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To compare the interobserver agreement and degree of confidence in anatomical localisation of lesions using 2-[fluorine-18]fluoro-2-
deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET alone in patients
with head and neck tumours. A prospective study of 24 patients (16 male, eight female, median age 59 years) with head and neck
tumours was undertaken. 18F-FDG PET/CT was performed for staging purposes. 2D images were acquired over the head and neck
area using a GE Discovery LSt PET/CT scanner. 18F-FDG PET images were interpreted by three independent observers. The
observers were asked to localise abnormal 18F-FDG activity to an anatomical territory and score the degree of confidence in
localisation on a scale from 1 to 3 (1¼ exact region unknown; 2¼ probable; 3¼ definite). For all 18F-FDG-avid lesions, standardised
uptake values (SUVs) were also calculated. After 3 weeks, the same exercise was carried out using 18F-FDG PET/CT images, where
CT and fused volume data were made available to observers. The degree of interobserver agreement was measured in both
instances. A total of six primary lesions with abnormal 18F-FDG uptake (SUV range 7.2–22) were identified on 18F-FDG PET alone
and on 18F-FDG PET/CT. In all, 15 nonprimary tumour sites were identified with 18F-FDG PET only (SUV range 4.5–11.7), while 17
were identified on 18F-FDG PET/CT. Using 18F-FDG PET only, correct localisation was documented in three of six primary lesions,
while 18F-FDG PET/CT correctly identified all primary sites. In nonprimary tumour sites, 18F-FDG PET/CT improved the degree of
confidence in anatomical localisation by 51%. Interobserver agreement in assigning primary and nonprimary lesions to anatomical
territories was moderate using 18F-FDG PET alone (kappa coefficients of 0.45 and 0.54, respectively), but almost perfect with 18F-
FDG PET/CT (kappa coefficients of 0.90 and 0.93, respectively). We conclude that 18F-FDG PET/CT significantly increases
interobserver agreement and confidence in disease localisation of 18F-FDG-avid lesions in patients with head and neck cancers.
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Squamous cell carcinoma is the most common tumour type in
head and neck cancers (Ak et al, 2000). At presentation, 40% of
patients have localised disease, while 60% have advanced
malignancies (Ak et al, 2000). Cervical lymph nodes are the most
common site for tumour spread (Mendenhall et al, 1998; Ak et al,
2000), and this is a relatively common clinical presentation
(Mendenhall et al, 1998; Ak et al, 2000). The presence or absence of
cervical lymphadenopathy is of prognostic significance (Myers
et al, 1998).

The role of 2-[fluorine-18]fluoro-2-deoxy-D-glucose (18F-FDG)
positron emission tomography (PET) imaging has previously been
evaluated in head and neck tumours, the reported sensitivity and
specificity varying between 90 and 96% in primary and treated
disease (Myers et al, 1998). Determining the precise location of
18F-FDG-avid lesions by PET alone can be challenging in these
patients, as the test suffers from poor anatomical localisation that
might compromise sensitivity (Ak et al, 2000). The recent
introduction of combined 18F-FDG PET and computed tomogra-
phy (CT) imaging has revolutionised imaging by allowing accurate
anatomical localisation of functional abnormalities. However, no

large trial has as yet confirmed this advantage in head and neck
tumours.

The aim of this pilot study was to assess the degree of
interobserver agreement and confidence in anatomical localisation
of primary head and neck tumours and their metastases with 18F-
FDG PET alone and with 18F-FDG PET/CT.

MATERIALS AND METHODS

Patient group

Between June 2000 and August 2003, 24 patients with histologically
proven head and neck tumours who underwent whole-body 18F-
FDG PET/CT for staging were included in a prospective study. This
study, examining the imaging strength of 18F-FDG PET/CT, is part
of an ongoing prospective trial looking at the role of 18F-FDG PET
scintigraphy in head and neck cancer. The study was approved by
the local ethics committee.

Inclusion criteria

The inclusion criteria were: histologically confirmed diagnosis of
head and neck cancer and absence of prior chemotherapy,
radiotherapy or surgery to the head and neck region.
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Patient preparation

All patients went through a standard protocol with a minimum of
6 h fasting prior to the study in order to minimise glucose
utilisation by normal tissue. Patients were given a muscle relaxant
just before the injection (5 mg diazepam orally) to reduce muscle
uptake. Blood glucose level was checked prior to 18F-FDG
injection, and if it was less than 10 mmol l�1, the patient was
intravenously injected with 18F-FDG (mean injected activi-
ty¼ 380 MBq, range 370– 400 MBq) calibrated just before the
injection. Patients rested for 45 min before imaging and were
advised to remain silent to reduce skeletal muscle uptake.

