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SMAP is a pipeline for sample matching
in proteogenomics
Ling Li 1, Mingming Niu 2, Alyssa Erickson 1, Jie Luo3, Kincaid Rowbotham1, Kai Guo4, He Huang1,

Yuxin Li 2, Yi Jiang 5, Junguk Hur 6, Chunyu Liu7, Junmin Peng 2✉ & Xusheng Wang 1✉

The integration of genomics and proteomics data (proteogenomics) holds the promise of

furthering the in-depth understanding of human disease. However, sample mix-up is a per-

vasive problem in proteogenomics because of the complexity of sample processing. Here, we

present a pipeline for Sample Matching in Proteogenomics (SMAP) to verify sample identity

and ensure data integrity. SMAP infers sample-dependent protein-coding variants from

quantitative mass spectrometry (MS), and aligns the MS-based proteomic samples with

genomic samples by two discriminant scores. Theoretical analysis with simulated data

indicates that SMAP is capable of uniquely matching proteomic and genomic samples when

≥20% genotypes of individual samples are available. When SMAP was applied to a large-

scale dataset generated by the PsychENCODE BrainGVEX project, 54 samples (19%) were

corrected. The correction was further confirmed by ribosome profiling and chromatin

sequencing (ATAC-seq) data from the same set of samples. Our results demonstrate that

SMAP is an effective tool for sample verification in a large-scale MS-based proteogenomics

study. SMAP is publicly available at https://github.com/UND-Wanglab/SMAP, and a web-

based version can be accessed at https://smap.shinyapps.io/smap/.
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W ith the development of high-throughput technologies
in recent years, remarkable accomplishments have
been made by well-conceived and large-scale projects

carried out by large consortia, such as the Cancer Genome Atlas
(TCGA) project1, the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) project2–5, the Genotype-Tissue Expression
(GTEx) project6, and the Encyclopedia Of DNA Elements
(ENCODE) Project7. These studies usually involve collecting
single- or multi-layer omic data from a large number of subjects,
followed by statistical significance tests. The power and effec-
tiveness of the statistical tests rely on the accuracy of sample
identity8. However, sample mix-up in large-scale multi-omics
studies, as a result of specimen labeling errors, or data misman-
agement, is a widespread problem9. Such error is often neglected,
and it generally leads to irreproducible results, weakened statis-
tical testing power, and false conclusions10. Therefore, to reduce
the bias and increase the precision for subsequent analyses, ver-
ification of sample identity is one of the first steps in a large-scale
omics project.

Mass spectrometry (MS)-based proteomics has emerged as an
important molecular profiling technology11 that is complementary
to other omics, such as genomics and transcriptomics. Due to recent
technical advances, MS-based proteomics has undergone rapid
development yielding numerous large-scale proteomic data2–5. Most
of these data are generated by multiplexed isobaric labeling-based
protein quantification methods, such as isobaric tags for relative or
absolute quantitation (iTRAQ) and tandem mass tag (TMT). For
example, the TMT-based strategy can now measure as many as
27 samples in one batch simultaneously12, and potentially allows for
the measurement of 81 samples when combined with metabolic
labeling by amino acids in cell culture (SILAC). These multiplexing
strategies would further exacerbate the problem of sample mix-up,
posing a significant challenge for sample verification and calibration.

Several methods have been developed to verify sample identity
in large-scale genomic and transcriptomic studies using genotype
concordance13, correlation of mRNA and protein14, and corre-
lation of variant fractions15. For example, we have also imple-
mented a genotype-based method to address the sample mix-up
problem from sequencing-based transcriptomic data16. Most of
these methods exploit the genotypic information of a sample,
which can be directly derived from sequencing data. Calling
genotype from multiplexed isobaric labeling-based quantitative
proteomic data remains a major challenge because multiple
labeled samples are mixed during the experiment. While the
proteogenomics approach has been widely used to detect variant
peptides, it only calls variant peptides from label-free or isobaric
labeled proteomic data17–19. As a result, there is no method
available for verifying and calibrating sample identity in a mul-
tiplexed quantitative proteomic study.

In this study, we present a pipeline for Sample Matching in
Proteogenomics (SMAP). SMAP first performs proteogenomics to
detect variant peptides from multiplexed isobaric labeling-based
quantitative proteomic data, and then infers genotypic information
of each sample based on the expression level of the variant pep-
tides. SMAP finally verifies and calibrates sample identity based on
a combination of concordance and specificity scores using inferred
genotypic information. The performance of SMAP is assessed by a
simulation study and a large-scale proteomic dataset.

