inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Rietveld refinement of Sr₅(AsO₄)₃Cl from high-resolution synchrotron data

Anthony M. T. Bell,^a* C. Michael B. Henderson,^b Richard F. Wendlandt^c and Wendy J. Harrison^c

^aSynchrotron Radiation Source, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England, ^bSchool of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, England, and ^cDepartment of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA

Correspondence e-mail: ynotlleb1@mac.com

Received 6 February 2009; accepted 11 February 2009

Key indicators: powder synchrotron study; T = 298 K; mean σ (As–O) = 0.020 Å; R factor = 0.052; wR factor = 0.066; data-to-parameter ratio = 14.1.

The apatite-type compound, pentastrontium tris[arsenate(V)] chloride, $Sr_5(AsO_4)_3Cl$, has been synthesized by ion exchange at high temperature from a synthetic sample of mimetite $[Pb_5(AsO_4)_3Cl]$ with SrCO₃ as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula $A_5(YO_4)_3 X$ (A = divalent cation, Y = pentavalent cation, and X = F, Cl or Br) in the space group $P6_3/m$. The structure consists of isolated tetrahedral AsO₄³. anions (the As atom and two O atoms have *m* symmetry), separated by two crystallographically independent Sr²⁺ cations that are located on mirror planes and threefold rotation axes, respectively. One Sr atom is coordinated by nine O atoms and the other by six. The chloride anions (site symmetry $\overline{3}$) are at the 2*a* sites and are located in the channels of the structure.

Related literature

For crystal chemistry of apatites, see: Mercier et al. (2005); White & ZhiLi (2003); Wu et al. (2003). For powder diffraction data on Sr As-apatite, see: Kreidler & Hummel (1970). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969) refinement of the present phases were taken from Bell et al. (2008); Dai et al. (1991); de Villiers et al. (1971). For related Sr-Cl-apatites, see: Đordević et al. (2008); Sudarsanan & Young, (1974, 1980); Beck et al. (2006); Noetzold et al. (1995); Noetzold & Wulff (1996, 1997, 1998); Swafford & Holt (2002); Wardojo & Hwu (1996). For synthetic work, see: Baker (1966); Essington (1988); Harrison et al. (2002).

Experimental

Crystal data

,	
Sr ₅ (AsO ₄) ₃ Cl	$\lambda = 0.998043 \text{ \AA}$
$M_r = 890.31$	$T = 298 { m K}$
Hexagonal, $P6_3/m$	Specimen shape: cylinder
a = 10.1969 (1) Å	$40 \times 0.7 \times 0.7$ mm
c = 7.28108 (9) Å	Specimen prepared at 100 kPa
V = 655.63 (2) Å ³	Specimen prepared at 1258 K
Z = 2	Particle morphology: powder, whi
Synchrotron radiation	

Data collection

In-house design diffractometer Specimen mounting: capillary Specimen mounted in transmission mode

Refinement

$R_{\rm p} = 0.052$
$R_{wp} = 0.066$
$R_{\rm exp} = 0.047$
$R_{\rm B} = 0.090$
S = 2.00
Excluded region(s): 2-6° 2θ

ite

Scan method: step Absorption correction: fixed at 0 $2\theta_{\min} = 2, 2\theta_{\max} = 60^{\circ}$ Increment in $2\theta = 0.01^{\circ}$

Profile function: Pseudo Voigt 225 reflections 16 parameters Preferred orientation correction: none

Table 1

Selected geometric parameters (Å, °).

