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ABSTRACT
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is 
a tightly connected, structural, and functional separation between the central nervous system (CNS) 
and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain 
injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and 
further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that 
generally lack the coding abilities but can actively regulate the mRNA expression and function through 
different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), 
and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are 
potential mediators of BBB permeability. Here, we summarized the recent research progress on 
miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. 
Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic 
insights into the prevention and control of the BBB dysfunction.
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Introduction

The blood-brain barrier (BBB) is composed of brain micro-
vascular endothelial cells (BMECs), pericytes, and astrocyte 
endfeet [1]. It maintains brain homoeostasis and protects the 
brain from xenobiotics and neurotoxic metabolites circulating 
in the bloodstream [2]. BMECs are indispensable and distinct 
structural components of the BBB. They are characterized by 
the presence of tight junction proteins (TJs) that lead to high 
transendothelial electrical resistance and low paracellular per-
meability [3]. TJs are composed of several integral membrane 
proteins, including Occludin, Claudins, and junctional adhe-
sion molecules, all of which are linked through cytoplasmic 
zonula occludens (ZO) family members (e.g. ZO-1,-2,-3) to 
the intracellular actin cytoskeleton [4]. A decrease or distribu-
tion changes of these TJs in BMECs could increase the BBB 
permeability, an important indicator of BBB dysfunction [5]. 
Increased BBB permeability is a key event in the pathogenesis 
of several central nervous system (CNS) diseases with inflam-
matory characteristics, such as Alzheimer’s disease, multiple 
sclerosis, traumatic brain injury, stroke, and meningitis 
[6–10].

Recent genome-wide studies using deep sequencing tech-
nology have revealed that eukaryotic genomes are exten-
sively transcribed to produce thousands of non-coding 
RNAs (ncRNAs) [11]. The available data indicate that 
most of the mammalian genome produces RNA transcripts, 

despite only approximately 1.2% of the genomic DNA 
sequences code proteins [12]. Many ncRNAs, such as trans-
fer RNA (tRNAs) and ribosomal RNA (rRNAs), are directly 
involved in translation [13]. Except for tRNAs and rRNAs, 
the ncRNAs can be broadly classified into small ncRNAs 
(<200 nucleotides [nt], including microRNA [miRNA], 
soRNA, snoRNA, siRNA, and piRNA) [14], long non- 
coding RNA (lncRNAs) >200 nt in length [15], and circular 
RNA (circRNAs), which have a particular covalent loop 
structure without a 5ʹ cap or 3ʹ poly-A tail [16]. Non- 
coding transcripts were once considered to have no biolo-
gical function [17]. However, with the progress of research, 
ncRNAs have been increasingly identified as the critical 
regulators of gene expression and participate in multiple 
major biological and physiological processes that involve 
development, differentiation, and metabolism, as well as 
pathologies in a variety of human diseases [18–20]. In 
particular, the function of miRNAs has been most exten-
sively studied compared to lncRNAs and circRNAs in CNS 
diseases.

Here, we provide a functional overview of the miRNAs, 
lncRNAs, and circRNAs in the regulation of BBB permeabil-
ity. Understanding the molecular mechanism of the increased 
BBB permeability regulated by ncRNAs shall contribute to the 
development of safe and effective therapeutic approaches to 
maintain BBB integrity in many CNS diseases.
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miRNAs and BBB Permeability

miRNAs are small, endogenous, single-stranded ncRNA 
molecules that are typically 19–25 nt in length and are 
involved in transcriptional and post-transcriptional gene 
expression regulation by affecting the translation as well as 
stability of the messenger RNAs (mRNAs) (Fig. 1) [21]. 
miRNAs are present and stable in many mammalian cell 
types and appear to target more than 50% of genes in humans 
[22]. They control various normal biological processes, 
including cell proliferation and differentiation, apoptosis, 
immune responses, angiogenesis, and inflammation [23,24]. 
Recently, many studies have demonstrated that miRNAs play 
central roles in the BBB dysfunction in CNS diseases (Table 1 
and Fig. 2) [25].

