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Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using
high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up
the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation
of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples.

1. Introduction

Molecular dynamics (MDs) simulation is a powerful tool to
study biomolecular processes an atomistic detail [1, 2]. Pro-
cesses like molecular encounter, that have been traditionally
studied by Brownian dynamics simulations [3-5] have also
been addressed by MD simulation in the last decade [6-14].
The time required for assembly processes may be exceedingly
large, and for this reason implicit solvent or coarse-grained
models have been used [9, 15-20]. For an extensive review
on coarse grained models, see reference [21]. These models
should catch, through relevant energy terms, the essence of
the phenomena to be simulated and therefore provide a likely
representation of the simulated process.

If the interest is in the encounter of proteins or of a pro-
tein and a ligand, much shorter times are required, and if
the conformational changes in the molecules are not large,
translational and rotational diffusion of the systems (pos-
sibly at high concentration, in order to increase sampling)
provides a large number of encounters possibly represen-
tative of different frequencies and lifetimes. In order to

address recognition at the atomic level, we have performed
recently all-atom explicit solvent simulations using a high
concentration of interacting molecules [10, 12, 13].

The aim of this paper is not to provide an extensive
review of methods and results, but rather to consider the
practical problems for setting up the simulation and for ana-
lysing the results of the simulation.

2. Methods

In setting up simulations aimed at observing molecular en-
counters, the spacing of the molecules and total simulation
time should be considered carefully in order to allow transla-
tional and rotational diffusion to take place effectively during
the simulation. An excellent review about biomolecular
hydrodynamics and diffusion has been given by Bloomfield
[22] in an online review, which is unfortunately not available
anymore, and by Cantor and Schimmel in their textbook
[23]. We resume here the main theoretical results recalling
the main equations. The topic is also discussed by Hunter in
his treatise on colloid science [24].
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2.1. Translational Diffusion. For translational diffusion the
Einstein-Smoluchowski equation relates the average quad-
ratic displacement to time

(Iax]*) = 24Dy, (1)

with a standard deviation equal to +/2( lAx||?), where D; is
the diffusion coefficient and d is the dimensionality (3 in
standard molecular dynamics simulations). The translational
diffusion constant D; depends on the shape of the molecule
and must be computed numerically under proper assump-
tions.

When the molecule may be considered as a sphere the
Stokes-Einstein equation relates the diffusion coefficient D;
to the solvent and solute properties:

sphere kT

b= onrny’ @
where k is the Boltzmann constant, T is the temperature, r
is the hydrodynamic radius of the sphere, and # is the med-
ium viscosity. Sometimes proteins do not resemble spheres,
but they rather have an elongated shape that can be appro-
ximated by a prolate spheroid, that is, an ellipsoid with the
two short axes of equal length b and a long axis of length g,
with g = b/a. In this case, the above relations are generalized

with respect to an equivalent sphere of radius R = (ab?)"?
[22-24].
For the translational diffusion coefficient we have
2310 1++/(1-g2))/
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2.2. Reorientation of Molecules. For the simulation to be able
to sample reciprocal orientations, the simulation time must
be long enough as to allow reorientation of molecules. For
rotational diffusion, the Debye relaxation equation holds.
For a set of molecules with one axis aligned with the z-axis at
time 0:

(cos(0)) = exp(—2D,t), (4)

where 0 is the angle of the same axis with the z-axis at time
t. Based on (4) reported in the work by Smith and van Gun-
steren [25], the standard deviation is

1 2
\/3 — 4Dt 4 ge—ﬁD,t' (5)

For the rotational diffusion coefficient of a sphere, an equa-
tion similar to the Stokes-Einstein equation, the Stokes-Ein-
stein-Debye relation, holds:

sphere _ kT
' 8nrin’

(6)
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For elongated molecules, frictional coefficients for rotations
about the long and short axis are computed first as

F;ps (l) _ F;phere
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Then rotational diffusion coefficients are computed based on
the frictional coefficients as
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and where D?*(I) and D?*(s) are the diffusion constants that
enter the Debye relaxation equation for reorientation of vec-
tors along the long and short axes, respectively.