Results
Method implementation. SMAP consists of three main compo-
nents (Fig. 1a and Supplementary Fig. 1): (i) identifying variant
peptides using the proteogenomics approach; (ii) inferring genotypic
information for each sample; and (iii) verifying and calibrating
sample identity. SMAP can take a quantification table of variant

peptides from a proteogenomics analysis. In this study, variant
peptides are identified by JUMPg19, which constructs a customized
database using genomic variant files (e.g., VCF files) or indirectly
from RNAseq raw data in FASTQ format, in which JUMP performs
preprocessing, tag generation, MS/MS pattern matching, and scor-
ing as previously reported20. The identified variant peptides are
further filtered with the target-decoy strategy to control the false
discovery rate (FDR)21,22.

SMAP infers sample genotypic information based on the
relative expression level of variant peptides identified in proteomic
data with multiplexed isobaric labeling-based quantification
methods (Fig. 1b). For each spectrum, the intensity of reporter
ions is extracted as the expression level for each sample (Fig. 1c).
The intensity in each sample is transformed to log2-scale, followed
by a scale normalization using the following formula,

yi ¼ xi �minðxÞ
max xð Þ �minðxÞ ð1Þ

Where x is the intensity across all samples; xi and yi are raw and
scaled intensity for a specific sample, respectively. The scaled
intensities are in the range of 0 to 1.

SMAP then uses the proteogenomics approach to detect
variant peptides (Fig. 1d), followed by inferring genotypic
information of each sample based on the scaled intensity of
identified variant peptides (Fig. 1e). For a diploid organism, such
as human or mouse, there are three possible genotypes of a
variant peptide: nonmutant homozygous genotype (AA), mutant
homozygous genotype (BB), and mutant heterozygous genotype
(AB). To determine the genotypic information of each sample of
a variant peptide, SMAP divides the scaled intensities into three
quartiles: lower-quartile (LQ, 25th percentile), interquartile (IQ,
25th to 75th percentiles), and upper-quartile (UQ, 75th
percentile) (Supplementary Fig. 2). The quartiles are assumed
to correspond to the nonmutant (AA), heterozygous (AB), and
mutant (BB) genotypes, respectively. We also used the genotype
dosage information in the genotypic data as prior knowledge to
assign the inferred genotypes (Supplementary Fig. 3). For
example, if there are only two genotypes (e.g., mutant and non-
mutant) in the genotype file, the program will use a cutoff of 0.5
to assign the two genotypes by excluding the possibility of
inferring a heterozygous genotype.

Once the genotypic information of each sample is inferred,
SMAP verifies and calibrates the sample identity using a
combination of two scores: concordance score (i.e., Cscore) and
specificity score (delta concordance score: 4Cscore) (Fig. 1a and
Supplementary Fig. 1). The Cscore is defined as the percentage of
matched genotypes. The 4Cscore is defined as the difference
between the best concordance score and the following con-
cordance score divided by the best score. Thereby, the 4Cscore is
a good measure of separating true from false hits. A confident
assignment generally has a higher Cscore and 4Cscore. To
determine whether a sample can be verified, these two scores are
combined for calibrating its identity.

Performance of SMAP using simulation data. Sample verifica-
tion and calibration depend largely on reliable genotypic infor-
mation derived from the quantitative proteomic data. To
determine how many reliable genotypes in a sample are sufficient
for SMAP to verify and calibrate its identity, we conducted a
simulation study using a subset of genotypic data (Fig. 2a). To
mimic “real” genotypic information derived from a large-scale
proteomic dataset, we first extracted a subset of the genotypic
matrix composed of 500 SNPs from 420 samples. We generated a
simulated dataset in six steps (Supplementary Fig. 4): (1) esti-
mating the frequency of each genotype across all samples; (2)
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randomly selecting a sample i; (3) randomly selecting a genotype j
in sample i; (4) choosing another genotype with a frequency
estimated in step 1; (5) swapping the genotype j in sample i with a
chosen genotype in step 4; and (6) repeating steps 1–5 to generate
a simulated dataset with a certain percentage of the error
rate (e.g., 10%, 20%, 40%, and 80%). We examined whether the
sample identity assigned by SMAP matched the original sample
identity based on the combination of Cscore and 4Cscore. As
shown in Fig. 2b–d, SMAP is capable of successfully validating
the sample identity with the reliable genotypic number as low as
20% (i.e., 80% shuffled).