In ischaemic stroke, matrix metallopeptidase (MMP)-9 
showed an affinity for BBB permeability by degrading TJs 
expression [26]. miR-132 and miR-539 were reported to reg-
ulate BBB permeability by directly targeting MMP-9 [27,28], 

and miR-21 indirectly regulated MMP-9 by activating the 
mitogen-activated protein kinase signalling pathway [29]. 
Studies have noted the increase of miR-34a expression in the 
brains of mice suffering experimental stroke [30], and another 
study found that miR-34a triggered the breakdown of BBB by 
targeting cytochrome c in the BMECs monolayer in vitro 
[31,32]. In neonatal rat hypoxic-ischaemic brain injury, over-
expression of miR-210 negatively regulated BBB integrity and 
preserved the expression of Occludin and β-catenin [33]. In 
a cerebral ischaemia BMECs model, a decrease in the miR-155 
level enhanced the BMECs transepithelial electrical resistance 
and decreased the monolayer permeability by directly target-
ing Claudin-1 [34]. Another study demonstrated that high 
levels of miR-155 targeted MFSD2A in BMECs to increase 
BBB permeability, and in the miR-155-deleted mouse model, 
ischaemia-induced brain injury was effectively alleviated [35]. 
And miR-182 was reported to exacerbate BBB disruption by 
downregulating the mTOR/FOXO1 pathway [36]. In other 

Figure 1. The structure of miRNAs, lncRNAs and circRNAs.

Table 1. miRNAs as therapeutic targets of pharmacological agents for CNS injuries.

CNS injuries Cell/Animal species miRNAs Target mRNAs References

Ischaemic stroke Mice miR-132 MMP-9 Zuo et al[27].
bEnd.3/Rats miR-539 MMP-9 Fan et al[28].
Rats miR-21 MAP2K3 Yao et al[29].
BMEC/Rats miR-34a Not investigated Ren et al[30].
bEnd.3 miR-34a Cytochrome c Bukeirat et al[31].
Rats miR-210 Occludin/β-catenin Ma et al[33].
Human BMEC miR-155 claudin-1 Philippides et al[34].
BMEC/Mice miR-155 MFSD2A Awad et al[35].
bEnd.3/ Mice miR-182 mTOR/FOXO1 Zhang et al[36].
BMEC/Mice miR-130a HOXA5 Wang et al[37].
Rat BMEC miR-150 Tie-2 Fang et al[38].
Mice miR-15a claudin-5 Ma et al[39].

Haemorrhagic stroke Rat BMEC/Rats miR-126-3p PIK3R2 Xi et al[40].
Rat BMEC/Rats miR-27a-3p AQP11 Xi et al[41].

Traumatic brain injury Mouse BMEC miR-212/132 claudin-1/JAM3/TJP4 Burek et al[42].
Rat BMEC miR-21 Angiopoietin-1/Tie-2 Ge et al[43].

Multiple sclerosis hCMEC/Mice miR-155 annexin-2/claudin-1 Ramirez et al[45].
hCMEC miR-125a-5p VE-cadherin/ZO-1 Reijerkerk et al[25].

Meningitis Mouse BMEC let-7/miR-98 CCL2/CCL5 Rom et al[46].
HUVEC/Monkeys miR-1303 MMP-9 Song et al[48].
Human BMEC miR-101 VE-cadherin Mishra et al[49].
Mice miR-155 Not investigated Barker et al[50].

Alzheimer′s Disease hCMEC miR-107 Endophilin-1 Liu et al[51].
hCMEC miR-424-5p Endophilin-1 Lin et al[52].
bEnd.3 miR-501-3p ZO-1 Toyama et al[53].

Diabetes Mouse BMEC let-7a Not investigated Song et al[54].
Rat BMEC miR-200b VEGFA Yang et al[55].

