522). Final R indexes were
R1 = 0.0655, wR2 = 0.1114 (all data). The crystal structure was solved by direct methods
with SHELXS-97 and refined by full-matrix least-squares refinements based on F2 with
SHELXL-97. The crystal structure is depicted in Figure 1. The parameters and structure
information for compound IV-6 have been deposited at the Cambridge Crystallographic
Data Centre. CCDC ID 2162653 contains the supplementary crystallographic data for
this paper.
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2.3. The Antifungal Activities

The in vitro antifungal activities against Thanatephorus cucumeris, Fusarium gramin-
earum, Sclerotinia sclerotiorum, Phytophthora capsica and Botrytis cinerea were evaluated by
the mycelial growth rate method [44–46], and the results were shown in Table 1. The
results indicated that all the target compounds exhibit certain in vitro antifungal activities
against the five tested phytopathogens at 50 mg/L. Although the inhibitory activities of
the compounds against T. cucumeris, P. capsica, B. cinerea and F. graminearum were relatively
weak, the inhibitory rates of the compounds against S. sclerotiorum were greater than 70%.
For example, compounds V-6 (79.4%), V-7 (86.6%), V-10 (89.1%), VI-3 (74.2%), VI-5 (75.3%),
VI-7 (79.1%) and VI-10 (84.8%) had better in vitro antifungal activity than TRI (68.6%).
In addition, compounds, V-10 (60.5%) and VI-9 (69.2%), also showed good antifungal
activity against T. cucumeris, which was close to TRI (69.8%), compound VI-10 (60.2%)
showed better antifungal activity against P. capsica, compounds V-5 (49.8%) and V-6 (46.2%)
are close to that of TRI (49.7%) against B. cinerea, compounds V-10 (45.4%), VI-1 (54.8%),
VI-2 (52.5%), VI-3 (46.3%) and VI-4 (52.5%) were more active than TRI (43.9%) against F.
graminearum. The preliminary structure–activity relationship indicated that the 4-position
of butenolide was modified with 4-pyridinyl group; the in vitro antifungal activity was not
significantly improved, in comparison with that of the compound with 4-phenyl group;
and, in particular, the antifungal activity was significantly decreased for S. sclerotiorum.
In addition, it was found that when the 5-spirocycle was replaced by a geminal dimethyl
group, the in vitro antifungal activities of the compounds V-7, V-8, V-9 and V-10 against
the five fungi were higher than those of V-1, V-2, V-3 and V-4 due to the steric hindrance of
the spirocycle. Moreover, the EC50 values of compounds V-6, V-7, V-10, VI-3, VI-5, VI-7
and VI-10 against S. sclerotiorum were further determined and shown in Table 2, which
indicates that the in vitro antifungal activities of the aminolysis products against S. sclerotio-
rum have been significantly improved. For example, the antifungal activities of compounds
VI-3 and VI-5 were much higher than those of V-3 and V-5. However, there was some
exceptions, the antifungal activities of V-6 and V-10 were better than those of VI-6 and
VI-10. These results also showed that the EC50 values of V-6, V-7, V-10, VI-3, VI-5, VI-7
and VI-10 (1.51–13.24 mg/L) were significantly smaller than that of TRI (38.09 mg/L), the
splicing of butenolide and methoxyacrylate is beneficial to improve the in vitro antifungal
activity of these compounds. In addition, it was confirmed that the antifungal activities of
compounds against S. sclerotiorum was significantly improved from 10.62 mg/L of 3–8 to
1.51 and 1.81 mg/L of V-6 and VI-7 by increasing the steric hindrance of the ortho-position
in the benzene ring.

In addition, the effects of compound VI-3 on the hyphae and cell morphology of
S. sclerotiorum, and the difference between VI-3, TRI and the blank control were observed.
By TEM observation, the hyphal cells were normal, the cell membrane was intact, the
cytoplasmic organelles were evenly dispersed, the large vacuoles existed for the hyphae of
the blank control. Whereas the ultrastructure of the hyphal changed dramatically, the inner
mitochondria of the cells swelled and became disordered; the folds of mitochondrial cristae
disappeared or the vacuoles were no longer evenly distributed, some of them even ruptured
and became smaller after compound VI-3 and trifloxystrobin treatment in S. sclerotiorum
cell (Figure 2, Figure S83 in Supplementary Materials). The similar symptom, such as the
folds of mitochondrial cristae disappearance, was observed for the another strobilurin
fungicide azoxystrobin, which also act as the inhibitor of mitochondrial respiration system
by blocking electron transfer at the ubiquinol oxidation center (Qo site) of the cytochrome
bc1 complex [47]. The irregular bifurcation and bulge at the hyphal of S. sclerotiorum were
found for the hyphae treated with TRI and VI-3 (Figure 3, Figure S84 in Supplementary
Materials) by observing SEM. Based on the above results, it can be deduced that the
mitochondria and vacuoles in the hyphal cells may be damaged, and TRI and VI-3 should
have a similar mechanism of action as azoxystrobin.



Molecules 2022, 27, 6541 5 of 17

Table 1. The in vitro fungicidal activity of compounds V-1~VI-14 at 50 mg/L (inhibition rate%,
p < 0.05, n = 3).

Compds. T. cucumeris S. sclerotiorum P. capsica B. cinerea F. graminearum

V-1 54.7 ± 4.0 7.2 ± 2.3 21.3 ± 1.0 45.8 ± 1.7 38.4 ± 2.9
V-2 48.3 ± 3.1 63.7 ± 9.4 27.0 ± 1.0 31.3 ± 9.1 33.9 ± 1.5
V-3 39.8 ± 0.9 9.3 ± 4.6 9.8 ± 1.0 12.9 ± 2.3 31.1 ± 1.5
V-4 42.3 ± 0.9 40.0 ± 8.7 32.8 ± 3.0 24.4 ± 2.3 34.5 ± 0.1
V-5 49.8 ± 2.3 32.0 ± 2.0 19.0 ± 3.0 45.8 ± 0.9 35.6 ± 2.5
V-6 43.8 ± 1.3 79.4 ± 2.8 23.6 ± 1.2 46.2 ± 0.8 26.1 ± 0.9
V-7 51.9 ± 1.2 80.6 ± 2.8 36.6 ± 3.5 28.3 ± 0.8 37.3 ± 2.5
V-8 39.4 ± 4.3 31.5 ± 4.6 50.3 ± 1.3 27.2 ± 2.0 36.2 ± 3.1
V-9 29.2 ± 1.6 9.7 ± 1.0 22.9 ± 2.9 7.1 ± 1.9 20.0 ± 2.3