DF(s) =

2.3. Temperature and Water Viscosity. For water, the viscosity
n has a sharp dependence on temperature which can be
described by the following equation reported in [22] (and
corrected here):

1301

log, o1 = 2

998.333 +8.1855(T — 20) + 0.00585(T — 20)

—4.30233 Pas,

(9)
in the range 0-20 C and
1.3272(20 — T) — 0.001053(T — 20 2

logloi = ( ) , (10

120 T+105

in the range 20-100 C, with the temperature T in Celsius
degrees. At 20 C, this results in # = 1.0 x 107 Pas.

2.4. Choice of the Simulation Time and Molecule Spacing. For
a globular protein with hydrodynamic radius of 20 A (corre-
sponding to a molecular weight of ca. 28 kDa), the rotational
diffusion constant D, at 20C is 2.0 x 107s~! which
corresponds to a rotational time constant of 25 ns. The rota-
tional autocorrelation time scales linearly with the mass of
the molecule and with the third power of the radius. Note
that the rotational time constants considered here are 3 times
longer than those considered in NMR experiments, where
a different function of 6 ({1/2(3cos?(6) — 1)) is used for
defining rotational diffusion [26].

The dependence of the diffusion coefficients on the shape
is not much pronounced. For long-to-short axis ratios that
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do not exceed 1.5, the rotational time constant increases by
less than 20%. In practice, the size of the system, but not
its shape, for typical proteins, determines the choice of the
simulation time. From the above considerations, it is seen
that simulations in the range of tens to one hundred of nano-
seconds should allow complete reorientation of typical pro-
teins studied by molecular dynamics simulations. For con-
venience, considering an average protein molar volume
0.73cm’ g~ !, the radius (in A) of a protein of molecular
weight M,, Dais

r=0.66 % M, (11)

The hydrodynamic radius of the protein may be larger
due to hydration water by up to ca. 3.0 A. The rotational time
constant (in ns) at 20 C is

0.0031 x 13, (12)

or three times less when the decay of the quantity
(1/2(3 cos*(6) — 1) is considered. During one rotational time
constant, under the same solvent conditions, the molecule
will experience a root mean square displacement equal to its
hydrodynamic diameter.

For practical purposes, therefore, one may first estimate
the rotational correlation time constant 1/2D, and setup the
simulation time, to say, at least twice the rotational cor-
relation time. During this time the average displacement of
the molecules will be 2.8 times the hydrodynamic radius. The
spacing of the molecules (i.e., center-to-center distance) can
be chosen therefore equal to four-to-five times the hydro-
dynamic radius, so that the molecules will get in contact
on average after one-to-two rotational correlation times. The
spacing will most likely be reduced in order to compromise
with the need for a limited-size system.

2.5. Setting up an Ensemble of Randomly Oriented Molecules.
Molecules are arranged in a regular way in order to maximize
the chances of encounters, and also they are randomly
oriented in order to maximize the number of relative orien-
tations sampled. For arrangement on a cubic periodic lattice
N X N x N grid, there will, N*> x 26/2 nearest neighbour
relative orientations. N should be larger than 2 to ensure that
the 26 nearest neighbours are truly different molecules and
not just molecules and their periodic images. The spacing of
the lattice should be of the order of few molecular radii in
such a way that reoriention may take place before encounter,
as discussed above.

For protein-protein association, these prescriptions may
lead to a very large system size with consequent large number
of atoms, which in turn may limit the simulation time. For
protein-small molecule association, the above requirements
are easily met. It is often reported that molecules may be
randomly rotated by choosing a random rotation axis and
arandom rotation angle. A simple way to do this is to choose
a random axis in space and perform a rotation by a random
angle about that axis. Although this procedure is reasonable,
and a fast algorithm implementing this idea is available [27],
the resulting distribution of rotations is not uniform [28].