Hyperhomocysteinemia bEnd.3/Mice miR-29b DNMT3B, MMP-9 Kalani et al[56].
Methamphetamine Human BMEC miR-143 PUMA Bai et al[57].
Cancer BMEC miR-181 c PDPK1 Tominaga et al[58].
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studies, miR-130a could downregulate Occludin and enhance 
the BBB permeability by inhibiting HOXA5 expression [37], 
and miR-150 could regulate Claudin-5 expression by targeting 
Tie-2 to affect the permeability of BBB [38]. In addition, 
evidence has suggested that BMECs-selective deletion of the 
miR-15a/16-1 clusters attenuates BBB pathology after ischae-
mic stroke [39]. As for haemorrhagic stroke, exogenous miR- 
126-3p can alleviate the BBB disruption by targeting PIK3R2 
to suppress angiopoietin (ANGPT)-1 and vascular endothelial 
growth factor A (VEGFA)-induced activation of Akt [40]. 
miR-27a-3p may protect against BBB disruption and brain 
injury by targeting endothelial Aqp11 [41]. In an in vitro 
model of traumatic brain injury, it was reported that over-
expression of miR-212/132 led to the decrease in both mRNA 
and protein expression of Claudin-1, JAM3, and TJP4 [42], 
and the up-regulated miR-21 level could alleviate traumatic 
brain injury-induced secondary BBB damage and loss of TJs 
by targeting ANGPT-1 and Tie-2 [43].

Multiple sclerosis is a prototypical inflammatory disease of 
the CNS [44]. MiR-155 was reported to modulate monolayer 
BMECs function by targeting Annexin-2 and Claudin-1 in 
multiple sclerosis [45]. Similarly, miR-125a-5p was a key reg-
ulator of BMECs tightness by affecting the expression of 
vascular endothelial (VE)-cadherin and ZO-1 in the TNF-α/ 
IFNγ-treated-BMECs multiple sclerosis model in vitro[25]. In 
the study of aseptic meningitis, the low expression levels of 
let-7 and miR-98 resulted in BBB dysfunction by targeting 
CCL2 and CCL5 [46,47]. Besides, evidences have suggested 
that miRNAs played essential roles in BBB damage during 
pathogenic infections. It was shown that Coxsackievirus pene-
trated the BBB by downregulating miR-1303, which disrupted 

Claudin-5, Claudin-4, VE-cadherin, and ZO-1 by directly 
regulating MMP-9 [48]. HIV-1 Tat C increased the expression 
of miR-101, which led to the down-regulation of VE-cadherin 
to enhance BBB permeability [49]. Moreover, the increase of 
BBB permeability induced by malaria infection was signifi-
cantly reduced in miR-155 knocking-down mice compared to 
control mice [50].

Emerging pieces of evidence suggested that miRNAs 
played significant roles in the disruption of BBB integrity in 
Alzheimer’s disease, and miR-107 and miR-424-5p were 
reported to affect the expression of ZO-1 and Occludin in 
an in vitro model with Aβ-incubated BMECs by targeting 
Endophilin-1 [51,52]. TNF-α induced-miR-501-3p was con-
sidered the upstream regulator of ZO-1 in vascular dementia 
[53]. In a diabetes study, a high level of miR-Let7a was 
suggested to attenuate BMECs damage by controlling TJ 
Claudin-5 and ZO-1 expression [54], and a high level of 
miR-200b was also reported to attenuate BBB dysfunction 
by inhibiting VEGFA [55]. Moreover, miR-29b was suggested 
to be a novel nucleic acid target for maintaining BBB perme-
ability by inhibiting DNMT3B and MMP-9 up-regulation 
during hyperhomocysteinemia [56]. Another study found 
that silencing miR-143 increased TJs’ expression and pro-
tected BBB integrity against the effects of methamphetamine 
treatment in a monolayer BMECs model [57]. Interestingly, 
a recent study found that miRNAs in extracellular vesicles can 
also mediate the BBB destruction. Brain metastatic cancer 
cell-derived miR-181 c can increase the BBB permeability 
through its target gene PDPK1 [58]. And in the study of 
reversible cerebral vasoconstriction syndrome, the circulating 
miRNAs were functionally linked to the headache, BBB integ-
rity, and vasomotor function [59].