V-10 60.5 ± 2.1 89.1 ± 1.8 43.2 ± 1.8 25.0 ± 3.0 45.4 ± 2.4
V-11 54.0 ± 1.6 55.8 ± 1.6 25.4 ± 2.2 19.5± 1.5 35.3 ± 2.0
V-12 45.7 ± 3.2 45.8 ± 1.6 25.4 ± 1.2 27.2 ± 0.8 41.6 ± 0.1
V-13 43.5 ± 2.4 47.2 ± 2.0 32.1 ± 0.8 27.6 ± 1.4 28.4 ± 0.4
V-14 32.7 ±1.8 38.5 ± 1.5 31.8 ± 0.9 15.8 ±0.2 32.0 ± 0.6
VI-1 48.8 ± 7.4 0.0 ± 2.8 35.6 ± 1.0 37.3 ± 2.6 54.8 ± 2.2
VI-2 48.8 ± 1.7 41.6 ± 2.2 35.1 ± 1.0 34.3 ± 1.5 52.6 ± 0.9
VI-3 47.8 ± 3.0 74.2 ± 2.2 17.8 ± 1.0 26.9± 1.5 46.3 ± 1.8
VI-4 54.7 ± 2.3 63.4 ± 2.2 25.3 ± 1.0 34.3 ± 2.6 52.5 ± 0.9
VI-5 51.2 ± 0.9 75.3 ± 1.5 29.9 ± 1.0 4.0 ± 1.7 37.3 ± 0.2
VI-6 54.7 ± 1.6 71.0 ± 1.9 11.2 ± 1.3 8.1 ± 3.7 42.0 ± 1.8
VI-7 50.8 ± 2.1 79.1 ± 0.1 28.4 ± 3.0 28.2 ± 2.9 37.3 ± 3.0
VI-8 28.1 ± 1.6 0.0 ± 0.01 29.5 ± 2.8 7.1 ± 1.1 16.8 ± 0.9
VI-9 69.2 ± 1.9 9.2 ± 0.2 44.2 ± 2.2 33.1 ± 1.3 42.7 ± 2.2
VI-10 58.9 ± 2.1 84.8 ± 2.8 60.2 ± 4.3 31.0 ± 2.2 43.2 ± 3.4
VI-11 38.5 ± 1.8 33.8 ± 1.4 22.8 ± 1.6 4.8 ± 3.2 32.3 ± 1.3
VI-12 44.3 ± 0.4 55.9 ± 0.9 46.8 ± 1.0 37.1 ± 0.6 40.4 ± 0.7
VI-13 42.0 ± 0.9 24.1 ± 1.3 16.6 ± 2.3 3.2 ± 0.1 17.9 ± 2.7
VI-14 48.3 ± 0.4 41.7 ± 1.3 25.4 ±1.1 32.6 ± 0.4 38.6 ± 0.6

3–8 73.5 ± 0.8 81.9 ± 1.5 21.8 ± 1.6 53.5 ± 2.8 73.5 ± 0.8
TRI 69.8 ± 1.8 68.6 ± 0.6 2.0 ± 0.0 49.7 ± 0.5 43.9 ± 1.5

Table 2. The EC50 values of compounds V-6, V-7, V-10, VI-3, VI-5, VI-6, VI-7 and VI-10 on
S. sclerotiorum (mg/L).

Compds. Regression Eq. R2 EC50(mg/L) (95%CL)

V-6 y = 0.96x + 4.25 0.9890 1.51 (0.54~2.63)
V-7 y = 1.09x + 4.45 0.9985 3.12 (0.97~5.27)

V-10 y = 0.57x + 4.95 0.9918 3.06 (0.61~5.61)
VI-3 y = 1.37x + 3.82 0.9830 7.13 (4.75~9.45)
VI-5 y = 1.31x + 3.54 0.9816 13.24(9.94~16.64)
VI-6 y = 1.44x + 2.71 0.9730 38.19 (25.32~51.06)
VI-7 y = 1.37x + 4.90 0.9946 1.81 (0.01~4.77)
VI-10 y = 1.10x + 4.23 0.9652 4.95(2.67~7.20)
3–8 y = 1.40x + 3.57 0.9710 10.62 (8.67~12.86)
TRI y = 0.53x + 3.59 0.9970 38.09 (30.35~59.21)
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2.4. The Docking Study

In order to explore the possible mode of action for this type of compounds and their
similar mechanism with TRI, compounds V-3 with low activity and V-6 and VI-7 with
high activity were selected for molecular docking with the target protein (PDB: 1SQB) [48]
and comparison with TRI. The results showed that the H-bond interaction with a distance
of 2.2 Å both V-6 and VI-7 with the key Glu 271 amino acid residue in the active cavity
of the protein was observed while there was no H-bond interaction in either TRI or V-3
with the key amino acid residues in the active cavity because of the bigger steric hindrance
of spirobutenolide moiety and tert-butylphenyl group in V-3. These differences might
rationalize the antifungal activity differences of V-3, V-6 and VI-7. From the molecular
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docking point of view, the O atom in the methoxyacrylate scaffold is the key atom to form
the H-bond with the target molecule for improving the antifungal activity, that make V-6
and VI-7 more active than TRI and V-3 (Figure 4, Figure S84 in Supplementary Materials).
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3. Materials and Methods
3.1. General Information

All reactions were performed with magnetic stirring. Unless otherwise stated, all
reagents were purchased from commercial suppliers (Energy chemical, Shanghai, China)
and used without further purification. Organic solutions were concentrated under reduced
pressure using a rotary evaporator or oil pump. WRS-3 Micro Melting Point Apparatus
(uncorrected), Bruker DPX 500 MHz NMR instruments, TMS as the internal standard,
CDCl3 as the solvent, chemical shifts are represented as δ, Agilent 1100 LC-MSD-Trap
mass spectrometer (ESI-MS), Cold Field-Emission SU-8010 Scanning Electron Microscope,
Hitachi-7500 Transmission electron microscope, Thermo Fisher MSQ-Plus high-resolution
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mass spectrometer, Thermo Fisher ESCALAB 250 four-circle X-ray diffractometer. The
organic solutions were concentrated using a rotary evaporator. The silica gel (200–300 mesh,
Qingdao Haiyang Chemical Co., Ltd., Qingdao, China) was used for column chromatogra-
phy. The reagents were analytical grade, and the anhydrous solvent was analytical grade
and dried by conventional methods.

3.2. The Synthesis of Intermediates III-1~III-14 and IV-1~IV-14

The compounds I-1~I-8, II-1~II-8, III-1~III-8 and IV-1~IV-8 were synthesized in the
previous report [46]. The compounds I-9~I-14 and II-9~II-14 were synthesized following
the procedures in the literature [49,50], the key intermediates III-9~III-14 and IV-9~IV-14
were synthesized following the protocols in the previous report [41–46].

3-Acetyl-4-(4-fluorophenyl)-5,5-dimethylfuran-2(5H)-one (III-9): White solid, Rf 0.57
(Vethyl acetate: Vpetroleum ether = 1: 5), 2.92 g, yield 82%, m.p.71–73 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.28–7.22 (m, 2H), 7.19–7.14 (m, 2H), 2.44 (s, 3H), 1.56 (s, 6H); 13C NMR (126 MHz,
CDCl3) δ: 194.5, 175.3, 168.5, 163.7 (d, 1JFC = 249.5 Hz), 129.3 (d, 3JFC = 8.1 Hz), 126.8 (d, 4JFC
= 3.4 Hz), 126.7, 116.3(d, 2JFC = 22.5 Hz), 86.4, 30.6, 24.9; HR-MS (ESI) m/z: C14H14FO3[M +
H]+, Calcd. 249.0921, Found 249.0925.

3-Acetyl-4-(4-methoxyphenyl)-5,5-dimethylfuran-2(5H)-one (III-10): White solid, Rf 0.54
(Vethyl acetate: Vpetroleum ether = 1: 10), 2.26 g, yield 81%, m.p.71–72 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.25–7.21 (m, 2H), 6.99–6.94 (m, 2H), 3.85 (s, 3H), 2.41 (s, 3H), 1.57 (s, 6H); 13C
NMR (126 MHz, CDCl3) δ: 195.3, 175.5, 168.8, 161.3, 129.2, 125.8, 122.8, 114.4, 86.4, 55.5,
30.6, 25.3; HR-MS (ESI) m/z: C15H17O4[M + H]+, Calcd. 261.1121, Found 261.1126.

3-Acetyl-4-(4-(tert-butyl)phenyl)-5,5-dimethylfuran-2(5H)-one (III-11): White solid, Rf 0.62
(Vethyl acetate: Vpetroleum ether = 1: 5), 1.47 g, yield 74%, m.p.69–70 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.47 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 2.41 (s, 3H), 1.58 (s, 6H), 1.35
(s, 9H); 13C NMR (126 MHz, CDCl3) δ: 195.1, 176.1, 168.8, 153.5, 127.9, 127.0, 126.4, 125.8,
86.5, 35.0, 31.3, 30.7, 25.1; HR-MS (ESI) m/z: C18H23O3[M + H]+, Calcd. 287.1642, Found
287.1645.