Sr1-O1	2.49 (2)	Sr2-O1 ^v	3.02 (2)
Sr1-O2 ⁱ	2.59 (2)	Sr2-Cl1 ^{iv}	3.156 (3)
Sr1-O3 ⁱ	3.01 (1)	As1-O3	1.57 (1)
Sr2-O2 ⁱⁱ	2.53 (2)	As1-O1	1.72 (2)
Sr2-O3 ⁱⁱⁱ	2.44 (1)	As1-O2	1.70 (2)
Sr2–O3 ^{iv}	2.94 (1)		
O3-As1-O3vi	121 (1)	O3-As1-O2	106.3 (6)
O3-As1-O1	105.8 (7)	O1-As1-O2	112 (1)

Symmetry codes: (i) x - y, x, -z; (ii) -y + 1, x - y + 1, z; (iii) y, -x + y + 1, -z; (iv) $x, y + 1, z; (v) - x + y, -x + 1, z; (vi) x, y, -z + \frac{1}{2}$

Data collection: local software; cell refinement: CELREF (Laugier & Bochu, 2003) and GSAS (Larson & Von Dreele (2004); data reduction: local software; method used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: GSAS and EXPGUI (Toby, 2001); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

AMTB acknowledges the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2096).

References

- Baker, W. E. (1966). Am. Mineral. 51, 1712-1721.
- Beck, H. P., Douiheche, M., Haberkorn, R. & Kohlmann, H. (2006). Solid State Sci. 8, 64-70.
- Bell, A. M. T., Henderson, C. M. B., Wendlandt, R. F. & Harrison, W. J. (2008). Acta Cryst. E64, i63-i64.
- Dai, Y.-S., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.
- Đordević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64. i82-i86.
- Essington, M. E. (1988). Soil Sci. Soc. Am. J. 52, 1566-1570.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). Chem. Inf. Comput. Sci. 36, 746-749.

- Harrison, W. J., Wendlandt, R. F. & Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1-6, 2002, Edinburgh, Scotland. Abstract A18-10, meeting program with abstracts, page 185
- Kreidler, E. R. & Hummel, F. A. (1970). Am. Mineral. 55, 170-184.
- Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.
- Laugier, J. & Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/ lmgp/CELREF.htm.
- Mercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. & White, T. J. (2005). Acta Cryst. B61, 635-655.
- Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.
- Noetzold, D. & Wulff, H. (1996). Phys. Status Solidi Sect. A, 158 303-311.

- Noetzold, D. & Wulff, H. (1997). Phys. Status Solidi Sect. A, 160 227-236.
- Noetzold, D. & Wulff, H. (1998). Phys. Status Solidi Sect. B, 207 271-281. Noetzold, D., Wulff, H. & Herzog, G. (1995). Phys. Status Solidi Sect. B, 191 21-30.
- Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- Sudarsanan, K. & Young, R. A. (1974). Acta Cryst. B30, 1381-1386.
- Sudarsanan, K. & Young, R. A. (1980). Acta Cryst. B36, 1525–1530.
- Swafford, S. H. & Holt, E. M. (2002). Solid State Sci. 4, 807-812.
- Toby, B. H. (2001). *J. Appl. Cryst.* **34**, 210–213. Villiers, J. P. R. de (1971). *Am. Mineral.* **56**, 758–766.
- Wardojo, T. A. & Hwu, S.-J. (1996). Acta Cryst. C52, 2959-2960.
- Westrip, S. P. (2009). publCIF. In preparation.
- White, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1-16.
- Wu, P., Zeng, Y. Z. & Wang, C. M. (2003). Biomaterials, 25, 1123-1130.

supplementary materials

Acta Cryst. (2009). E65, i16-i17 [doi:10.1107/S1600536809005054]