Figure 2. A brief summary of miRNAs, lncRNAs and circRNAs as a factor controling BBB permeability.
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miRNAs are important components involving in epigenetic 
regulation. Current studies have confirmed that many 
miRNAs can negatively regulate the expression of TJs by 
directly targeting TJs or indirectly regulating upstream mole-
cules of TJs, thereby affecting the integrity of BBB. However, 
because of the diversity of mechanisms and functions of 
miRNAs, more in-depth studies are still needed to reveal 
their specific contributions.

LncRNAs regulation of vascular endothelial permeability 
via TJs

Transcripts longer than 200 nt without coding capacity are 
generally defined as lncRNAs (Fig. 1) [60]. lncRNAs are 
further subdivided into long intergenic ncRNAs, long intronic 
ncRNAs, telomeric ncRNAs, pseudogene transcripts, enhan-
cer RNAs, and promoter-associated long RNAs [61]. It has 
been predicted that the human genome encodes more than 
50,000 lncRNAs; however, most of them are uncharacterized 
[62]. lncRNAs were reported to regulate gene expression 
through various mechanisms, including modulation of tran-
scription factor activity and splicing machinery, transcription 
enhancers, increasing mRNA stability, acting as architectural 
components in the assembly of protein complexes, as well as 
played as molecular decoys for miRNAs [63–65]. Although 
only a small proportion of the identified lncRNAs have been 
studied in-depth, they have pivotal roles in various physiolo-
gical and pathological processes, such as cell differentiation, 
tumorigenesis, metastasis, immune response, ageing, and 
others [66].

Accumulating evidence has shown that lncRNAs acted as 
key regulators of vascular function, including senescence, 
angiogenesis, vascular repair, and inflammatory signalling 
cascades (Table 2 and Fig. 2) [67]. For example, lnc-tie-1AS 
was universally transcribed in zebrafish, mice, and humans 
and controlled the transcription of its parental gene tie-1 by 
directly binding to tie-1 mRNA, thus leading to specific 
defects in vascular endothelial TJs [68]. The blood-tumour 
barrier (BTB) in brain, similar to BBB, is characterized by the 
presence of TJs between brain capillary endothelial cells and 
forms a major obstacle in brain tumour therapy by preventing 
the delivery of sufficient therapeutic drugs [69]. Metastasis- 
associated lung adenocarcinoma transcript 1 (MALAT1) is 
a highly conserved lncRNA in mammals, and its function 

has been shown in numerous cancers [70]. In glioma endothe-
lial cells, knockdown of MALAT1 induced the down- 
regulation of ZO-1, Occludin, and Claudin-5 by sponging 
miR-140 [71]. Nuclear enriched abundant transcript 1 
(NEAT1), also known as nuclear paraspeckle assembly tran-
script 1, is an essential lncRNA for the integrity of the nuclear 
paraspeckle substructure [72]. A recent study found that 
knockdown of NEAT1 increased BTB permeability by binding 
to miR-181d-5p and reduced TJs expression by targeting 
SOX5 [73]. Knockdown of lnc00174 increased BTB perme-
ability by activating the miR-138-5p (miR-150-5p)/FOSL2 
feedback loop [74]. Moreover, lnc-taurine upregulated gene 
1 (lncTUG1) is another highly expressed lncRNA in glioma 
vascular endothelial cells from glioma tissues [75]. 
Knockdown of lncTUG1 increased the BTB permeability by 
binding to miR-144 and reduced glioma endothelial cell TJs 
expression by targeting HSF2 [76]. Together, these findings 
largely indicated that aberrant expression of lncRNAs could 
act as competing endogenous RNAs (ceRNA) to affect the 
permeability of BTB.