Application of SMAP to PsychENCODE BrainGVEX pro-
teomic data. We next applied SMAP to a deep proteomic dataset

generated by the PsychENCODE BrainGVEX project, in which
288 biological samples and 31 internal controls (i.e., a mixture of
288 samples) were quantified by 29 batches of 11-plex TMT-
based proteomic technology. In addition to proteomic data, the
PsychENCODE BrainGVEX project also generated other omic
data with matched samples, including 285 samples with low-
depth whole-genome sequencing (WGS), 426 samples with RNA
sequencing (RNA-Seq), 295 samples with assay for transposase-
accessible chromatin using sequencing (ATAC-Seq), and
197 samples with ribosome sequencing (Ribo-Seq). Previous
analysis using the DRAMS program has identified ~19% mis-
labeled samples in both WGS and ATAC-seq, ~25% in Ribo-seq,
and ~3% in RNA-seq data16.

To identify variant peptides in the PsychENCODE BrainGVEX
proteomic data, approximately 34 million MS2 spectra from 29
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batches of 11-plex TMT experiments were searched against a
customized database. The database contains 20,396 reviewed
protein sequences from the UniProt database23 and 17,844,001
theoretical peptides translated from variants generated by WGS
and RNA-seq data. SMAP identified a total of 5,065 unique
variant peptides (Supplementary Data 1), corresponding to
20,129 SNPs at 5% peptide FDR. The number of variant peptides
and SNPs show similar trends across 29 batches. On average, a
total of 694 SNPs was identified per batch, ranging from 430
SNPs in batch 23 to 901 SNPs in batch 24. To use reliable SNPs,
further filtering of SNPs was completed using the minor allele
frequency (MAF) of >1%, identifying a total of 8,358 SNPs with
an average of 288 SNPs per batch (Fig. 3a).

To determine genotypic information of a sample for each
identified variant peptide, two parameters are critical: a threshold
of the noise signal and a signal-to-noise (S/N) ratio (Fig. 3b). For a

variant peptide, the signal of a sample with a nonmutant
homozygous genotype (AA) is expected to be no different from
the background noise because the variant peptide is not detectable
in the sample. To determine the threshold of the background noise
level, we used one batch (i.e., Batch 1) of the 29 TMT experiments
to determine the distribution of the background noise level of all
identified variant peptides. We found that the distribution can be
clearly separated into two modes by the expectation-maximum
(EM) method, consisting of an authentic noise distribution
(mean= 14.06, SD= 1.39; Log2 intensity) and a signal distribution
(mean = 18.22, SD = 1.29; Log2 intensity) (Fig. 3c). The result
indicates that a log2 intensity of 16.14 (noise mean + 1.5 SD or
signal mean – 1.5 SD) can be used as a cutoff. This is consistent
with the result found when evaluating the impact of the minimal
intensity on the number of genotypes and the Cscore (Fig. 3d). The
analysis of the S/N ratio between the mutant homozygous
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genotype (BB) and the nonmutant homozygous genotype (AA)
showed that an S/N value of 3 achieves a reasonably good number
of genotypes and Cscore (Fig. 3e). Following filtration by the
minimum signal and the S/N ratio, we detected 7628 genotypes,
with an average of 263 genotypes per batch (Fig. 3a).

After optimizing the parameters, we used 7628 filtered SNPs to
infer genotypic information for 288 biological samples and 31
controls in the PsychENCODE BrainGVEX proteomic data
(Supplementary Data 2). The genotypic information of each
sample was then inferred based on its expression level in a batch
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using the strategy of three quartiles (Supplementary Fig. 3). To
verify the sample identity, we first evaluated the distribution of
Cscore and 4Cscore of the 31 internal controls, which were
mixed samples that function as a negative control. The internal
controls showed an average Cscore of 1.50 and a standard
deviation of 0.13 (Supplementary Fig. 5a), and an average
4Cscore of 0.05 and a standard deviation of 0.05. When applying
SMAP to the first batch of the proteomic data, the samples can be
clearly separated from internal controls and matched samples
with the Cscore of 1.50 and 4Cscore of 0.20, identifying one
sample as being mixed up (Supplementary Fig. 5b). For 288
biological samples, SMAP identified 276 biological samples with
the Cscore above 1.50 and 4Cscore above 0.20. When comparing
those 276 samples with their original labeling identities from
DNA-based genotype data, we found that 54 samples (18.75%)
showed mixed-up identification (Fig. 3f). In addition, a total of
12 samples showed a combined score below the threshold,
suggesting that these samples could not be calibrated for their
identities.