DATA acquisition and reconstruction

PET/CT was performed using the GE Advance PET scanner and the
GE Light-speed multislice spiral CT. The Light-speed CT acquires
four 5-mm slices at 140 kV with 80 mA and a large pitch of 6
(30 mm of table travel per gantry rotation).

CT protocol

Four-detector multislice CT images were acquired using speed of
rotation and couch movement of 0.8 s and 30 mm per rotation,
respectively. The images were reconstructed in 4.25 mm slice width
during normal respiration. CT images were rebinned from a
512� 512 matrix to a 128� 128 matrix and matched to the pixel
size of the PET data in order to match the in-slice resolution of the
PET emission images. The CT images were subsequently converted
to maps of PET attenuation coefficients using a bilinear
transformation based on the use of different scaling factors for
materials with Hounsfield units (HU) p0 and 40.

PET protocol

Without changing the patient position, a whole-body PET
emission scan was performed over the same area as was covered
by CT (five to six bed positions). All acquisitions were carried
out in 2D mode, the protocol comprising an emission scan with
5 min per bed position. PET images were reconstructed using
CT attenuation maps. Transaxial emission images of
4.3� 4.3� 4.25 mm3 (in plane matrix size 128� 128, 35 slices per
bed position) were reconstructed using ordered subsets expecta-
tion maximisation (OSEM) with two iterations and 28 subsets. The
axial field of view was 148.75 mm, with acquisition of 35 slices per
bed position.

Analysis

Two nuclear medicine physicians and one radiologist (blinded to
the results of clinical and other radiological findings) were
informed that they were evaluating studies in patients with head
and neck cancers. Each reporter interpreted the studies indepen-
dently. The 18F-FDG PET scans were reviewed first and the 18F-
FDG PET/CT images were interpreted 3 weeks later.

The readers were asked to identify abnormal sites of increased
uptake and assign a score as follows:

a. Activity at or above brain cerebral cortex: score of 3.
b. Activity between that of brain and liver: score of 2.
c. Activity any less than b: score of 1.

Lesions were considered positive if they had an 18F-FDG uptake
score of at least 2. These areas were also quantitatively assessed
with measurements (standard uptake values (SUVs)) using region
of interest (ROI) analysis. Irregular ROIs were drawn over the most
avid part of the identified lesion, the margin being identified
visually on a grey scale of 0–20 000 Bq ml�1. Mean and maximal
values of the 18F-FDG uptake were determined.

Inter-reader variability for all of the reporting tasks outlined was
assessed using kappa statistics: kappa values of 40.8, 0.61–0.8 and
0.41– 0.6 represented perfect, substantial and moderate agreement,
respectively (Cohen, 1960; Landis and Koch, 1977; Fleiss, 1981).
The confidence in anatomically localising the primary lesion was
also assessed. Areas of abnormal increase in 18F-FDG activity were
assigned to an anatomical territory, and the degree of confidence
in anatomical localisation was scored on a scale of 1– 3 as follows:

a. Exact anatomical region doubtful: score of 1.
b. Probable anatomical localisation: score of 2.
c. Definite anatomical localisation: score of 3.

RESULTS

The study group included 16 males and eight females with a
median age of 59 years (range 36– 86 years). Of the 24 patients, 12
had squamous cell carcinoma of the aerodigestive tract (located in
the hypopharynx in eight cases and in the oropharynx in four), as
confirmed by the postoperative surgical specimen. In the
remaining patients, no primary lesion was identified but nodal
disease was confirmed histologically (as metastatic squamous cell
carcinoma deposits).

Abnormal activity on PET

Of the 24 patients, 18 had positive and six negative 18F-FDG PET
scans. In the aforementioned 18 patients, 21 18F-FDG-avid lesions
were identified, of which six were primary tumours (SUV range
7.2–22) and 15 were nonprimary lesions (SUV range 4.5–11.7).