3-Acetyl-4-(4-bromophenyl)-5,5-dimethylfuran-2(5H)-one (III-12): White solid, Rf 0.68
(Vethyl acetate: Vpetroleum ether = 1: 5), 1.43 g, yield 73%, m.p.70–71 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.62–7.56 (m, 2H), 7.13–7.07 (m, 2H), 2.44 (s, 3H), 1.53 (s, 6H); 13C NMR (126 MHz,
CDCl3) δ: 194.2, 175.2, 168.4, 132.1, 129.8, 128.6, 126.7, 124.5, 86.2, 30.5, 24.8; HR-MS (ESI)
m/z: C14H14BrO3[M + H]+, Calcd. 309.0121, Found 309.0122.

3-Acetyl-5,5-dimethyl-4-(pyridin-2-yl)furan-2(5H)-one (III-13): White solid, Rf 0.62
(Vethyl acetate: Vpetroleum ether = 1: 5), 1.52 g, yield 97%, m.p. 225–227 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 8.67 (d, J = 4.7 Hz, 1H), 7.75 (td, J = 7.8, 1.8 Hz, 1H), 7.51 (d, J = 7.9 Hz, 1H),
7.36–7.31 (m, 1H), 2.49 (s, 3H), 1.68 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 196.4, 170.1,
168.6, 149.8, 149.3, 136.6, 127.8, 125.1, 124.8, 87.0, 30.7, 25.7; HR-MS (ESI) m/z: C13H14NO3
[M + H]+, Calcd. 232.0968, Found 232.0966.

3-Acetyl-5,5-dimethyl-4-(pyridin-4-yl)furan-2(5H)-one (III-14): White solid, Rf 0.67
(Vethyl acetate: Vpetroleum ether = 1: 5), 1.57 g, yield 87%, m.p.229–231 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 8.72 (d, J = 6.0 Hz, 2H), 7.11 (d, J = 6.0 Hz, 2H), 2.49 (s, 3H), 1.54 (s, 6H); 13C NMR
(126 MHz, CDCl3) δ: 193.5, 173.7, 168.0, 150.2, 139.5, 126.9, 121.3, 86.0, 30.3, 24.6; HR-MS
(ESI) m/z: C13H14NO3[M + H]+, Calcd. 232.0968, Found 232.0964.

(E)-4-(4-fluorophenyl)-3-(1-(hydroxyimino)ethyl)-5,5-dimethylfuran-2(5H)-one (IV-9): White
solid, Rf 0.51 (Vethyl acetate: Vpetroleum ether = 1: 5), 2.24 g, yield 83%, m.p.209–210 ◦C; 1H
NMR (500 MHz, DMSO-d6) δ: 11.34 (s, 1H), 7.44–7.38 (m, 2H), 7.32 (t, J = 8.9 Hz, 2H), 1.84
(s, 3H), 1.51 (s, 6H); 13C NMR (126 MHz, DMSO) δ: 169.6, 167.5, 164.0 (d, 1JFC = 246.3 Hz),
147.4, 130.7 (d, 3JFC = 8.4 Hz), 128.3 (d, 4JFC = 3.2 Hz), 125.3, 116.3 (d, 2JFC = 21.3 Hz),
86.5, 40.3, 40.2, 40.0, 39.8, 39.6, 25.3, 14.0; HR-MS (ESI) m/z: C14H15FNO3[M + H]+, Calcd.
264.1030, Found 264.1034.

(E)-3-(1-(hydroxyimino)ethyl)-4-(4-methoxyphenyl)-5,5-dimethylfuran-2(5H)-one (IV-10):
White solid, Rf 0.64 (Vethyl acetate: Vpetroleum ether = 1: 5), 2.08 g, yield 72%, m.p. 188–189 ◦C;
1H NMR (500 MHz, CDCl3) δ: 9.63 (s, 1H), 7.24–7.20 (m, 2H), 6.97–6.93 (m, 2H), 3.85 (s,
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3H), 1.78 (s, 3H), 1.56 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.8, 168.9, 160.9, 149.2, 129.4,
123.7, 123.6, 114.5, 86.1, 55.5, 25.6, 14.0; HR-MS (ESI) m/z: C15H18NO4[M + H]+, Calcd.
276.1230, Found 276.1235.

(E)-4-(4-(tert-butyl)phenyl)-3-(1-(hydroxyimino)ethyl)-5,5-dimethylfuran-2(5H)-one (IV-11):
White solid, Rf 0.56 (Vethyl acetate: Vpetroleum ether = 1: 5), 1.65 g, yield 71%, m.p. 174–175 ◦C; 1H
NMR (500 MHz, CDCl3) δ: 8.87 (s, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 1.81 (s,
3H), 1.57 (s, 6H), 1.34 (s, 9H); 13C NMR (126 MHz, CDCl3) δ: 169.6, 169.3, 153.1, 149.4, 128.5,
127.4, 125.8, 123.9, 86.2, 34.8, 31.2, 25.3, 13.8; HR-MS (ESI) m/z: C18H24NO3 [M + H]+, Calcd.
302.1751, Found 302.1754.

(E)-4-(4-bromophenyl)-3-(1-(hydroxyimino)ethyl)-5,5-dimethylfuran-2(5H)-one (IV-12): White
solid, Rf 0.62 (Vethyl acetate: Vpetroleum ether = 1: 5), 1.21 g, yield 87%, m.p. 225–227 ◦C; 1H NMR
(500 MHz, CDCl3) δ: 8.46 (s, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 1.88 (s, 3H),
1.54 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.2, 167.7, 149.2, 132.1, 130.5, 129.3, 124.2, 86.0,
25.2, 13.7; HR-MS (ESI) m/z: C14H15BrNO3[M + H]+, Calcd. 324.0230, Found 324.0236.

(E)-3-(1-(hydroxyimino)ethyl)-5,5-dimethyl-4-(pyridin-2-yl)furan-2(5H)-one (IV-13): White
solid, Rf 0.57 (Vethyl acetate: Vpetroleum ether = 1: 5), 1.28 g, yield 80%, m.p. 150–151 ◦C; 1H NMR
(500 MHz, CDCl3) δ: 9.81 (brs, 1H), 8.73–8.64 (m, 1H), 7.74 (td, J = 7.8, 1.7 Hz, 1H), 7.44 (dd,
J = 7.9, 0.9 Hz, 1H), 7.38–7.29 (m, 1H), 1.91 (s, 3H), 1.68 (s, 6H); 13C NMR (126 MHz, CDCl3) δ:
169.9, 165.9, 150.5, 149.9, 149.0, 136.7, 125.4, 125.2, 124.6, 124.4, 87.2, 25.9, 14.3; HR-MS (ESI)
m/z: C13H15N2O3[M + H]+, Calcd. 247.1077, Found 247.1076.

(E)-3-(1-(hydroxyimino)ethyl)-5,5-dimethyl-4-(pyridin-4-yl)furan-2(5H)-one (IV-14): White
solid, Rf 0.56 (Vethyl acetate: Vpetroleum ether = 1: 5), 1.54 g, yield 98%, m.p. 182–184 ◦C; 1H
NMR (500 MHz, CDCl3) δ: 11.26 (s, 1H), 8.46 (d, J = 6.0 Hz, 2H), 7.17 (d, J = 6.0 Hz, 2H), 2.12
(s, 3H), 1.54 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.4, 164.7, 149.1, 148.0, 141.7, 125.8,
122.9, 85.8, 25.1, 12.8; HR-MS (ESI) m/z: C13H15N2O3[M + H]+, Calcd. 247.1077, Found
247.1075.