A truly uniform distribution is obtained by taking random
unit quaternions, which can be generated in a simple way
by taking four random quantities (w, x, y, and z) between
—1 and 1 subject to the condition w? + x> + y? + z2 < 1.0,
and normalizing them to 1.0. More efficient algorithms are
available (see e.g., [28]). The four normalized values are
related to the rotation axis v and the rotation angle 6 as
follows:

(w,x,y,2) = (cos(%),vsin(%)), (13)

and the corresponding rotation matrix is

R(w,x,y,z)
1-2(y2+2%) 2xy-—2wz 2xz+ 2wy
=| 2xy+2wz 1-2(x>+2%) 2yz-2wx
2xz — 2wy 2yz+2wx 1 —-2(x2+y?)

(14)

2.6. Analysis

2.6.1. Translational and Rotational Diffusion Coefficients.
Besides traditional analyses that are typically performed on
molecular dynamics trajectories (see e.g., those provided
with the package GROMACS [29]), it is obvious to check that
the molecule’s translational and rotational diffusion during
the simulation is taking place as expected. For translation, it
is sufficient to monitor the center of mass of each molecule
as a function of time and apply due corrections for periodic
boundary conditions. As long as the particles do not travel
an entire periodic box length, the correction for periodic
boundary crossing is very easily applied. The average square
of the distance from the starting position can be fitted as a
linear function of time, the proportionality constant being
six times the translational diffusion constant D;.

For the rotational diffusion constant, each molecule may
be superimposed to the starting structure using programs
like ProFit [30]. The rotation matrix may then be used to
obtain the dot product between any given unit vector before
and after rotation, that is, vRv, which is in turn equal to the
cosine of the angle between the two vectors. Averaging over-
ing all possible unit vectors leads to the average cosine value
({cos(0))), entering the rotational diffusion equation. The
average is equal to the trace of the rotation matrix divided by
3, thatis, (vRv), = (R + Ry + R;;)/3. In turn, the average
of the latter quantity over all molecules can be fitted to an
exponential whose time decay constant is twice the rotational
diffusion constant D,.

2.6.2. Atomic Contacts. Except for long-range electrostatic
effects, molecular interactions result from close atomic con-
tacts. The use of a large number of identical molecules in-
creases the number of both random and specific contacts.
The affinity of molecular regions between themselves and
with small ligands may be measured by the count of contacts.
Contacts are typically defined using a cutoff on the distance
between heavy atoms. A typical value, when one considers all



heavy atoms, is 4.5 A (e.g., [31]). A different definition was
used by Berrera et al. [32] to take into account the different
size of atoms. In this definition, two atoms are in contact
when their van der Waals surfaces are closer than 1.0 A. Only
heavy atoms are considered and the radii are 1.4 A for oxygen,
1.5 A for nitrogen, 1.9 A for carbon, and 1.85 A for sulphur.

We found convenient to map all atoms at nodes of a
periodic cubic lattice and then list contacts within the atoms
assigned to one node and with the atoms assigned to the 26
neighbouring nodes. The lists of contacts corresponding to
different snapshots are grouped together, and the number of
occurrences of each atomic contact is counted.

The cumulative counts of atomics contacts, independent
of the specific molecules interacting, provide the affinity of a
contact. For instance, the same hydrophobic part of different
copies of a protein may be contacted by the same hydro-
phobic part of different copies of a ligand. This will result
in a large cumulative number of the same atomic contacts,
although due to different interacting molecules. The fre-
quency of atomic contacts (independent of the specific mole-
cular copies involved) is a measure of the affinity, but it does
not tell how long a single ligand resides at a given location.
In this respect, we can take advantage of the fact that, if the
number of interacting molecules is large, the probability of
observing the same long-lived contacts for the same mole-
cular copies is very low. In such situation, the count of atomic
contacts for specific molecules is proportional to the time the
two atoms are close to each other continuously. The analysis
of most frequent contacts just requires a sufficient number of
snapshots spread over an interval of time sufficient to sample
all possible contacts. The analysis of longest-lived contacts
requires snapshots to be taken at time intervals which are
fractions of the time used for defining a long-lived contact.
For instance, if 0.5 ns is considered as a long-residence time
than snapshots at 100 ps guarantees that a long-lived contact
will count at least five times more than a short-lived contact.