Anatomical localisation: PET only
18F-FDG PET identified the anatomical site correctly in only 12 of
the 21 18F-FDG-avid lesions (57%): three (25%) were primary
tumour sites and nine (75%) were sites of nonprimary lesions. No
specific anatomical sites could be identified in nine of the 21
lesions (43%), comprising three primary and six nonprimary
lesions.

Anatomical localisation: PET/CT
18F-FDG PET/CT images identified 21 18F-FDG-avid lesions in 18
patients. Of these 21 lesions, six were primary lesions and 15 were
nonprimary lesions. Of the 15 nonprimary lesions, two were
located in the neck muscles, two in fat planes (a normal variant),
nine at nodal sites, one in lung and one in a rib (Table 1).
Enhanced CT identified two additional lesions, which showed no
18F-FDG uptake and which were subsequently confirmed to be
benign enlarged cervical nodes on histology.

Lesion-based analysis

The total number of lesions identified by each observer using 18F-
FDG PET alone and 18F-FDG PET/CT was similar. The inter-
observer variability in assigning FDG-avid lesions to an anatomical
territory when using 18F-FDG PET alone and 18F-FDG PET/CT is
shown in Table 2. Using 18F-FDG PET/CT, the confidence in
anatomical localisation improved by 57% for observer 1, 43% for
observer 2 and 52% for observer 3 (Table 3).

Using 18F-FDG PET alone, correct anatomical localisation was
documented in 50% of primary lesions and 60% of nonprimary
lesions. Using 18F-FDG PET/CT, confidence in assigning lesions to
an anatomical territory improved by 50% in primary sites and 51%
in nonprimary sites.
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Interobserver agreement

The calculated interobserver agreement for the three observers in
identifying 18F-FDG-avid primary and nonprimary sites was
almost perfect (100%) with both 18F-FDG PET alone and 18F-
FDG PET/CT. However, when using 18F-FDG PET alone, there was
only moderate agreement between the three observers in assigning
primary and nonprimary lesions to anatomical territories, with
kappa coefficients of 0.45 and 0.54, respectively (Table 4). On the
other hand, there was strong agreement between all three
observers in assigning both primary and nonprimary lesions to
anatomical territories when using 18F-FDG PET/CT, with kappa
coefficients of 0.90 and 0.93, respectively (Table 4).

DISCUSSION

This study shows the advantage of 18F-FDG PET/CT over 18F-FDG
PET alone in disease localisation in patients with head and neck
cancers. Our data demonstrate strong interobserver agreement in
lesion localisation between the three readers on 18F-FDG PET/CT
but not on 18F-FDG PET alone. The study also shows that 18F-FDG
PET/CT improves the confidence in assigning lesions to an
anatomical territory by 50% in primary and 51% in nonprimary
sites, compared with 18F-FDG PET alone (Figure 1).

These results are of clinical significance in the head and neck
territory, where the anatomy is complex. Use of 18F-FDG PET
alone suffers from lack of anatomical outline identification, which
makes precise localisation difficult. In turn, this renders image
analysis difficult, and may give rise to false-positive findings. We
observed four false-positive sites in our study as follows: in four
patients, false-positive lesions were identified in the neck on 18F-
FDG PET alone. These were asymmetrical in distribution and were
considered positive nodal metastases; however, 18F-FDG PET/CT
clearly localised these to brown fat planes and muscle uptake
(Table 1). It is well known that nonspecific uptake in brown fat
planes and muscle attachment sites (Figure 2E) is a common cause
of false-positive results (Engel et al, 1996; Kostakoglu et al, 1996;
McGuirt et al, 1998). This false-positive feature has a critical

Table 1 Comparison between 18F-FDG PET alone and 18F-FDG PET/CT in identifying 18F-FDG-avid primary and nonprimary lesions

Nonprimary lesions

Primary
lesions

Lymph
nodesa

Fat
uptake Muscle Lung Rib

18F-FDG PET 6 13 Hot spot reported
(unable to define
anatomical territory)

Hot spot reported
(unable to define
anatomical territory)

1 Hot spot reported
(unable to define
anatomical territory)

1 Hot spot reported
(unable to define
anatomical territory)

18F-FDG PET/CT 6 9 2 2 1 Confirmed on high-resolution CT 1 Confirmed on bone scan

18F-FDG PET¼ 2-[fluorine-18]fluoro-2-deoxy-D-glucose; CT¼ computed tomography. aIncludes four lesion identified as activity in the lymph nodes on 18F-FDG PET and were
subsequently confirmed to be fat and muscle uptake on 18F-FDG PET/CT.