Cross-validation of sample correction. The multi-omic data
generated by the PsychENCODE BrainGVEX project enable cross-
validation of sample calibration made by SMAP. As the identity of
samples has previously been verified and calibrated in other omic
data, such as samples used for ATAC-seq and Ribo-seq data16, we
next evaluated whether sample identities in the proteomic data
calibrated by SMAP are consistent with those made in both
ATAC-seq and Ribo-seq data. We found that 34 out of 54 samples
(63%) showed the same calibration in samples from all three
platforms: MS-based proteomic, ATAC-seq, and Ribo-seq. In
addition, a total of 9 samples had the same calibration between

proteomics and ATAC-seq, 5 between proteomic and Ribo-seq,
and 6 proteomic-specific calibrations (Fig. 4a).

We next sought to investigate how these 54 samples were
mixed in the proteomic experiment. We summarized the
calibrations into three categories: reciprocal, one-way, and cyclic
swaps. We found that 46 samples (23 pairs) were reciprocally
swapped (Fig. 4b), with about half of the samples (11 pairs)
supported by the same calibration in all three platforms: MS-
based proteomic, ATAC-seq, and Ribo-seq, followed by nine
pairs that were supported by all three platforms in one direction
but by two platforms in the other direction. For the three one-way
swaps, two calibrations were supported by all three platforms and
one by two platforms (Fig. 4c). Most of the cyclic swaps (5/6)
were proteomic-specific calibrations (Fig. 4d). The result suggests
that sample mix-up is not a random process rather follows a
certain pattern in the lab procedures.

Performance evaluation of SMAP compared to COSMO. To
assess the performance of SMAP, we also analyzed our data using
COSMO14, a program recently developed to correct sample
mislabeling in omic data through correlating mRNA and protein
expression levels. A key step in the COSMO is feature selection by
selecting highly correlated gene and protein pairs. With the
default correlation coefficient cutoff of 0.5 in COSMO, only a few
features were selected in our data probably due to about 20% of
the samples being mislabeled based on the correction made by
SMAP. To obtain an optimal number of features, we examined
correlation coefficients ranging from 0.2 to 0.55, and found that
the correlation coefficient of 0.35 produced the best performance
when considering the number of selected features and matched
samples (Supplementary Figs. 6a, b).
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With the selected correlation coefficient of 0.35, COSMO
detected 68 mislabeled samples out of a total of 288 samples in
our proteomic data. We found that SMAP and COSMO made the
same correction for 270 (94%) samples, including 218 samples
matched to its original ID, and 52 mislabeled samples but
corrected to the same identity by both methods. In the remaining
18 (6%) samples that showed inconsistent correction between
COSMO and SMAP (Supplementary Fig. 6c), we observed that
4 samples matched to the original identity by SMAP were “mis-
assigned” to other identities by COSMO. For example, SMAP
made no change for the sample S2015_1504, with a high Cscore
and ΔCscore (Supplementary Fig. 6d); however, it was re-
assigned to a new sample identity by COSMO. Conversely, SMAP
also “mis-assigned” 2 samples, but COSMO indicated that the
samples had high correlations. For example, the sample
S2015_1477, showed a significant correlation of the expression
levels between protein and RNA with the original sample (r =
0.65, p = 1.9 × 10−14) (Supplementary Fig. 6e). Two samples
were adjusted into different sample identities by both SMAP and
COSMO with high scores. In addition, we found that 10 samples
cannot be corrected by both SMAP and COSMO because of a low
average Cscore of 1.30 ± 0.12 (2.83 ± 0.55, on average, from 218
matched samples) and a low average correction coefficient of
0.10 ± 0.04 (0.45 ± 0.09, on average, from 218 matched samples),
presumably due to no matched samples between proteomic and
transcriptomic data.