2.7. Simulation of the Association of Beta 2-Microglobulin.
Beta 2-microglobulin is a 99-residue protein which is
responsible of dialysis-related amyloidosis [33, 34]. Due to
its small size and its solubility it has been extensively studied
in recent years, and much knowledge has been gained on
its structural and dynamical properties in relation with the
onset of aggregation [35, 36].

The early steps of protein-protein association have been
studied by simulating 27 copies of the protein in explicit
solvent [10]. All the details and general context of the simu-
lation are reported in the original paper. Here, we will ad-
dress only the issue of how the system was set up.

With a molecular weight of 11.7 kDa, the hydrodynamic
radius estimated from (11) is 15.0 A. The simulation was run
at 300 K. At this temperature, the viscosity of water is 0.85 -
1073 Pa s. The predicted rotational diffusion time is there-
fore 8.7 ns, according to the rotational diffusion constant
estimated using (6). The chosen length of simulation (5 ns)
could only reach ca. half of the rotational diffusion time in-
stead of twice. This choice was dictated by the computational
time available at the time and by the large size of the sim-
ulated system (ca. half a million atoms). The large number

Journal of Biomedicine and Biotechnology

of reciprocal orientations between pairs of molecules should,
however, compensate for the short simulation time. Note also
that the standard deviation of (cos(8)) is fastly increasing
towards the limiting value +/1/3.

During the simulation time, the molecules should travel
on average 22.7 A based on the translational diffusional
coefficient estimated using (2). For this reason, the spacing of
molecules was chosen 50 A in such a way that the average van
der Waals surface to van der Waals surface distance between
closest molecules was slightly less (20 A) than the average
displacement of the molecules. The intermolecular distance
was not reduced further in order to avoid close contacts of
the randomly oriented molecules which have an elongated
shape.

This system illustrates well the kind of considerations and
compromises one is to face when dealing with an ensemble
of large molecules.

Notwithstanding the nonoptimal simulation parameters,
the contact analysis of the trajectory suggested a predomi-
nant role of Trp 60 in the early association of beta 2-micro-
globulin. Following that study, experiments with the W60G
mutant showed that indeed the mutation resulted in absence
of formation of fibrils by the protein in nonextreme condi-
tions, as a combined result of increased stability and removal
of the aromatic chain of Trp 60 prone to intramolecular
contacts [37].

2.8. Glutathione Peroxidase-Hydrogen Peroxide Simulations.
Glutathione peroxidases were the first seleno-enzymes that
were discovered in mammals and up to 8 distinct members
have been detected so far [38]. Most of them are selenopro-
teins (the classical GPx-1 then GPx-2, GPx-3, GPx-4 and,
depending on species, GPx-6), while the remaining 2 or 3
variants have a cysteine in the active site. They are includ-
ed in the heme-free thiol peroxidase class together with
peroxiredoxins and catalyze the reduction of H,O, or
organic hydroperoxides to water or corresponding alcohols,
thus mitigating their toxicity [39]. The catalytic mechanism
is still a question of open debate and could be different for
selenium versus sulphur-based enzymes. Presently, the com-
monly accepted kinetic is an “enzyme substitution mech-
anism”, as revealed by ping-pong kinetics rather than clas-
sical Michaelis-Menten kinetics [40]. This implies that the
catalytic mechanisms do not involve any central complexes
of the enzymes with all the substrates bound simultaneously.
Instead, the catalytic cycles are composed of sequences
of bimolecular reactions between the enzymes and their
substrates. In other words, the reaction comprises two in-
dependent events. The first one is the oxidation of the cata-
lytic site to a selenenic or sulfenic acid derivative after col-
lision with a hydroperoxide, and the second one is its reduc-
tion by a reducing substrate.