Recent studies have also recognized that lncRNAs are 
closely involved in controlling the BBB permeability [77]. In 
Alzheimer’s disease, lnc00094 was dramatically increased in 
Aβ-incubated BMECs of the BBB in an in vitro model. 
Reduction of lnc00094 inhibited Endophilin-1 expression by 
up-regulating miR-224-4p and miR-497-5p, thus promoting 
the expression of ZO-1, Occludin, and Claudin-5, and ulti-
mately alleviating BBB permeability [78]. In another study on 
BMECs, piR-DQ590027 was reported to regulate the perme-
ability and transendothelial electrical resistance by activating 
the MIR17HG/miR-133 (miR-377)/FOXR2 pathway [79]. In 
the intracerebral haemorrhage study, the upregulation of 
lncRNA small nucleolar RNA host gene 3 (Snhg3) was con-
firmed to increase BBB permeability by activating the 
TNFSF12 /Fn14/STAT3 signalling pathway [80]. After the 
stroke, inhibition of VEGF can reduce BBB permeability 
[81]. Accumulating evidences have shown that lncRNAs are 
novel endogenous nucleic acid regulatory molecules of 
VEGFA in stroke. The levels of lncMALAT1 were up- 
regulated in oxygen-glucose deprivation-induced BMECs, 
and lncMALAT1 enhanced the expression of VEGFA and 
ANGPT-2 by targeting miR-145 to affect BBB integrity [82]. 
Meanwhile, the expression of the small nuclear RNA host 
gene 1 (lncSNHG1) was remarkably increased in isolated 

Table 2. Effects of lncRNAs and circRNAs on BBB dysfunction.

CNS injuries Cell/Animal species lncRNAs/circRNAs Molecular mechanisms References

Alzheimer’s disease hCMEC/pericytes co-culture lnc00094 miR-224-5p (miR-497-5p)/Endophilin-1 Zhu et al[78].
Ischaemic stroke mouse BMEC lncMALAT1 miR-145/VEGFA (ANGPT2) Ren et al[82].

mouse BMEC and Mice lncSNHG1 miR-18a (miR-199a)/HIF-1α/VEGF Zhang et al[83].
Haemorrhagic Stroke Rat BMEC/Rats lncSNHG3 TWEAK/Fn14/STAT3 Zhang et al[80].

BMEC/astrocytes co-culture and Mice loc102640519 HOXC13 Wu et al[85].
Glioma hCMEC piR-DQ590027 MIR17HG/miR-133 (miR-377)/FOXR2 Leng et al[79].

hCMEC/glioblastoma co-culture lncMALAT1 miR-140/NFYA Ma et al[71].
hCMEC/glioblastoma co-culture lncNEAT1 miR-181d-5p/SOX5 Guo et al[73].
hCMEC/glioblastoma co-culture lnc00174 miR-138-5p (miR-150-5p)/FOSL2 Guo et al[74].
hCMEC/glioblastoma co-culture lncTUG1 miR-144/HSF2 Cai et al[76].
hCMEC/glioblastoma co-culture circDENND4C miR-577 Wu et al[103].

Neuroinflammatory Human BMEC and Mice circHECW2 miR-30d/ATG5 Yang et al[104].
Ischaemic stroke bEnd.3 and Mice circDLGAP4 miR-143/HECTD1 Bai et al[105].
Bacterial meningitis Human BMEC circ2858 miR-93-5p/ VEGFA Yang et al[106].
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cerebral microvessels of a middle cerebral artery occlusion 
mouse model and oxygen-glucose deprivation-cultured mice 
BMECs. Moreover, lncSNHG1 could function as a ceRNA for 
miR-18a and miR-199a to regulate the hypoxia-inducible fac-
tor-1α/VEGFA signalling pathway [83,84]. Interestingly, 
VEGFA significantly aggravated cerebral ischaemia injury by 
up-regulating LOC102540519 and HOXC13. LOC102640519 
positively regulated the expression of HOXC13, thus nega-
tively regulating the expression of ZO-1, Occludin, and 
Claudin-5 to enhance BBB permeability [85]. These findings 
collectively suggest that the abnormal expression of lncRNAs 
could be an approach to regulating BBB permeability.

The above researches indicate that lncRNAs are consider-
able endogenous regulators that are responsible for the BBB 
permeability regulation. However, the precise regulatory 
mechanisms involving lncRNAs in BBB damage still require 
more in vitro and in vivo experimental evidences.