Table 2 Interobserver variability in assigning 18F-FDG-avid lesions to an
anatomical territory using 18F-FDG PET alone and 18F-FDG PET/CT

No. of FDG-avid lesions
with each score/total

no. of FDG-avid lesions

Confidence
score for

anatomical
localisation
of lesions 18F-FDG PET alone 18F-FDG PET/CT

Observer 1 1 6/21 2/21
2 5/21 1/21
3 10/21 18/21

Observer 2 1 2/21 0/21
2 4/21 4/21
3 15/21 17/21

Observer 3 1 1/21 0/21
2 3/21 2/21
3 17/21 19/21

18F-FDG PET¼ 2-[fluorine-18]fluoro-2-deoxy-D-glucose; CT¼ computed tomo-
graphy.

Table 3 Improvement in confidence of each observer in assigning 18F-
FDG-avid lesions to an anatomical territory when using 18F-FDG PET/CT,
as compared with 18F-FDG PET alone

18F-FDG
PET alone

18F-FDG
PET/CT

Lesion
detect-
ability

Anatomical
localisation

Lesion
detect-
abilitya

Anatomical
localisationa

(%) Improve-
ment

Observer 1 21 12 23 23 57
Observer 2 21 9 23 23 43
Observer 3 21 11 23 23 52

51% 100% 51

18F-FDG PET¼ 2-[fluorine-18]fluoro-2-deoxy-D-glucose; CT¼ computed tomogra-
phy. aIncludes two lesions identified on enhanced CT, which did not show 18F-FDG
uptake and were subsequently confirmed to be benign enlarged cervical nodes on
histology.

Table 4 Kappa coefficient with 95% confidence intervals between three
observers using 18F-FDG PET alone and 18F-FDG PET/CT

18F-FDG PET alone 18F-FDG PET/CT

Kappa
coefficient

95% Confidence
interval

Kappa
coefficient

95%
Confidence

interval

Site of primary 1 0.88–1.12 1 0.88–1.11
Localisation of tumour 0.45 0.27–0.62 0.90 0.82–1.02
No. of nodes 1 0.9–1.09 1 0.9–1.09
Localisation of nodes 0.54 0.31–0.72 0.93 0.89–1.06

18F-FDG PET¼ 2-[fluorine-18]fluoro-2-deoxy-D-glucose; CT¼ computed tomo-
graphy.
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impact on nodal staging of head and neck tumours (Helmberger
et al, 1996; Myers et al, 1998; Hannah et al, 2002). The possibility
of false-positive sites on 18F-FDG PET alone also holds true in the
postsurgical and postradiotherapy neck, where distortion of
normal anatomy can further add to the complexity. In this
context, the ability to fuse 18F-FDG uptake to an anatomical
structure defined on CT carries a significant advantage in reducing
false-positive results. In our study, 18F-FDG PET/CT downstaged
the disease in the aforementioned cases, and the management was
changed from wide neck dissection to local radiotherapy and local
surgery.

In our hands, 18F-FDG PET/CT demonstrated a sensitivity of
91% and a specificity of 93% in identifying disease. Similar results
for PET/CT have been reported previously (Meltzer et al, 2001).
For 18F-FDG PET, Laubenbacher et al (1995) reported a sensitivity
of 90% and a specificity of 96%, Bailet et al (1992) a sensitivity of
71% and a specificity of 98% and Braams et al (1995) a sensitivity
of 91% and a specificity of 88%.

In this study, we correctly identified nine 18F-FDG-avid
metastatic cervical lymph nodes (seven (78%) ipsilateral and two
(22%) contralateral). In addition, two non-nodal metastases were
identified (one in lung and one in rib). These latter two lesions
were reported with both 18F-FDG PET and 18F-FDG PET/CT, but
accurate anatomical localisation was only possible with 18F-FDG
PET/CT (Table 1). Subsequently, both patients received palliative
treatment for symptom relief. This highlights the advantage of
whole-body 18F-FDG PET in identifying distant metastases (M
staging). The ability to detect unexpected contralateral neck

disease, second primary tumours and distant metastases by
whole-body 18F-FDG PET/CT imaging has clear implications and
may dramatically alter treatment planning, with the emphasis
shifting to a less aggressive approach. Thus, it is important that
whole-body 18F-FDG PET/CT scanning is performed in these
patients to detect distant metastases, and that imaging should not
be restricted to the head and neck area because of time constraints.