Following a previous study [41], the structure of
Drosophila melanogaster glutathione peroxidase was sur-
rounded by 198 randomly oriented hydrogen peroxide mole-
cules. For such small molecule the translational and rota-
tional coefficients may be estimated, according to (2) and (6).
The hydrodynamic radius of hydrogen peroxide may be esti-
mated in the range of 2.1A to 5.1A for the absence or
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FiGure 1: Simulation setup of glutathione peroxidase surrounded
by hydrogen peroxide molecules.

presence of hydration, respectively, based on its elongated
shape and the average hydrogen to hydrogen distance of
2.4 A. The van der Waals longest dimension would thus be
4.4 A, whereas the shortest dimension of the molecule is the
radius of the oxygen (1.4 A). The equivalent volume sphere
has a radius of 2.1 A. The upper limit has been taken 5.1 A
in order to account the possibility of hydration, increasing
typically the minimum hydrodynamics radius by 3.0 A.

The range of estimates for the translational and diffu-
sional coefficients for hydrogen peroxide are thus 12.3 t0 5.0 -
10719m? 57! and 21.0 to 1.5 - 10° s™!, respectively at 300 K.
These figures mean that reorientation will take place in the
ns timescale and that in half nanoseconds a molecule is ex-
pected to travel on average 12 A.

Hydrogen peroxide molecules were arranged on a 6 X
6 x 6 grid with 12 A spacing in each dimension (Figure 1).
Molecules overlapping with glutathione peroxidase were
removed from the system. After solvent was added and
following relaxation and equilibration, the size of the system
was 64.6 X 64.6 X 64.6 A entailing 27300 atoms (Figure 1).
The concentration of hydrogen peroxide was unrealistically
high (1.25M) in order to increase the number of molecular
encounters. In practice, however, the consequences of this
choice are not so important because water concentration is
still dominant and no chemical reactions can take place in
simulations. Based on the above figures, the total simulation
time was set to 10 ns or larger in order to let all molecules
reach the target protein and to possibly probe multiple
binding events.

For all simulations, the forcefield used is CHARMM v.27
[42] with the CMAP correction [43] except where men-
tioned. Forcefield parameters for hydrogen peroxide were
taken from the study of De Gioia and Fantucci [44]. The
program NAMD ([45] was used for all simulations. Solute
molecules, including ions and cosolutes, were fixed, and the
system was energy-minimized by 300 conjugate gradients

steps using periodic boundary conditions and the particle
mesh Ewald (PME) method for electrostatic interactions
[46]. For all simulations, PME employed a grid of 128 x 128
x 128 points corresponding to a spacing of ca. 0.5A. The
PME tolerance was set to 107° that, together with the cutoff
of 12 A, resulted in an Ewald coefficient of 0.257952 A~!. The
minimized system was further relaxed, keeping the solute
molecules (including ions) fixed, by molecular dynamics
simulation. The system was heated to 300 K in 2 ps, and a fur-
ther 18 ps simulation was run in order to let water molecules
reorient, consistent with the average lifetime of a hydrogen
bond in water [47]. The system without restraints on solute
molecules was energy-minimized by 300 conjugate gradients
minimization steps. The system was then heated to 300 K in
2 ps, and a further 1.118 ns simulation was run in order to let
the system equilibrate and finally production run could start.

The temperature was kept constant through a simple
velocity rescaling procedure, with a relaxation time of 1 ps,
while the pressure was controlled through a Berendsen bath
[48] using a relaxation time of 100 fs, the default value in
the program NAMD. It is well known that a simple rescaling
procedure does not provide a correct canonical ensemble
and extended-system approaches have been proposed
to simulate correct thermodynamic ensembles [49-52].
Recently a stochastic velocity rescaling has been proposed
that could provide correct ensemble with limited overhead
computation [53].