3.3. The Synthesis of Target Compounds V-1~VI-14

The synthesis of the target compounds V-1~V-14 (took compound V-1 as an example):
to a 200 mL round bottom flask IV-1 (0.50 g, 1.65 mmol), NaH (0.048 g, 1.98 mmol),
anhydrous acetonitrile 60 mL and 1 mL PEG-400 were added, the mixture was stirred
at room temperature for 10 h. Then, benzyl bromide (0.71 g, 2.48 mmol) was added,
and stirred at room temperature for 24 h. The solvent was removed under the reduced
pressure, added 30 mL of water, extracted three times using 30 mL of ethyl acetate, and
combined the organic phase. The organic phase was washed with the saturated brine,
dried over anhydrous Na2SO4, and the solvent was removed under the reduced pressure.
The residue was subjected to silica gel column chromatography and washed with ethyl
acetate: petroleum ether to afford a white solid compound V-1. Compounds V-2~V-14
were synthesized in a similar procedure.

Methyl (E)-2-(2-(((((E)-1-(4-(4-fluorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)-
amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-1): White solid, Rf 0.56 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.53 g, yield 22%, m.p.120–122 ◦C; 1H NMR (500 MHz, CDCl3) δ: 7.34
(t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.18–7.05 (m, 4H), 6.98 (t, J = 8.6 Hz, 2H), 4.83 (s,
2H), 4.00 (s, 3H), 3.82 (s, 3H), 1.95 (s, 3H), 1.79–1.38 (m, 9H), 1.09–1.01 (m, 1H); 13C NMR
(126 MHz, CDCl3) δ: 170.1, 168.9, 163.4, 163.0 (d, 1JFC = 247.4 Hz), 149.5, 148.9, 136.1, 130.1
(d, 3JFC = 8.6 Hz), 129.7, 129.4, 128.4, 128.4, 127.6, 127.5 (d, 4JFC = 3.3 Hz), 125.2, 115.4 (d,
2JFC = 21.6 Hz), 88.2, 74.4, 63.9, 53.0, 33.5, 24.4, 22.0, 14.3; HR-MS (ESI) m/z: C28H30FN2O6
[M + H]+, Calcd. 509.2088, Found 509.2082.

Methyl (E)-2-(methoxyimino)-2-(2-(((((E)-1-(4-(4-methoxyphenyl)-2-oxo-1-oxa-spiro[4.5]dec-
3-en-3-yl)ethylidene)amino)oxy)methyl)phenyl)acetate (V-2): White solid, Rf 0.51 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.47 g, yield 22%, m.p.39–41 ◦C; 1H NMR (500 MHz, CDCl3) δ:
7.38–7.29 (m, 2H), 7.25–7.23 (m, 1H), 7.16–7.10 (m, 3H), 6.86–6.82 (m, 2H), 4.91 (s, 2H), 4.00
(s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 1.89 (s, 3H), 1.85–1.64 (m, 9H), 1.20–1.04 (m, 1H); 13C NMR
(126 MHz, CDCl3) δ: 170.3, 169.7, 163.4, 160.3, 149.5, 149.3, 136.1, 129.7, 129.6, 129.4, 128.6,
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128.3, 127.6, 123.7, 113.9, 88.3, 74.4, 63.9, 55.4, 53.0, 33.8, 24.5, 22.1, 14.7; HR-MS (ESI) m/z:
C29H33N2O7 [M + H]+, Calcd. 521.5896, Found 521.5895.

Methyl (E)-2-(2-(((((E)-1-(4-(4-(tert-butyl)phenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethyli-
dene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-3): White solid, Rf 0.48 (Vethyl acetate:
Vpetroleum ether = 1: 5), 0.26 g, yield 35%, m.p.127–128 ◦C; 1H NMR (500 MHz, CDCl3) δ:
7.39–7.29 (m, 5H), 7.17–7.09 (m, 3H), 4.89 (s, 2H), 3.98 (s, 3H), 3.77 (s, 3H), 1.84 (s, 3H),
1.80–1.65 (m, 9H), 1.33 (s, 9H), 1.16–1.05 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.2,
170.0, 163.4, 152.4, 149.5, 149.2, 136.0, 129.9, 129.4, 128.8, 128.7, 128.4, 127.8, 127.7, 125.3, 88.3,
74.5, 63.9, 53.0, 34.9, 33.7, 31.4, 24.5, 22.1, 14.7; HR-MS (ESI) m/z: C32H39N2O6 [M + H]+,
Calcd. 547.2801, Found 547.2803.

Mthyl (E)-2-(2-(((((E)-1-(4-(4-bromophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)-
amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-4): White solid, Rf 0.58 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.31 g, yield 20%, m.p.132–135 ◦C; 1H NMR (500 MHz, CDCl3) δ:
7.41 (d, J = 8.4 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.6 Hz 1H), 7.13 (t, J = 7.5 Hz,
2H), 6.99 (d, J = 8.4 Hz, 2H), 4.83 (s, 2H), 4.00 (s, 3H), 3.82 (s, 3H), 1.96 (s, 3H), 1.81–1.52
(m, 9H), 1.16–1.00 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.0, 168.5, 163.4, 149.5, 148.9,
136.1, 131.5, 130.6, 129.7, 129.6, 129.4, 128.4, 128.3, 127.7, 125.2, 123.5, 88.2, 74.5, 63.9, 53.1,
33.5, 24.4, 22.0, 14.2; HR-MS (ESI) m/z: C28H30BrN2O6 [M + H]+, Calcd. 569.1282, Found
569.1284.

Methyl (E)-2-(2-(((((E)-1-(4-(2-chlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)-
amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-5): White solid, Rf 0.49 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.24 g, yield 21%, m.p.124–126 ◦C; 1H NMR (500 MHz, CDCl3) δ:
7.40–7.36 (m, 1H), 7.33–7.24 (m, 4H), 7.14–7.06 (m, 3H), 4.66 (s, 2H), 3.99 (s, 3H), 3.82 (s, 3H),
2.04 (s, 3H), 1.95–1.46 (m, 9H), 1.15–0.99 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 169.9, 166.0,
163.3, 149.4, 148.9, 136.0, 131.4, 129.9, 129.8, 129.7, 129.4, 128.4, 128.3, 127.5, 126.4, 126.3,
88.96, 74.5, 63.9, 53.1, 33.7, 33.5, 24.5, 22.1, 22.0, 13.0; HR-MS (ESI) m/z: C28H30ClN2O6 [M +
H]+, Calcd. 525.1787, Found 525.1782.

Methyl (E)-2-(2-(((((E)-1-(5,5-dimethyl-2-oxo-4-phenyl-2,5-dihydrofuran-3-yl)ethylidene)
amino) oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-6): White solid, Rf 0.54 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.52 g, yield 21%, m.p.196–198 ◦C; 1H NMR (500 MHz, CDCl3) δ:
7.46–7.29 (m, 5H), 7.25–7.19 (m, 3H), 7.14 (dd, J = 7.0, 2.0 Hz, 1H), 4.87 (s, 2H), 3.99 (s, 3H),
3.81 (s, 3H), 1.91 (s, 3H), 1.55 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.9, 169.3, 163.4,
149.5, 149.0, 136.0, 131.5, 129.8, 129.5, 128.7, 128.5, 128.4, 128.0, 127.7, 124.5, 86.6, 74.6, 63.9,
53.0, 25.3, 14.5; HR-MS (ESI) m/z: C25H27N2O6 [M + H]+, Calcd. 451.1864, Found 451.1865.