Roles of CircRNAs in BBB Permeability

The current advances in circRNAs study have shown that 
circRNAs are another vital component of regulatory 
ncRNAs [86]. CircRNAs, consisting of a circular configura-
tion through a typical 5′ to 3′-phosphodiester bond, are com-
posed of exonic or intronic sequences (Fig. 1) [87]. Because of 
the absence of the defined 5′ caps and 3′ poly-A tails, 
circRNAs are extremely stable then linear forms of RNAs 
[88]. circRNAs are highly abundant, tissue-specific, and evo-
lutionarily conserved RNAs in mammalian cells and tissues 
[89–91]. In humans, circRNAs are particularly abundant in 
the brain, peripheral blood, and exosomes [92,93]. Their 
ability to cross the BBB makes them perfect candidates as 
potential diagnostic markers for CNS disorders [94]. 
Interestingly, circRNAs were found not to be uniformly dis-
tributed throughout the brain, as some regions were more 
enriched than the others [95], and their molecular functions 
were also diverse, including acting as miRNA sponges, regu-
lators of transcription and splicing, ribosomal RNA proces-
sing, and adaptors for protein-protein interaction [96]. 
CircRNAs have also been reported to play important roles 
in pathophysiological processes, including Alzheimer’s dis-
eases, neuronal diseases, cardiovascular disease, and cancer 
progression [97]. Compared to the researches on miRNAs 
and lncRNAs regulation of BBB dysfunction, there is cur-
rently little work focusing on the roles of circRNAs in the 
development of CNS diseases, particularly in the regulation of 
BBB permeability.

CircRNAs are prominently involved in numerous CNS 
diseases, and their transcriptional profiles have been increas-
ingly reported in different disease models, such as stroke, 
meningitis, Parkinson’s disease, and Alzheimer′s disease 
(Table 2 and Fig. 2) [98–102]. The circ-DENND4C was 
enriched in glioma endothelial cells and acted as a molecular 
sponge to bind miR-577 and inhibit its negative regulation of 
the target genes ZO-1, Occludin, and Claudin-1, thus posi-
tively regulate the BTB permeability [103]. In the endothelial- 
mesenchymal transition study, circRNAs were reported to 
regulate BBB permeability by acting as miRNA sponges. 
Treatment of BMECs with methamphetamine or 

lipopolysaccharide significantly increased circHECW2 expres-
sion, and circHECW2 competitively sponged miR-30d to up- 
regulate the expression of autophagy-related 5 (Atg5), which 
was involved in the endothelial-mesenchymal transition and 
resulted in the damage of BBB integrity by promoting the 
degradation of ZO-1, Occludin, and Claudin-5. Therefore, 
specific blockage of circHECW2 may be envisioned as 
a potential therapeutic target for the treatment of BBB integ-
rity damage [104]. In a stroke model, overexpression of 
circDLGAP4 significantly attenuated neurological deficits, 
decreased infarct areas, and BBB damage in a mouse stroke 
model with transient middle cerebral artery occlusion by 
competitively binding miR-143 to regulate HECTD1, thus 
increasing TJs expression. This circDLGAP4 was thus sug-
gested as a potential therapeutic candidate in acute ischaemic 
injury [105]. Currently, our group profiled the expression of 
41,504 circRNAs in BMECs after meningitic Escherichia coli 
infection and found that 308 were significantly altered com-
pared with the control group. A ceRNA analysis was further 
performed, and the potential regulatory network was prelimi-
narily constructed and validated. For the first time, this work 
showed that circRNAs were responsive to meningitic bacterial 
challenges, and their alterations might be involved in the 
infection-enhanced BBB permeability [100]. In another 
work, we further reported meningitic E. coli-induced upregu-
lation of circ_2858 in BMECs and demonstrated this circRNA 
could facilitate the VEGFA expression by competitively 
sponging miR-93-5p, thus causing the TJs disruption and 
BBB dysfunction [106]. These findings mentioned above sug-
gested that circRNAs could be a potential nucleic acid 
approach to secure BBB dysfunction in CNS disorders.

Due to their extensive involvement in different physiolo-
gical and pathological processes, circRNAs have attracted 
increasing attention in recent years. As an important type of 
ncRNAs, circRNAs are considered to have significant regula-
tory potential due to their high expression in brain tissue and 
have been experimentally shown to be involved in a variety of 
CNS-related diseases. However, the roles of circRNAs in 
regulating the BBB function have not been well documented.