Rietveld refinement of Sr5(AsO4)3Cl from high-resolution synchrotron data

A. M. T. Bell, C. M. B. Henderson, R. F. Wendlandt and W. J. Harrison

Comment

Apatites are minerals and synthetic compounds with general formula $A_5(YO_4)_3X$, containing tetrahedrally coordinated YO_4^{3-} anions (Y = pentavalent cation) and a monovalent anion X such as F⁻, Cl⁻ or OH⁻. The divalent cations frequently belong to the alkaline earth group, but other cations like Pb²⁺ are also known. For a review of the structures and crystal-chemistry of these materials, see Mercier *et al.* (2005), White & ZhiLi (2003) and Wu *et al.*, (2003). Apatites containing arsenic (Asapatites) are of interest as hosts for storage of arsenic removed from contaminated water (Harrison *et al.*, 2002). Powder diffraction data for the Sr containing As-apatite Sr₅(AsO₄)₃Cl (Kreidler & Hummel, 1970) was indexed in space group $P6_3/m$. Related crystal structures have also been reported for Ca₅(AsO₄)₃Cl (Wardojo and Hwu, 1996) and for Sr₅(AsO₄)₃Cl and (Sr_{1.66}Ba_{0.34})(Ba_{2.61}Sr_{0.39})(AsO₄)₃Cl (Đordević *et al.*, 2008). The crystal structure of Sr₅(AsO₄)₃Cl in space group $P6_3/m$ is reported in the present communication. We recently reported the related crystal structure of Ba₅(AsO₄)₃Cl (Bell *et al.*, 2008).

Table 1 shows refined interatomic distances and angles for the $Sr_5(AsO_4)_3Cl$ structure. The averaged Sr1—O and Sr2—O distances of respectively 2.70 Å and 2.72 Å, compare with Sr1—O and Sr2—O distances in: $Sr_5(AsO_4)_3F$ (Đordević *et al.* 2008) of 2.71 Å and 2.62 Å; 2.71 Å and 2.63 Å for $Sr_5(VO_4)_3Cl$ (Beck *et al.*, 2006); 2.67 Å and 2.62 Å for $Sr_5(PO_4)_3Cl$ (Sudarsanan and Young, 1974); and 2.67 Å and 2.59 Å for $Sr_5(PO_4)_3F$ (Swafford and Holt, 2002). The As—O distances are characteristic for tetrahedral AsO₄ units. The O—As—O angles deviate significantly from the ideal tetrahedral angle of 109.5°, indicating a strong distortion.

The refined lattice parameters for $Sr_5(AsO_4)_3Cl$ are similar to the previously published parameters of a = 10.18 Å, c = 7.28 Å given by Kreidler & Hummel (1970). Fig. 1 shows the Rietveld difference plot for the present refinement. The crystal structure of $Sr_5(AsO_4)_3Cl$, showing the isolated tetrahedral AsO_4^{3-} anions separated by Sr^{2+} cations and Cl^- anions, is displayed in Fig. 2.

Experimental

This work was part of an attempt to synthesize analogues of Pb₅(AsO₄)₃Cl (mimetite) with Pb²⁺ substituted by alkaline earth cations. All starting materials were well crystallized solids. Pb₅(AsO₄)₃Cl was precipitated by titration of 0.1M Na₂HAsO₄ into a well stirred, saturated PbCl₂ solution at room temperature (procedure modified from methods of Baker (1966) and Essington (1988)). The molar ratio of Pb:As was slightly greater than 5:3, allowing for excess PbCl₂ during the precipitation. A very fine-grained pure solid formed immediately, which was then separated, washed, and dried. Typically, five de-ionized water washes were needed to reduce the conductivity of the wash water to $< 50 \ \mu$ S[·]cm⁻¹. Sr₅(AsO₄)₃Cl was successfully synthesized by ion exchange of Pb₅(AsO₄)₃Cl with molten SrCl₂ at 1258 K (modified from the method given by Kreidler & Hummel (1970)). Two fusions were required to completely eliminate formation of Pb containing solid solutions and to

yield the Pb free title compound. Excess metal in the form of $SrCl_2$ was removed from the solids by repeated washing with de-ionized water followed by centrifugation and filtration to separate the solid from the solution.

Refinement

The main Bragg reflections of the high resolution synchrotron X-ray powder diffraction pattern could be indexed in space group $P6_3/m$ with similar lattice parameters to those of the published powder diffraction data (Kreidler & Hummel, 1970). Some broad and weak Bragg reflections were matched by the pattern of SrCO₃ in space group *Pmcn*.