Methyl (E)-2-(2-(((((E)-1-(4-(4-fluorophenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-yl)ethyli-
dene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-7): Yellow liquid, Rf 0.54 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.62 g, yield 36%; 1H NMR (500 MHz, CDCl3) δ: 7.36 (t, J = 7.4 Hz,
1H), 7.30 (t, J = 7.5 Hz, 1H), 7.20–7.76 (m, 3H), 7.14 (d, J = 7.5 Hz, 1H), 6.98 (t, J = 8.6 Hz, 2H),
4.86 (s, 2H), 4.00 (s, 3H), 3.82 (s, 3H), 1.96 (s, 3H), 1.53 (s, 6H); 13C NMR (126 MHz, CDCl3) δ:
169.8, 168.2, 163.4, 163.3 (d, 1JFC = 248.4 Hz), 149.6, 149.0, 136.1, 130.1
(d, 3JFC = 8.7 Hz), 129.8, 129.4, 128.6, 128.4, 127.8, 127.2 (d, 4JFC = 3.3 Hz), 124.7, 115.7
(d, 2JFC = 21.5 Hz), 86.5, 74.6, 63.9, 53.0, 25.3, 14.4; HR-MS (ESI) m/z: C25H26FN2O6 [M +
H]+, Calcd. 469.1769, Found 469.1765.

Methyl (E)-2-(methoxyimino)-2-(2-(((((E)-1-(4-(4-methoxyphenyl)-5,5-dimethyl-2-oxo-2,5-
di-hydrofuran-3-yl)ethylidene)amino)oxy)methyl)phenyl)acetate (V-8): White solid, Rf 0.42
(Vethyl acetate: Vpetroleum ether = 1: 3), 0.34 g, yield 20%, m.p.134–136 ◦C; 1H NMR (500
MHz, CDCl3) δ: 7.37–7.28 (m, 3H), 7.24–7.19 (m, 2H), 7.15 (dd, J = 7.5, 1.8 Hz, 1H), 6.87–6.82
(m, 2H), 4.94 (s, 2H), 4.00 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 1.92 (s, 3H), 1.57 (s, 6H); 13C
NMR (126 MHz, CDCl3) δ: 170.0, 168.8, 163.4, 160.7, 149.6, 149.5, 136.1, 129.9, 129.8, 129.4,
128.8, 128.4, 127.7, 123.3, 114.1, 86.5, 74.5, 63.9, 55.4, 53.0, 25.7, 14.8; HR-MS (ESI) m/z:
C26H29N2O7 [M + H]+, Calcd. 481.1969, Found 481.1971.

Methyl (E)-2-(2-(((((E)-1-(4-(4-(tert-butyl)phenyl)-5,5-dimethyl-2-oxo-2,5-dihydro-furan-3-
yl)ethylidene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-9): White solid, Rf 0.52
(Vethyl acetate: Vpetroleum ether = 1: 3), 0.47 g, yield 28%, m.p.192–193 ◦C; 1H NMR (500 MHz,
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CDCl3) δ: 7.39–7.32 (m, 5H), 7.20 (d, J = 8.3 Hz, 2H), 7.17–7.13 (m, 1H), 4.93 (s, 2H), 3.99 (s,
3H), 3.78 (s, 3H), 1.88 (s, 3H), 1.58 (s, 3H), 1.33 (s, 9H); 13C NMR (126 MHz, CDCl3) δ: 170.0,
169.2, 163.4, 152.9, 149.6, 149.3, 136.1, 130.0, 129.4, 128.9, 128.5, 128.3, 127.9, 127.8, 125.5,
86.6, 74.6, 63.9, 53.0, 34.9, 31.3, 25.5, 14.8; HR-MS (ESI) m/z: C29H35N2O6 [M + H]+, Calcd.
507.2490, Found 507.2491.

Methyl (E)-2-(2-(((((E)-1-(4-(4-bromophenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-yl)ethyli-
dene)amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-10): White solid, Rf 0.46
(Vethyl acetate: Vpetroleum ether = 1: 3), 0.16 g, yield 31%, m.p.197–199 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.44–7.40 (m, 2H), 7.38 (dd, J = 7.6, 1.0 Hz, 1H), 7.31 (dt, J = 7.6, 1.0 Hz, 1H), 7.15
(d, J = 8.0 Hz, 2H), 7.08–7.04 (m, 2H), 4.86 (s, 2H), 4.01 (s, 3H), 3.83 (s, 3H), 1.97 (s, 3H),
1.52 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.7, 167.8, 163.4, 149.6, 148.9, 136.1, 131.7,
129.8, 129.7, 129.4, 128.5, 128.4, 127.8, 123.9, 86.5, 74.6, 63.9, 53.1, 25.3, 14.3; HR-MS (ESI)
m/z: C25H26BrN2O6 [M + H]+, Calcd. 529.0969, Found 529.0966.

Methyl (E)-2-(methoxyimino)-2-(2-(((((E)-1-(2-oxo-4-(pyridin-2-yl)-1-oxaspiro [4.5] dec-3-
en-3-yl) ethylidene) amino)oxy)methyl)phenyl)acetate (V-11): White solid, Rf 0.35 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.12 g, yield 18%, m.p.146–148 ◦C; 1H NMR (500 MHz, CDCl3) δ: 8.62
(d, J = 4.3 Hz, 1H), 7.45 (td, J = 7.8, 1.5 Hz, 1H), 7.39–7.27 (m, 4H), 7.21–7.13 (m, 2H), 4.92 (s,
2H), 3.99 (s, 3H), 3.81 (s, 3H), 2.30–2.18 (m, 2H), 2.03 (s, 3H), 1.86–1.63 (m, 7H), 1.26–1.16
(m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.5, 166.1, 163.5, 149.7, 149.2, 136.4, 136.3, 129.4,
128.9, 128.5, 127.8, 126.0, 123.9, 89.4, 74.7, 63.9, 53.0, 34.1, 24.6, 22.3, 14.7; HR-MS (ESI) m/z:
C27H30N3O6 [M + H]+, Calcd. 492.2129, Found 492.2127.

Methyl (E)-2-(2-(((((E)-1-(5,5-dimethyl-2-oxo-4-(pyridin-2-yl)-2,5-dihydrofuran-3-yl)ethylidene)
amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-12): White solid, Rf 0.30 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.13 g, yield 22%, m.p.100–101 ◦C; 1H NMR (500 MHz, CDCl3) δ:
8.63–8.58 (m, 1H), 7.48–7.27 (m, 5H), 7.20–7.15 (m, 2H), 4.95 (s, 2H), 3.97 (s, 3H), 3.80 (s,
3H), 2.04 (s, 3H), 1.70 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 170.2, 165.4, 163.4, 149.9, 149.2,
136.3, 129.3, 128.9, 128.5, 127.8, 125.9, 124.1, 87.6, 74.7, 63.8, 52.9, 26.0, 14.7; HR-MS (ESI)
m/z: C24H26N3O6 [M + H]+, Calcd. 452.1816, Found 452.1814.

Methyl (E)-2-(methoxyimino)-2-(2-(((((E)-1-(2-oxo-4-(pyridin-4-yl)-1-oxaspiro [4.5] dec-3-en-
3-yl)ethylidene)amino)oxy)methyl)phenyl)acetate (V-13): Yellow liquid, Rf 0.37 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.12 g, yield 26%; 1H NMR (500 MHz, CDCl3) δ: 8.54 (d, J = 5.9 Hz,
2H), 7.39–7.27 (m, 2H), 7.12 (dd, J = 7.5, 1.1 Hz, 1H), 7.07 (d, J = 7.0 Hz, 1H), 7.04–7.01
(m, 2H), 4.74 (s, 2H), 3.99 (s, 3H), 3.81 (s, 3H), 2.00 (s, 3H), 1.83–1.53 (m, 9H), 1.10–1.02
(m, 1H); 13C NMR (126 MHz, CDCl3) δ: 169.6, 166.3, 163.3, 149.7, 148.5, 140.2, 135.9, 129.8,
129.5, 128.5, 127.8, 125.4, 122.7, 87.9, 74.6, 63.9, 53.0, 33.5, 24.3, 21.9, 13.8; HR-MS (ESI) m/z:
C27H30N3O6 [M + H]+, Calcd. 492.2129, Found 492.2128.