18F-FDG PET/CT also identified the primary lesion in two
patients who presented with metastatic neck disease and in whom
the primary could not be identified despite conventional
investigations. The ability to detect the primary with 18F-FDG
PET/CT has significant management implications (Kluetz et al,
2000). In such cases, definitive treatment can be instituted at the
primary site, rather than irradiating potential sites empirically or,
as is the practice at some centres, instituting an expectant policy
and managing the primary site if and when it becomes clinically
evident. Furthermore, by pinpointing the areas of involvement, the
surgeon can better define margins and spare structures that are not
affected by malignancy.

Finally, although not part of this particular study, another aspect
of patient management where combined PET/CT can be beneficial
is in the investigation of recurrent disease and evaluation of
response to therapy. This can be exceptionally difficult with
conventional imaging alone, and is currently managed by repeated
EUA/endoscopy and ‘best guess biopsy’. Such an approach is often

Figure 1 A 50-year-old male with squamous cell carcinoma of the
tongue. (A) Multiple intensity projection 18F-FDG PET image. (B) Sagittal
and (C) transaxial images show abnormal uptake in the right cervical region
and right premolar area; dental pathology is present (yellow arrow). (D)
CT transaxial section reveals level II enlarged lymph nodes. (E) Fused 18F-
FDG PET/CT transaxial section at the same level reveals that one lymph
node is FDG positive (red arrow), while the other nodes shows no avidity
for FDG (green arrows). The fused images clearly localised the exact site of
involvement.

Figure 2 A 42-year-old male with squamous cell carcinoma of tongue.
(A) 18F-FDG PET/CT multiple intensity projection image shows the
primary site (red arrow) with bilateral cervical nodes (blue arrows). (B)
Sagittal and (C) transaxial images show abnormal uptake in the known
primary (posterior part of the tongue) and both cervical regions. (D) CT
transaxial section reveals a lesion in the base of the tongue along with left
cervical node enlargement. (E) Fused 18F-FDG PET/CT transaxial section at
the same level reveals the exact anatomical site of 18F-FDG uptake in the
right side of the tongue base extending across the midline and level II left
cervical lymph node. The 18F-FDG activity in the right cervical region
correlates to the right sternocleidomastoid muscle (green arrow) (a normal
variant).

18F-FDG PET/CT in head and neck tumours

R Syed et al

1049

British Journal of Cancer (2005) 92(6), 1046 – 1050& 2005 Cancer Research UK

C
li
n

ic
a
l

S
tu

d
ie

s



distressing and morbid for the patient and has significant resource
implications.

Our data further highlight the advantage of 18F-FDG PET/CT
and show identical interobserver agreement in lesion detection and
localisation between the three readers on 18F-FDG PET/CT but not
on 18F-FDG PET alone. This was despite the variation in speciality
(nuclear medicine and radiology) of the readers. It might be
argued that this improvement was subjective and was biased by the
observer’s knowledge of the type of scan used. However, the
significant improvement in interobserver agreement between the
three observers refutes the above line of reasoning and serves to
validate the argument that the improved confidence among the
three observers was a reflection of improved anatomical localisa-
tion by 18F-FDG PET/CT in real terms.

Some limitations of this study need to be mentioned. The small
size of the patient cohort limited accurate assessment of sensitivity

and specificity of 18F-FDG PET/CT. Furthermore, the cohort under
study were treatment naive; after surgery and radiotherapy,
different rates of detection of residual or recurrent disease would
be expected with 18F-FDG PET/CT and 18F-FDG PET alone.

CONCLUSION

� 18F-FDG PET alone suffers from poor anatomical localisation of
head and neck cancers and their metastases.

� 18F-FDG uptake at sites of brown fat/muscle attachment can
mimic cervical nodal metastases on 18F-FDG PET alone but not
on 18F-FDG PET/CT.

� 18F-FDG PET/CT demonstrates strong interobserver agreement
and improves confidence in anatomical localisation of 18F-FDG-
avid disease by approximately 50%.
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