However, the adopted protocol should not be detrimental
for the kind of analysis presented here. For all simulations,
the size of the box was fluctuating around its average value
within fractions of A.

3. Results and Discussion

We have used high-concentration molecular dynamics sim-
ulations in previous works that addressed different problems
[10, 12, 13]. Many analyses have been already reported in
those works. As illustrations of the protocols described in the
Methods section, we consider two applications:

(1) the simulation of the association of an amyloidogenic
protein (beta 2-microglobulin) [10] which illustrates
the setup of the simulation system, detailed in the
methods section, and the analysis of rotational and
translational diffusion constants reported hereafter;

(2) the simulation of the encounter of hydrogen peroxide
with glutathione peroxidase which illustrates the
analysis and the general usefulness of the approach.

3.1. Simulation of the Association of Beta 2-Microglobulin.
The analysis of the rotational diffusional constants is pro-
vided by Figure 2. The value of (cos(0)) is computed as
(1/3) tr(R) where R is the matrix that describes the rotation
of the molecule with respect to its orientation at the start of
the simulation, and tr denotes the Trace operation, as dis-
cussed in Section 2. The average (cos(6)) is further averaged
over all 27 molecules, thus providing also standard deviation.
The plot of ({cos(0))) is reported in Figure 2. The time con-
stant (9.6 ns) obtained fitting the decay with an exponential



0.8

0.7

<<cos (0)>>

0.6 |

o5t

Time (ns)

FIGURE 2: Average of (cos(6)) versus time with standard deviations
as bars, where (cos(6)) is the average cosine of the angle between
two vectors rigidly anchored on the diffusing molecule at time 0
and at time t. Averaging is performed over 27 molecules. Data are
from the simulation reported in [10].
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FIGURE 3: Average of the square displacement from starting
position versus time with standard deviations as bars. Averaging is
performed over 27 molecules. Data from the simulation reported in
[10].

is larger than expected (8.7 ns), but still consistent with the
size of the protein.

Analogously, the diffusion coefficient of the molecule
is 209A%ns7!, close to what expected (17.2A%ns™!)
(Figure 3). Also here the square displacement is averaged
over all 27 molecules. Similar results are obtained by consid-
ering the average translation and rotation in a small interval
of time and fitting the linearized exponential equations of
diffusion reported above.

3.2. Simulation of Glutathione Peroxidase-Hydrogen Peroxide
Encounter. For hydrogen peroxide, the translational diffu-
sion constant was 443 A2 ns~!, and orientation was random-
ized in less than 0.01 ns. Four simulations have been per-
formed in order to acquire some statistics about molecular
encounters. Two simulations were performed with different
seed number, one for 10 ns and one for 30 ns. One simulation
(20 ns long), was performed with the catalytic CYS 36 ion-
ized. In one simulation (10 ns long) the backbone dihedral
angle energy correction term CMAP was not applied in order
to test the effect of different backbone mobility.

Journal of Biomedicine and Biotechnology

Only few hydrogen peroxide molecules establish long-
lived contacts with the peroxidase in each simulation. Ideally,
we would like to sample the same long-lived contact many
times during each simulation or at least in different simu-
lations. Although in all simulations at least one hydrogen
peroxide molecule reaches the catalytic region establishing
contacts for more than 500 ps, different long-lived contacts
are observed in different simulations. The results reported
here are for nonionized CYS 36.

The different results obtained in the two simulations dif-
fering only for the seed number point out that a larger num-
ber of simulations should be performed for exploring all
possible encounter events.