Methyl (E)-2-(2-(((((E)-1-(5,5-dimethyl-2-oxo-4-(pyridin-4-yl)-2,5-dihydrofuran-3-yl)ethylidene)
amino)oxy)methyl)phenyl)-2-(methoxyimino)acetate (V-14): Yellow liquid, Rf 0.32 (Vethyl acetate:
Vpetroleum ether = 1: 3), 0.15 g, yield 20%; 1H NMR (500 MHz, CDCl3) δ: 8.55 (d, J = 5.0 Hz,
2H), 7.36 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.14–7.06 (m, 4H), 4.77 (s, 2H), 3.99 (s,
3H), 3.81 (s, 3H), 2.00 (s, 3H), 1.52 (s, 6H); HR-MS (ESI) m/z: C24H26N3O6 [M + H]+, Calcd.
452.1816, Found 452.1817.

To a 100 mL three-necked round-bottomed flask, V-1 (0.20 g, 3.94 mmol) and CH2Cl2
(20 mL) were added, dropped into 30% methylamine aqueous solution (1.3 mL) and stirred
for 1 h at 40 ◦C. The solvent was removed under the reduced pressure, added 20 mL of
water, extracted with ethyl acetate (20 × 3 mL) and combined the organic phase. The
organic phase was washed with saturated brine, dried over anhydrous Na2SO4. The
solvent was removed under the reduced pressure, and the residue was subjected to silica
gel column chromatography and washed with ethyl acetate: petroleum ether to afford a
white solid compound VI-1. Compounds V-2–V-14 were synthesized in a similar protocol.

(E)-2-(2-(((((E)-1-(4-(4-Fluorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)amino)oxy)
methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-1): White solid, Rf 0.41 (Vethyl acetate:
Vpetroleum ether = 1: 2), 0.18 g, yield 75%, m.p.70–73 ◦C; 1H NMR (500 MHz, CDCl3) δ: 7.34
(td, J = 7.5, 1.1 Hz, 1H), 7.27 (dt, J = 7.5, 1.1 Hz, 1H), 7.20–7.07 (m, 4H), 7.01–6.95 (m, 2H),
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6.76 (q, J = 5.0 Hz, 1H), 4.86 (s, 2H), 3.92 (s, 3H), 2.88 (d, J = 5.0 Hz, 3H), 1.90 (s, 3H),
1.80–1.57 (m, 9H), 1.13–1.05 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.2, 168.9, 163.1 (d,
1JFC = 247.6 Hz), 163.0, 151.3, 148.8, 136.2, 130.1 (d, 3JFC = 8.4 Hz), 129.5, 129.2, 128.7, 128.4,
127.6, 127.5 (d, 4JFC = 3.4 Hz), 125.4, 115.6 (d, 2JFC = 21.4 Hz), 88.3, 74.7, 63.3, 33.6, 26.4, 24.5,
22.1, 14.4; HR-MS (ESI) m/z: C28H31FN3O5 [M + H]+, Calcd. 508.2242, Found 5098.2245.

(E)-2-(Methoxyimino)-2-(2-(((((E)-1-(4-(4-methoxyphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-
yl)ethylidene)amino)oxy)methyl)phenyl)-N-methylacetamide (VI-2): White solid, Rf 0.46
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.16 g, yield 80%, m.p.56–60 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.37–7.28 (m, 2H), 7.25 (dd, J = 8.0, 1.5 Hz, 1H), 7.18 (dd, J = 7.5, 1.5 Hz, 1H),
7.15–7.11 (m, 2H), 6.88–6.83 (m, 2H), 6.76 (q, J = 5.0 Hz, 1H), 4.95 (s, 2H), 3.92 (s, 3H), 3.83
(s, 3H), 2.86 (d, J = 5.0 Hz, 3H), 1.82 (s, 3H), 1.81–1.65 (m, 9H), 1.19–1.05 (m, 1H); 13C NMR
(126 MHz, CDCl3) δ: 170.4, 169.8, 163.1, 160.5, 151.3, 149.1, 136.1, 129.8, 129.6, 129.2, 128.7,
128.7, 127.7, 124.6, 123.6, 114.0, 88.4, 74.8, 63.3, 55.4, 33.8, 26.4, 24.6, 22.1, 14.8; HR-MS (ESI)
m/z: C29H34N3O6 [M + H]+, Calcd. 520.2242, Found 520.2240.

(E)-2-(2-(((((E)-1-(4-(4-(tert-Butyl)phenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)amino)
oxy)methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-3): White solid, Rf 0.45
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.21 g, yield 87%, m.p.62–65 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.40–7.28 (m, 5H), 7.22–7.17 (m, 1H), 7.16–7.11 (m, 2H), 6.68 (q, J = 5.0 Hz, 1H),
4.94 (s, 2H), 3.91 (s, 3H), 2.82 (d, J = 5.0 Hz, 3H), 1.84–1.67 (m, 13H), 1.33 (s, 9H), 1.14–1.10
(m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.3, 170.1, 163.1, 152.6, 151.4, 149.0, 135.9, 129.3,
128.9, 128.8, 128.7, 127.8, 125.4, 88.4, 75.0, 63.3, 34.9, 33.7, 31.4, 26.4, 24.5, 22.1, 14.9; HR-MS
(ESI) m/z: C32H40N3O5 [M + H]+, Calcd. 546.2966, Found 546.2962.

(E)-2-(2-(((((E)-1-(4-(4-Bromophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)amino)oxy)
methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-4): White solid, Rf 0.42 (Vethyl acetate:
Vpetroleum ether = 1: 2), 0.24 g, yield 82%, m.p.130–131 ◦C; 1H NMR (500 MHz, CDCl3) δ: 7.41
(d, J = 8.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H),
7.12 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 8.5 Hz, 2H), 6.75 (q, J = 5.0 Hz, 1H), 4.85 (s, 2H), 3.92 (s,
3H), 2.89 (d, J = 5.0 Hz, 3H), 1.92 (s, 3H), 1.81–1.62 (m, 9H), 1.13–1.02 (m, 1H); 13C NMR
(126 MHz, CDCl3) δ: 170.1, 168.5, 163.0, 151.2, 148.7, 136.1, 131.6, 130.5, 129.7, 129.5, 129.3,
128.7, 128.4, 127.6, 125.3, 123.6, 88.2, 74.7, 63.4, 33.6, 26.4, 24.4, 22.0, 14.4; HR-MS (ESI) m/z:
C28H31BrN3O5 [M + H]+, Calcd. 568.1442, Found 568.1446.

(E)-2-(2-(((((E)-1-(4-(2-Chlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-3-yl)ethylidene)amino)oxy)
methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-5): White solid, Rf 0.51 (Vethyl acetate:
Vpetroleum ether = 1: 2), 0.19 g, yield 85%, m.p.65–67 ◦C; 1H NMR (500 MHz, CDCl3) δ: 7.39
(dd, J = 7.7, 1.5 Hz, 1H), 7.33–7.24 (m, 4H), 7.17–7.05 (m, 3H), 6.67 (q, J = 5.0 Hz, 1H), 4.71
(s, 2H), 3.90 (s, 3H), 2.88 (d, J = 5.0 Hz, 3H), 1.99 (s, 3H), 1.94–1.65 (m, 8H), 1.54–1.47 (m,
1H), 1.11–1.05 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 169.9, 166.1, 162.9, 151.2, 148.7, 135.9,
131.3, 130.0, 129.9, 129.7, 129.5, 129.3, 128.7, 128.5, 127.6, 126.4, 88.9, 74.8, 63.3, 33.7, 33.5,
26.4, 24.4, 22.1, 22.0 13.1; HR-MS (ESI) m/z: C28H31ClN3O5 [M + H]+, Calcd. 524.1947,
Found 524.1949.