Initial lattice parameters for the two phases were refined using *CELREF* (Laugier & Bochu, 2003). The $P6_3/m$ crystal structure of Ba₅(AsO₄)₃Cl (Bell *et al.*, 2008) was used as a starting model for the Rietveld (Rietveld, 1969) refinement of the structure of Sr₅(AsO₄)₃Cl. The crystal structure of strontianite (de Villiers *et al.*, 1971) was used as a starting model for refinement of the structure of SrCO₃. Isotropic atomic displacement parameters were used for both phases. For the Sr₅(AsO₄)₃Cl phase soft constraints were used for the As—O distances in the AsO₄ tetrahedral units. These distances were restrained to those for mimetite (Dai *et al.*, 1991). For the SrCO₃ phase only the coordinates and the atomic displacement parameters for Sr were refined, the C and O coordinates were fixed to those in the starting model and the C and O atomic displacement parameters were refined as 76.6 (1) wt.% Sr₅(AsO₄)₃Cl and 23.4 (1) wt.% SrCO₃.

Figures

Fig. 1. Rietveld difference plot for the multi-phase refinement of $Sr_5(AsO_4)_3Cl$ and $SrCO_3$. The red crosses, and green and pink lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by black lines for the $Sr_5(AsO_4)_3Cl$ phase and by red lines for the $SrCO_3$ phase.

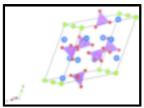


Fig. 2. The crystal structure of $Sr_5(AsO_4)_3Cl$. Pink tetrahedra show AsO₄ units with As⁵⁺ cations as orange spheres and O²⁻ anions as red spheres. Large blue spheres represent Sr²⁺ cations and small green spheres Cl⁻ anions.

pentastrontium tris[arsenate(V)] chloride

Crystal data	
Sr ₅ (AsO ₄) ₃ Cl	
$M_r = 890.31$	
Hexagonal, $P6_3/m$	
<i>a</i> = 10.1969 (1) Å	
<i>b</i> = 10.1969 (1) Å	
c = 7.28108 (9) Å	

 $D_x = 4.510 (1) \text{ Mg m}^{-3}$ Synchrotron radiation $\lambda = 0.998043 \text{ Å}$ T = 298 KSpecimen shape: cylinder $40 \times 0.7 \times 0.7 \text{ mm}$

Z = 2

 $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 120^{\circ}$ V = 655.63 (2) Å³

Data collection

In-house design diffractometer	Scan method: step
Monochromator: Si(111) channel-cut crystal	T = 298 K
Specimen mounting: capillary	$2\theta_{\min} = 2, 2\theta_{\max} = 60^{\circ}$
Specimen mounted in transmission mode	Increment in $2\theta = 0.01^{\circ}$

Refinement

$R_{\rm p} = 0.052$	Profile function: Pseudo Voigt
$R_{\rm wp} = 0.066$	16 parameters
$R_{\rm exp} = 0.047$	4 constraints
$R_{\rm B} = 0.090$?
<i>S</i> = 2.00	$(\Delta/\sigma)_{\rm max} = 0.001$
Wavelength of incident radiation: 0.998043 Å	Preferred orientation correction: None
Excluded region(s): 2-6° 20	

Special details

Experimental. Absorption correction fixed at zero, all attempts to refine this term in GSAS were unsuccessful so this term was fixed at zero. CELREF was used for initial lattice parameter determinations before Rietveld refinement. Lattice parameters from GSAS refinement are quoted in the paper.