For all simulations, snapshots were taken at 0.1 ns time
intervals. The number of contacts between all pairs of atoms
was counted. As detailed in the Methods section, this led
to a list of the atoms of the protein contacted by hydrogen
peroxide molecules together with the number of occurrences
of such contacts. With the definition of contact adopted here,
on average there are 386 hydrogen peroxide-protein contacts
for each snapshot in the longest simulation. The number
of different pairs of atoms involved in contacts in the 300
snapshots for the longest simulation is 71830. Of these, only
2000 are involved in contacts lasting more than 0.5 ns.

Most frequently contacted atoms overlap in some cases
with the longest-lived contacts. As observed with other small
molecules, it is not infrequent that some of the hydrogen
peroxide molecules gets trapped in protein cavities and
stay for times even longer than 20ns, as observed in the
longest simulation. One such cavity is defined by residues
{K45,146,1.49,K130,T147,D148,P149,1152}. Other cavi-
ties are defined by other residues throughout the protein.

In all simulations, there were contacts of hydrogen per-
oxide with residues in the catalytic site lasting at least
0.5 ns. The contacting residues in the catalytic site are {C36,
L38,N42,W126,N127,F128,P145}. In general, however,
these were not the longest-lived contacts found.

The arrangement of the catalytic site is rather stable
for the simulations using the CMAP energy correction,
with fluctuations at the backbone of the residues {C36,
Q71,W126,N127} on average 0.45+0.15 A, much lower than
the fluctuations displayed by loops. In the same simulations,
no conformational transition seems to be required at this
region for substrate binding. Also, hydrogen peroxide is able
to reach the catalytic site with no aid from other sidechains as
can be seen following the trajectories of the molecules before
reaching glutathione peroxidase. However, in several cases
the hydrogen peroxide reaches the catalytic site by shifting
between the C-terminal residues and the helix following C36
or approaching the catalytic site from the side of C36 and
W126.

When the CMAP correction energy term is not included
in the forcefield, the region entailing C36 moves apart from
the other residues and a hydrogen peroxide molecule can
enter the cavity entailing residues 132, A33, C36, and F128.
In view of the low stability of the catalytic region no other
simulations were performed without the CMAP energy cor-
rections.
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FiGure 4: Snapshot at time 6.0ns. Sidechains are shown for
residue Q71, W126, N127, C36, and C65. Two contacting hydrogen
peroxide molecules are shown as van der Waals spheres.

Distance (0.1 nm)

— N W e NN

ig

Time (ns)

FIGURE 5: Distance versus time for selected pairs of atoms in the
catalytic site: red: W126 HE1-C36 SG; yellow: Q71 HE2-C36 SG;
blue: N127 HD2-C36 SG; green: N127 OD1-C36 HG; black: PEO
H-N127 O; violet: PEO O-C36 SG.

The distances of atoms W126 HE1, N127 HD2, and Q71
HE?2 with the peroxidatic cysteine C36 SG are overall short.
As evidenced by other works, these interactions lead to a
stabilization of the developing negative charge at the sulphur
atom upon deprotonation [41]. During the simulation, an
unexpected interaction is conserved between the hydrogen
of hydrogen peroxide and the carbonyl oxygen of residue
N127. Besides these hydrogen bonds, the sidechain of N127
establishes a hydrogen bond with the thiol group of C65. A
representative snapshot of the sidechains involved in this flu-
ctuating network of hydrogen bonds is shown in Figure 4.
Residues whose sidechains are shown as sticks are Q71,
W126,N127, C36, and C65. Once a hydrogen peroxide mole-
cule exhibiting a long-lived contact has been found, its inter-
actions with the protein may be obtained throughout the
simulation (not only at 0.1 ns-spaced snapshots) by using
efficient programs like VMD [54]. In Figure 5, the plot of the
distances between atoms interacting in the catalytic site is re-
ported.

As said above, the different results obtained in the differ-
ent simulations point out the need to run more and longer
simulations in order to acquire statistics. On the other hand,
the results and the other examples cited prove how effective
can be high-concentration molecular dynamics simulations.
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