(E)-2-(2-(((((E)-1-(5,5-Dimethyl-2-oxo-4-phenyl-2,5-dihydrofuran-3-yl)ethylidene)amino)oxy)
methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-6): Yellow liquid, Rf 0.42
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.25 g, yield 81%; 1H NMR (500 MHz, CDCl3) δ:
7.42–7.28 (m, 5H), 7.25–7.20 (m, 3H), 7.17 (dd, J = 7.5, 1.0 Hz, 1H), 6.73 (q, J = 5.0 Hz, 1H),
4.91 (s, 2H), 3.91 (s, 3H), 2.84 (d, J = 5.0 Hz, 3H), 1.84 (s, 3H), 1.55 (s, 6H); 13C NMR (126
MHz, CDCl3) δ: 169.8, 169.3, 163.0, 151.3, 148.8, 135.9, 131.3, 129.8, 129.6, 129.3, 128.7, 128.7,
128.6, 127.9, 127.7, 86.6, 74.9, 63.3, 26.3, 25.3, 14.6; HR-MS (ESI) m/z: C25H28N3O5 [M + H]+,
Calcd. 450.2023, Found 450.2026.

(E)-2-(2-(((((E)-1-(4-(4-Fluorophenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-yl)ethylidene)
amino)oxy)methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-7): Yellow liquid, Rf 0.40
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.21 g, yield 84%; 1H NMR (500 MHz, CDCl3) δ: 7.35 (t,
J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.22–7.13 (m, 4H), 6.98 (t, J = 8.5 Hz, 2H), 6.79 (q,
J = 5.0 Hz, 1H), 4.90 (s, 2H), 3.92 (s, 3H), 2.89 (d, J = 5.0 Hz, 3H), 1.92 (s, 3H), 1.54 (s, 6H);
13C NMR (126 MHz, CDCl3) δ: 169.8, 168.2, 163.3 (d, 1JFC = 248.4 Hz), 163.0, 151.3, 148.8,
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136.2, 130.1 (d, 3JFC = 8.1 Hz), 129.6, 129.2, 128.8, 128.5, 127.6, 127.1 (d, 4JFC = 3.4 Hz), 124.8,
115.7 (d, 2JFC = 21.8 Hz), 86.5, 74.8, 63.3, 26.4, 25.3, 14.4; HR-MS (ESI) m/z: C25H27FN3O5
[M + H]+, Calcd. 468.1929, Found 468.1927.

(E)-2-(Methoxyimino)-2-(2-(((((E)-1-(4-(4-methoxyphenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran
-3-yl)ethylidene)amino)oxy)methyl)phenyl)-N-methylacetamide (VI-8): White solid, Rf 0.36
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.15 g, yield 88%, m.p.160–161 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.39–7.27 (m, 3H), 7.22 (d, J = 8.8 Hz, 2H), 7.20 (dd, J = 7.0, 1.5 Hz, 1H), 6.86 (d,
J = 8.8 Hz, 2H), 6.79 (q, J = 5.0 Hz, 1H), 4.98 (s, 2H), 3.93 (s, 3H), 3.84 (s, 3H), 2.86 (d,
J = 5.0 Hz, 3H), 1.87 (s, 3H), 1.58 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 170.1, 168.8, 163.2,
160.8, 151.4, 149.3, 136.1, 129.9, 129.8, 129.3, 128.8, 127.7, 123.2, 114.2, 86.6, 74.9, 63.4, 55.5,
26.4, 25.7, 14.9; HR-MS (ESI) m/z: C26H30N3O6 [M + H]+, Calcd. 480.2131, Found 480.21929.

(E)-2-(2-(((((E)-1-(4-(4-(tert-Butyl)phenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-yl)ethylidene)
amino)oxy)methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-9): White solid, Rf 0.49
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.22 g, yield 81%, m.p.194–195 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.40–7.31 (m, 5H), 7.21–7.15 (m, 3H), 6.71 (q, J = 5.0 Hz, 1H), 4.97 (s, 2H), 3.92
(s, 3H), 2.82 (d, J = 5.0 Hz, 3H), 1.82 (s, 3H), 1.60 (s, 3H), 1.33 (s, 9H); 13C NMR (126 MHz,
CDCl3) δ: 170.0, 169.2, 163.1, 153.2, 151.4, 149.1, 136.0, 130.1, 129.3, 129.0, 128.9, 128.2, 128.0,
127.9, 125.6, 86.6, 75.1, 63.4, 34.9, 31.3, 26.4, 25.6, 14.9; HR-MS (ESI) m/z: C29H36N3O5 [M +
H]+, Calcd. 506.6249, Found 506.6247.

(E)-2-(2-(((((E)-1-(4-(4-Bromophenyl)-5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-yl)ethylidene)
amino)oxy)methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-10): White solid, Rf 0.49
(Vethyl acetate: Vpetroleum ether = 1: 2), 0.16 g, yield 80%, m.p.188–190 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 7.44–7.35 (m, 3H), 7.29 (td, J = 7.5, 1.0 Hz, 1H), 7.17 (dd, J = 7.8, 1.0 Hz, 1H), 7.14
(d, J = 7.5 Hz, 1H), 7.08–7.05 (m, 2H), 6.77 (q, J = 5.0 Hz, 1H), 4.88 (s, 2H), 3.93 (s, 3H), 2.89
(d, J = 5.0 Hz, 3H), 1.94 (s, 3H), 1.53 (s, 6H); 13C NMR (126 MHz, CDCl3) δ: 169.8, 167.8,
163.0, 151.3, 148.8, 131.8, 130.1, 129.7, 129.3, 128.8, 128.5, 127.7, 124.0, 86.5, 74.8, 63.4, 26.4,
25.3, 14.4; HR-MS (ESI) m/z: C25H27BrN3O5 [M + H]+, Calcd. 528.1129, Found 528.1126.

(E)-2-(Methoxyimino)-N-methyl-2-(2-(((((E)-1-(2-oxo-4-(pyridin-2-yl)-1-oxaspiro [4.5]dec-3-
en-3-yl)ethylidene)amino)oxy)methyl)phenyl)acetamide (VI-11): White solid, Rf 0.32 (Vethyl acetate:
Vpetroleum ether = 1: 1), 0.14 g, yield 88%, m.p.139–140 ◦C; 1H NMR (500 MHz, CDCl3) δ:
8.62–8.59 (m, 1H), 7.44 (td, J = 7.8, 1.8 Hz, 1H), 7.37–7.26 (m, 3H), 7.25–7.15 (m, 3H), 6.82
(q, J = 5.0 Hz, 1H), 4.95 (s, 2H), 3.92 (s, 3H), 2.89 (d, J = 5.0 Hz, 3H), 2.26 (brs, 1H), 1.99 (s,
3H), 1.84–1.62 (m, 8H), 1.26–1.17 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 170.6, 166.2, 163.1,
149.5, 149.2, 136.5, 130.0, 129.2, 128.9, 128.8, 127.7, 126.1, 125.4, 124.0, 89.4, 75.0, 63.4, 34.1,
26.4, 24.6, 22.3, 14.8; HR-MS (ESI) m/z: C27H31N4O5 [M + H]+, Calcd. 491.2291, Found
491.2286.

(E)-2-(2-(((((E)-1-(5,5-Dimethyl-2-oxo-4-(pyridin-2-yl)-2,5-dihydrofuran-3-yl)ethylidene)amino)
oxy)methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-12): White solid, Rf 0.31
(Vethyl acetate: Vpetroleum ether = 1: 1), 0.16 g, yield 86%, m.p.146–147 ◦C; 1H NMR (500 MHz,
CDCl3) δ: 8.63–8.58 (m, 1H), 7.49–7.33 (m, 3H), 7.32–7.25 (m, 2H), 7.24–7.15 (m, 2H), 6.88 (q,
J = 5.0 Hz, 1H), 4.99 (s, 2H), 3.93 (s, 3H), 2.89 (d, J = 5.0 Hz, 3H), 2.04 (s, 3H), 1.72 (s, 6H);
13C NMR (126 MHz, CDCl3) δ: 170.3, 165.5, 163.1, 151.3, 149.9, 149.6, 149.1, 136.5, 130.1,
129.2, 129.0, 128.9, 127.7, 126.0, 124.9, 124.2, 87.7, 75.0, 63.3, 26.3, 26.1, 14.8; HR-MS (ESI)
m/z: C24H27N4O5 [M + H]+, Calcd. 451.1976, Found 451.1978.