Conclusion

The field of BBB physiology and pathology, particularly the 
study of TJ complexes, has rapidly advanced in recent years. 
It is now recognized that TJs of BMECs are redistributed 
and degraded in response to stroke, meningitis, traumatic 
brain injury, and other CNS diseases. These TJs changes lead 
to increased BBB permeability, which will cause irreversible 
damage to the CNS; thus, regulation of the TJs expression 
and distribution is an essential direction for future studies. 
Meanwhile, many other proteins play important roles in 
maintaining BBB permeability and functions, such as the 
MMPs, transforming growth factor β1, VEGFA, TNF-α, 
Tie-2, Angiopoietin-1, Endophilin-1, and Neuropilin-1 
[107]. Emerging evidence also suggests important roles of 
astrocyte-derived factors in BBB dysfunction and recovery 
after brain injury. The astrocyte-derived vascular permeabil-
ity enhance factors include Vascular endothelial growth fac-
tors, MMPs, Glutamate, Nitric oxide, and Endothelin-1. In 
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contrast, the astrocyte-derived protective factors include 
Apolipoprotein E, Sonic hedgehog, Angiopoietin-1, Glial- 
derived neurotrophic factor, Retinoic acid, and Insulin-like 
growth factor-1 [108,109]. Meanwhile, pericytes are also 
recognized as key players in BBB genesis and vessel stabili-
zation. Pericytes-derived PDGF-B, Angiopoietin-1, TGF-β, 
IL-8, MMP2, and MMP9 play critical roles in regulating the 
BBB permeability [110–113]. These findings have identified 
multiple potential targets that can be exploited for protec-
tion against BBB dysfunction. However, the upstream reg-
ulatory mechanisms of these targets remain unclear. 
Studying these regulatory mechanisms in terms of ncRNAs 
in BBB permeability will lead to a better understanding of 
ncRNAs’ roles, which may help prevent and therapy BBB 
dysfunction and reduce neurological sequelae of CNS 
diseases.

In the past decade, numerous studies have been pub-
lished on investigating the roles of miRNAs in CNS dis-
eases. There has been accumulating evidence regarding 
miRNAs’ crucial roles in BBB permeability as post- 
transcriptional regulators of gene expression. Elevation of 
certain miRNAs can cause the degradation of TJs-related 
mRNAs translation, such as ZO-1, Occludin, β-catenin, VE- 
cadherin, and Claudins. Meanwhile, suppression of 
miRNAs can increase several target mRNAs, such as 
MMP9, Tie-2, VEGFA, Endophilin-1, ANGPT-1, and 
Neuropilin-1 to affect junction formation and maintenance. 
Studying the dysregulation and specific function of 
miRNAs in regulating BBB permeability will help identify 
new nucleic acid targets for CNS disease control. Although 
miRNAs as valuable therapeutic targets have been explored 
extensively, at the time of writing, lncRNAs and circRNAs 
are emerging regulatory ncRNAs that have been in the 
spotlight of research so far and are still in their preliminary 
stages in terms of research. A few studies on lncRNAs and 
circRNAs regulation of increased BBB permeability still 
reported the indirect mechanisms mediating through 
miRNAs. The lncRNAs and circRNAs provide the very 
stable molecular targets that act as the magnet for the 
miRNAs, thus hampering the regulatory roles of the speci-
fic miRNAs that lncRNAs or circRNAs bind. In this way, 
more strategies for the protection of BBB permeability 
through lncRNAs and circRNAs need to be further 
explored.

So far, ncRNAs researches have significantly advanced our 
understanding of the mechanisms underlying the BBB dys-
function. Accumulating pieces of evidence have already sup-
ported the active roles of ncRNAs regulatory networks in BBB 
integrity; however, further researches are urgently needed to 
comprehensively illustrate the molecular details associated 
with enhancement of BBB permeability, as well as explore 
new possibilities for drug targets, which shall ultimately lead 
to better outcomes for patients and animals afflicted with CNS 
diseases.
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