Discussion
Sample mix-up is a pervasive problem in large-scale omic studies.
In this study, we described a method, SMAP, for validating and
correcting samples that are used for a large-scale TMT-based
quantitative proteomic study. By applying SMAP to proteomic
data from 288 biological samples in the pyschENcode BrainG-
VEX project, we verified and calibrated ~18% mislabeled samples.
Based on the simulation study, SMAP has proven capable of
validating the sample identity of as few as 20% of reliable
genotypes.

While the proteogenomics approach is increasingly used to
detect protein-coding variants and mutant splicing sites17–19,
there is no study to infer genotypic information for each sample
in multiplexed isobaric quantitative proteomic data. It is the first
time that SMAP determines genotypic information of each
sample based on the expression level of the variant peptides. With
advances in next-generation sequencing and high-resolution mass
spectrometry technologies, omic data from the same set of bio-
logical samples are now routinely collected in a project. Appro-
priate data quality controls at each step are required to ensure
high data integrity. Therefore, SMAP complements existing
approaches for sample verification and calibration that have been
developed for genomic and transcriptomic data.

Correction of sample mislabeling is paramount to all large-
scale omic studies. The SMAP program centers on sample cor-
rection for proteomic data by leveraging genotypic data. This
concept of using genotypic data for sample correction can be
applied to other omic data. The genotypes of each sample can be
readily extracted from all massive sequencing data, ranging from
whole-genome DNA sequencing, epigenome (e.g., ATAC-seq), to
the transcriptome (bulk RNA and single-cell RNAseq). However,
inferring genotypes from MS data is a much greater challenge
than from sequencing data as we need to convert MS signals into
amino acids and then convert amino acids into genotypes. More
importantly, we proposed a scoring scheme in which a combined
score is generated from two scores: (i) Cscore, which is a measure
of the goodness of fit of genotypes inferred from proteomic data
to non-mutant genotypes; (ii) 4Cscore: is a measure of the

specificity of the fit. This new scoring scheme can be adapted to
any other algorithms for sample correction.

Although SMAP can infer sample-level genotypic information
for sample verification, the inference certainty was still imperfect.
First, the expression level of a variant peptide is quantitative,
unlike variants called from genomic and transcriptomic data
generated by sequencing technologies. Although we proposed to
use three quartiles to determine the genotypes, the genotypes
inferred by SMAP show uncertainties. In the analysis of the
PsychENCODE BrainGVEX proteomic data, we found many
mismatched genotypes were in the boundary of each range.
Second, the homozygous mutant genotype (BB) and heterozygous
genotype (AB) cannot be distinguished solely depending on the
expression level if only AB genotypes are present in the samples.
To mitigate this issue, SMAP examines the number of genotypes
in the original genotypic data (Supplementary Fig. 3). Third,
expression imbalance, such as single-parental expression (e.g.,
imprinted expression) and over- or under-dominant expression
of the identified variant peptides would potentially influence the
inference of genotypic information24.

Large-scale omic data profiling and analyses typically involve
many research laboratories and mistakes could occur in different
ways. Sample mix-up is not only a common problem but also a
major problem getting less attention than it deserves. By com-
paring data of multi-omic data, we had the best chance of correct
sample identifies, which is essential for performing high-quality
research. In summary, we present a robust and easy-to-use
method and tool, SMAP, for sample verification and calibration.
SMAP successfully calibrated ~18% mixed samples in a large-
scale proteomic dataset, demonstrating that our scoring scheme
by combining Cscore and 4Cscore is effective in sample ver-
ification. We recommend sample verification and calibration as
an important part of the data analysis in a large-scale MS-based
proteomic study.

Methods
Proteomic and other omic datasets. A total of 288 well-characterized postmortem
human brain samples (179 males and 109 females) from the Stanley Medical
Research Institute and Banner Sun Health Research Institute were used for this
study25. These samples were collected from 210 neurotypical controls, 49 individuals
with schizophrenia (SCZ), and 29 individuals with bipolar disorder (BD). The
samples include 282 Caucasians, 1 Hispanic, 1 African American, 3 Asian American,
and 1 unknown. The brain frontal cortex samples were subjected to 29 batches of
deep proteome profiling using TMT LC/LC-MS/MS technology. In addition to the
proteomic data that we generated, five other omic data are also available at the
psychENCODE knowledge portal (https://psychencode.synapse.org/Explore/Studies/
DetailsPage?studyName=BrainGVEX), including RNA-Seq data from 426 samples
(274 males and 152 females), assay for transposase-accessible chromatin using
sequencing (ATAC-Seq) data from 295 samples (180 males, 112 females, and 3
unknown-sex samples), and ribosome sequencing (Ribo-Seq) data from 197 samples
(122 males, 70 females, and 5 unknown-sex samples). The genotypes were generated
by the combination of three platforms, including Affymetrix chip data, whole-
genome sequencing, and RNA-seq data16.