(E)-2-(Methoxyimino)-N-methyl-2-(2-(((((E)-1-(2-oxo-4-(pyridin-4-yl)-1-oxaspiro [4.5]dec-3-en-
3-yl) ethylidene)amino)oxy)methyl)phenyl)acetamide (VI-13): White solid, Rf 0.33 (Vethyl acetate:
Vpetroleum ether = 1: 1), 0.18 g, yield 87%, m.p.119–120 ◦C; 1H NMR (500 MHz, CDCl3) δ:
8.54–8.52 (m, 2H), 7.34 (td, J = 7.5, 1.0 Hz, 1H), 7.28 (td, J = 7.5, 1.0 Hz, 1H), 7.15 (dd, J = 7.5,
1.5 Hz, 1H), 7.06 (d, J = 7.0 Hz, 1H), 7.03–7.01 (m, 2H), 6.75 (q, J = 5.0 Hz, 1H), 4.78 (s, 2H),
3.91 (s, 3H), 2.89 (d, J = 5.0 Hz, 3H), 1.97 (s, 3H), 1.83–1.54 (m, 9H), 1.13–1.02 (m, 1H); 13C
NMR (126 MHz, CDCl3) δ: 169.7, 166.3, 162.9, 151.2, 149.7, 148.4, 140.2, 136.1, 129.5, 129.4,
128.8, 128.3, 127.7, 125.6, 122.7, 87.9, 74.8, 63.4, 33.5, 26.4, 24.4, 22.0, 14.0; HR-MS (ESI) m/z:
C27H31N4O5 [M + H]+, Calcd. 491.2291, Found 491.2289.
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(E)-2-(2-(((((E)-1-(5,5-Dimethyl-2-oxo-4-(pyridin-4-yl)-2,5-dihydrofuran-3-yl)ethylidene)amino) oxy)
methyl)phenyl)-2-(methoxyimino)-N-methylacetamide (VI-14): White solid, Rf 0.32 (Vethyl acetate:
Vpetroleum ether = 1: 1), 0.15 g, yield 85%, m.p.162–163 ◦C; 1H NMR (500 MHz, CDCl3) δ: 8.53 (d,
J = 6.0 Hz, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.27–7.24 (m, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.09–7.04 (m,
3H), 6.78 (q, J = 5.0 Hz, 1H), 4.79 (s, 2H), 3.89 (s, 3H), 2.88 (d, J = 5.0 Hz, 3H), 1.97 (s, 3H), 1.51 (s,
6H); 13C NMR (126 MHz, CDCl3) δ: 169.3, 165.7, 162.9, 151.1, 149.9, 148.3, 139.5, 136.0, 129.5, 129.3,
128.7, 128.3, 127.6, 125.4, 122.5, 86.2, 74.8, 63.3, 26.3, 25.0, 13.9; HR-MS (ESI) m/z: C24H27N4O5 [M
+ H]+, Calcd. 451.1976, Found 451.1971.

3.4. Determination of the In Vitro Antifungal Activity of Compounds

The in vitro antifungal activity evaluation: the phytopathogens F. graminearum, S. scle-
rotiorum, B. cinerea, P. capsici and T. cucumeris used in this paper were isolated and preserved
by the Department of Plant Pathology, College of Plant Protection, China Agricultural Uni-
versity, and further activation was required for the activity test. The mycelium growth rate
method was used for the determination in potato dextrose agar (PDA), as described: the
stock 2000 µg/mL DMSO solution of tested compounds were prepared in advance. Then,
hot culture medium (9.75 mL) was added into a plate, added sample solution (0.25 mL)
or blank DMSO (0.25 mL) to the plate and mix with PDA culture medium, making the
final concentration 50 µg/mL. When plate was made, we put a 5 mm diameter fungus cake
onto the center of plate, incubated them at 25 ± 0.5 ◦C for 24–168 h, and the commercial
fungicide TRI was used as the control agent, and the experiments were triplicates for each
treatment. The experiments were run with 9 cm Petri dish, the mycelium diameters were
determined after 2–7 days for blank control and treatment with 50 mg/L compounds,
which depend on the different phytopathogens. After the initial screening, 7 concentration
gradients (50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 mg/L) were set for the compounds with good
antifungal activity to determine the EC50 values, and SPSS Statistics 25 software was used
to determine the EC50 value.

S. sclerotiorum was cultured in PDA using 12.5 mg/L VI-3 and TRI for 3 days at
25 ◦C, the mycelial tips (5 mm) of an actively growing colony on PDA medium amended
12.5 mg/L compounds VI-3 and TRI were cut from the edge of the colony cultured for 72 h.
The tips were treated with 2% glutaraldehyde at 4 ◦C, followed by rinsing with 0.1 mol/L
phosphate buffer (pH 7.3) and fixed with 1.0 g/mL osmium tetraoxide solution. After
rinsed with 0.1 mol/L phosphate buffer three times, the mycelial tips were dehydrated
using a series of ethanol solutions in the order of concentration 30%, 50%, 70%, 80%, 90%
and 100%. The processes of drying at critical point, mounting and gold spraying were
completed at last and examined with a Cold Field-Emission SU-8010 scanning electron
microscope (SEM) as with the previous paper [41].

The mycelial tips were prepared according to the method given above. After dehydrat-
ing with acetone and embedding in SPURR resin, thin sections were cut with LEICAUCi
machine and double-stained with uranyl acetate and lead citrate. The grids were exam-
ined with a Hitachi-7500 transmission electron microscope (TEM), as with the previous
paper [41].

4. Conclusions

In summary, a series of novel butenolides containing methoxyacrylate moiety were
designed and synthesized, and their antifungal activities against phytopathogens were
evaluated. The preliminary results showed that the inhibitory activities of these new com-
pounds against S. sclerotiorum were significantly improved compared with that of lead 3–8.
The EC50 values of V-6 and VI-7 against S. sclerotiorum were 1.51 and 1.81 mg/L, respec-
tively, nearly seven times higher than that of 3–8 (EC50 = 10.62 mg/L). The transmission
electron microscopy and scanning electron microscopy observation of the hyphae and cell
morphology of S. sclerotiorum showed that TRI and V-3 should have similar mechanism of
action, act as the inhibitor of mitochondrial respiration system by blocking electron transfer
at the ubiquinol oxidation center (Qo site) of the cytochrome bc1 complex. Molecular
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docking results indicated that the introduction of methoxyacrylate scaffold is beneficial to
improve the fungicidal activities of these compounds due to the hydrogen bond of the key
Glu 271 amino acid residue in the active cavity of the protein with title compounds V-6 and
VI-7. Compounds V-6 and VI-7 can be used as the new leads to optimize their structures;
the further modification is running in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196541/s1, Figure S1–Figure S78: the 1H NMR of
compound III-7 to the 13C NMR of compound VI-14; Figure S79-Figure S81: The high resolution mass
spectra of compounds VI-3, VI-8 and VI-13; Figure S82: The cell variance of S. sclerotiorum treated
with VI-3 and TRI observed by TEM; Figure S83: The mycelium growth inhibition of S. sclerotiorum
treated with VI-3 and TRI by SEM; Figure S84: Interaction of compounds V-3, V-6, VI-7 and TRI
with target by molecular docking.
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