Specimen prepared at 100 kPa

Specimen prepared at 1258 K

Particle morphology: powder, white

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	Uiso*/Ueq	
Sr1	0.33333	0.66667	0.008 (1)	0.0246 (9)	
Sr2	0.2496 (5)	0.9936 (6)	0.25	0.0246 (9)	
As1	0.4057 (5)	0.3718 (5)	0.25	0.029 (2)	
01	0.337 (3)	0.496 (2)	0.25	0.015 (4)	
O2	0.598 (2)	0.464 (2)	0.25	0.015 (4)	
O3	0.354 (2)	0.284 (2)	0.063 (2)	0.015 (4)	
Cl1	0.0000	0.0000	0.0000	0.031 (5)	
Geometric para	meters (Å, °)				
Sr1—O1 ⁱ		2.49 (2)	Sr2—O3 ^{vi}		2.44 (1)
Sr1—O1 ⁱⁱ		2.49 (2)	Sr2—O3 ^{vii}		2.94 (1)
Sr1—O1		2.49 (2)	Sr2—O3 ^{viii}		2.94 (1)
Sr1—O2 ⁱⁱⁱ		2.59 (2)	Sr2—O1 ⁱⁱ		3.02 (2)
Sr1-O2 ^{iv}		2.59 (2)	Sr2—Cl1 ^{viii}		3.156 (3)

supplementary materials

Sr1—O2 ^v	2.59 (2)	Sr2—Cl1 ^{ix}	3.156 (3)	
Sr1—O3 ^{iv}	3.01 (1)	As1—O3	1.57 (1)	
Sr1—O3 ⁱⁱⁱ	3.01 (1)	As1—O3 ^x	1.57 (1)	
Sr1—O3 ^v	3.01 (1)	As1—O1	1.72 (2)	
Sr2—O2 ⁱ	2.53 (2)	As1—O2	1.70 (2)	
Sr2—O3 ^{iv}	2.44 (1)			
O3—As1—O3 ^x	121 (1)	O3—As1—O2	106.3 (6)	
O3—As1—O1	105.8 (7)	O3 ^x —As1—O2	106.3 (6)	
O3 ^x —As1—O1	105.8 (7)	O1—As1—O2	112 (1)	

Symmetry codes: (i) -*y*+1, *x*-*y*+1, *z*; (ii) -*x*+*y*, -*x*+1, *z*; (iii) *x*-*y*, *x*, -*z*; (iv) *y*, -*x*+*y*+1, -*z*; (v) -*x*+1, -*y*+1, -*z*; (vi) *y*, -*x*+*y*+1, *z*+1/2; (vii) *x*, *y*+1, -*z*+1/2; (viii) *x*, *y*+1, *z*; (ix) -*x*, -*y*+1, *z*+1/2; (x) *x*, *y*, -*z*+1/2.

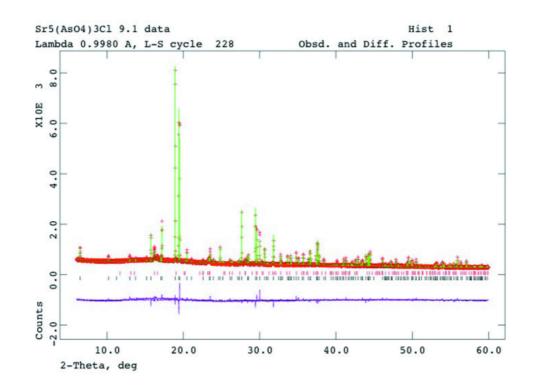
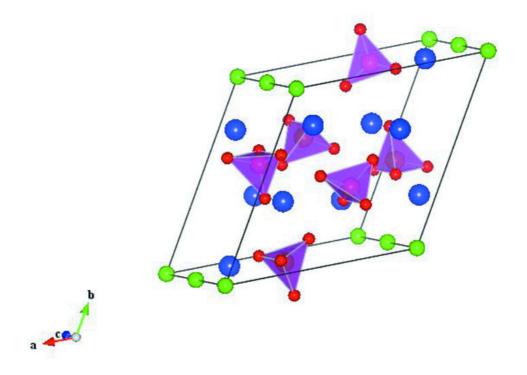



Fig. 2