Identification of variant peptides in the proteomic data. JUMPg program was
used to identify variant peptides by taking MS-based proteomic data and a customized
database curated with genomic variant data19. In JUMPg program, the variant peptides
were identified by the JUMP search engine, which performs preprocessing, tag gen-
eration, MS/MS pattern matching, and scoring20. JUMP was used to search MS/MS raw
data against a composite target/decoy database21,22 to evaluate the false discovery rate
(FDR). In JUMPg, a two-stage FDR method is used: in the first stage, the MS/MS data
are searched against a reference protein database, and the confidently identified spectra
are removed; in the second stage, the remaining spectra are searched against the variant
protein database, and the FDR for variant peptides is calculated based on the second
stage search results. The target database contains both core protein sequences down-
loaded from UniProt23 and all theoretical variant peptides generated from all non-
synonymous protein-coding variants. To generate theoretical variant peptides, all
variants in the genotypes were re-annotated using the genome annotation tool
ANNOVAR26 based on the human reference genome (i.e., GRCh37/hg19 assembly).
We used the UCSC gene annotation model. The decoy database was generated by
reversing protein sequences in the target database. Major parameters included precursor
and product ion mass tolerance (±8 ppm), full trypticity, static mass shift for the TMT
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tags (+229.16293) and carbamidomethyl modification of 57.02146 on cysteine,
dynamic mass shift for Met oxidation (+15.99491), maximal missed cleavage (n = 2),
and maximal modification sites (n = 3). To filter variant peptides, PSMs were first
filtered by user-specified parameters (e.g., minimum peptide length and minimum
search score), then by precursor ion mass accuracy. The resulting PSMs were further
grouped by precursor ion charge state and tryptic ends and then filtered by matching
scores (Jscore and ΔJscore) to achieve a peptide FDR < 5%. If one peptide could be
generated from multiple homologous proteins, the peptide was assigned to the protein
with the highest PSM based on the rule of parsimony.

TMT-based Peptide/Protein Quantification by JUMP Software Suite. The
analysis was performed in the following steps27: (1) extracting TMT reporter ion
intensities of each PSM; (2) correcting the raw intensities based on the isotopic
distribution of each labeling reagent (e.g., TMT126 generates 91.8%, 7.9%, and
0.3% of 126, 127, 128 m/z ions, respectively); (3) removing sample loading bias by
normalization with the trimmed median intensity of all PSMs; (4) calculating the
mean-centered intensities across samples (e.g. relative intensities between each
sample and the mean), (5) summarizing relative intensities of proteins or variant
peptides by averaging related PSMs. The quantification values of variant peptides
with and without missing values were extracted for inferring genotypic information
for each sample by SMAP.

Simulation data. We generated a simulated dataset to test the performance of
SMAP by evaluating how many genotypes identified from MS-based proteomic
data are needed for validating and correcting the sample identity. We first ran-
domly extracted a subset of a matrix with 500 genotypes and 420 samples. We then
randomly selected a sample from the matrix and permutated the genotypic
information with replacement sampling at a certain probability level α (Supple-
mentary Fig. 4). The α level was set in the range from 10 to 100 at a step of 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry data associated with this study are provided in Supplementary
Data 1 and Supplementary Data 2. The raw mass spectrometry data used in this study are
available in the Synapse database under accession code syn26231732.

Code availability
The SMAP is implemented in both standalone (https://github.com/UND-Wanglab/
SMAP) and web-based (https://smap.shinyapps.io/smap/) versions. The standalone
SMAP is written in Perl programming language. The web-based SMAP is developed
using Shiny, an R package that supports the development of web-based R applications
that can be hosted online. Manual, tutorial, and sample datasets are also available at the
SMAP project homepage https://sites.google.com/view/smapwanglab/home.
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