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Given maximal social distancing duration and intensity, how can one minimize the epidemic final size, or
equivalently the total number of individuals infected during the outbreak? A complete answer to this
question is provided and demonstrated here for the SIR epidemic model. In this simplified setting, the
optimal solution consists in enforcing the highest confinement level during the longest allowed period,
beginning at a time instant that is the unique solution to certain 1D optimization problem. Based on this
result, we present numerical essays showing the best possible performance for a large set of basic repro-
duction numbers and lockdown durations and intensities.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The current outbreak of Covid-19 and the entailed implementa-
tion of social distancing on an unprecedented scale, leads to a
renewed interest in modelling and analysis of the non-
pharmaceutical intervention strategies to control infectious dis-
eases. In contrast to the removal of susceptible individuals (by vac-
cination) or infectious individuals (by isolation or quarantine) from
the process of disease transmission, the term ‘‘social distancing”
refers to attempts to directly reduce the infecting contacts within
the population. Such actions may be obtained through voluntary
actions, possibly fostered by government information campaigns,
or by mandatory measures such as partial or total lockdown.
Notice that, when no vaccine or therapy is available, such contain-
ment strategies constitute probably the only mid-term option.

Optimal control approaches have been abundantly explored in
the past in the framework of control of transmissible diseases,
see e.g. Lenhart and Workman, 2007; Sharomi and Malik, 2017
and bibliographical references in Bliman et al. (2020). Optimal con-
trol of social distancing (possibly coupled with vaccination, treat-
ment or isolation) is usually considered through the
minimization of a finite-time integral cost linear in the state, and
quadratic in the input control variables or jointly bilinear in the
two signals (Behncke, 2000; Yan et al., 2008; Lee et al., 2010; Lin
et al., 2010; F. E. Alvarez et al., 2020; Djidjou-Demasse et al.,
2020). The authors of Morris et al. (2020) study the optimal control
allowing to minimize the maximal value taken by the infected pop-
ulation. The integral of the deviation between the natural infection
rate and its effective value due to confinement is used as a cost in
Miclo et al. (2020), together with constraints on the maximal num-
ber of infected. In Angulo et al. (2020), the authors minimize the
time needed to reach herd immunity, under the constraint of keep-
ing the number of infected below a given value, in an attempt to
preserve the public health system. Optimal public health interven-
tions as a complement to vaccination campaigns have been studied
in Buonomo et al. (2019a) and Buonomo et al. (2019b); see also
(Manfredi and D’Onofrio, 2013) for more material on behavioral
epidemiology.

The magnitude of the outbreak, usually called the epidemic final
size, is another important characteristic. It is defined as the total
number of initially susceptible individuals that become infected
during the course of the epidemic. Abundant literature exists con-
cerning this quantity, since Kermack and Mc Kendrick’s paper from
1927 (Kermack and McKendrick, 1927); see Ma and Earn, 2006;
Andreasen, 2011; Katriel, 2012; Miller, 2012 for important contri-
butions to its computation in various deterministic settings.
Recently, optimal control approach has been introduced to mini-
mize the final size by temporary reduction of the contact rate on
a given time interval 0;D½ �;D > 0. This issue has been considered
in Ketcheson (2020), with total lockdown and added integral term
accounting for control cost; and in Bliman et al. (2020), where par-
tial lockdown is considered as well. The corresponding optimal
control is bang-bang, with maximal distancing intensity applied
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on a subinterval T�
0;D

� �
, for some unique T�

0 2 0;D½ Þ depending of
the initial conditions, and no action otherwise.

In a population in which a large proportion of individuals is
immune, either after vaccination or after having been infected,
the infection is more likely to be disrupted. The herd immunity
threshold is attained when the number of infected individuals
begins to decrease over time. While the proportion of susceptible
is asymptotically always smaller than this threshold, a significant
proportion of initially susceptible individuals may still be infected
until the epidemic is over. In this perspective, minimizing the epi-
demic final size can be seen as an attempt to stop the outbreak as
close as possible after reaching the herd immunity.

While distancing enforcement cannot last for a long time, there
is indeed no reason in practice why it should be restricted to start
at a given date —typically ‘‘right now”. Elaborating on Bliman et al.
(2020), we consider in the present paper a more general optimal
control problem, achieved through social distancing during a given
maximal time duration D > 0, but without prescribing the onset of
this measure. A key result below (Theorem 1) shows the existence
of a unique time T�, which depends upon the initial conditions, for
which the optimal control corresponds to applying maximal dis-
tancing intensity on the interval T�; T� þ D½ �: this more natural set-
ting yields a more efficient control strategy.

The paper is organized as follows. We introduce in Section 2 the
precise setting of the problem under study and formulate the three
main results: Theorem 1 demonstrates the existence and unique-
ness of the optimal policy and provides a constructive characteri-
zation; Theorem 2 studies its dependence upon the lockdown
intensity and duration; Theorem 3 shows that above a certain crit-
ical lockdown intensity, optimal social distancing on a sufficiently
long period approaches herd immunity arbitrarily close. Section 3
provides illustrative numerical essays. The proof of Theorem 1 is
the subject of Section 4. Concluding remarks are given in Section 5.
Additional numerical results may be found in the Supplementary
materials, as well as the corresponding algorithms and a link to
the codes used for resolution.

2. Problem description and main results

Consider the system

_S tð Þ ¼ �u tð ÞbS tð ÞI tð Þ; t P 0
_I tð Þ ¼ u tð ÞbS tð ÞI tð Þ � cI tð Þ; t P 0

ð1Þ

complemented with nonnegative initial data S 0ð Þ ¼ S0; I 0ð Þ ¼ I0
such that S0 þ I0 6 1. The input u, taking on values in 0;1½ �, models
the effect of a social distancing policy: u tð Þ ¼ 1 corresponds to
absence of restrictions, while u tð Þ ¼ 0, corresponding to complete
lockdown, prohibits any contact and thus any transmission. In the
sequel, we call uncontrolled system the system corresponding to
u � 1, and generally speaking restrict u 2 L1 0;þ1ð Þ to be admissi-
ble, that is by definition such that a 6 u tð Þ 6 1 for a given constant
a 2 0;1½ Þ and for almost any t P 0. The constant a, called here the
maximal lockdown intensity1 determines the most intense achievable
social distancing.

We assume in all the sequel that the basic reproduction number
R0 of the uncontrolled system fulfils (see e.g. Keeling and Rohani,
2008):

R0 :¼ b
c
> 1:
1 Therefore, a smaller value of the maximal lockdown intensity amay produce more
intense lockdown.

2

This constant strongly characterizes the dynamics of this sys-
tem. The effect of a constant input u 2 0;1½ � is obviously to change
R0 in the control reproduction number (Brauer et al., 2008) uR0.

For any admissible u, one defines

S1 uð Þ :¼ lim
t!1

S tð Þ;

for S; Ið Þ the solution to (1). The quantity S0 � S1 uð Þ is the proportion
of individuals initially susceptible, subsequently infected and finally
removed, due to the outbreak and after completion of the latter. It is
called the attack ratio, or the epidemic final size when numbers of
individuals are considered instead of proportions. This notion plays
a central role in the sequel.

For the uncontrolled model (1) (with u � 1), the herd immunity
is

Sherd :¼ c
b
¼ 1

R0
: ð2Þ

Any equilibrium Sequi;0
� �

; 0 6 Sequi 6 1, of this system is stable if
0 6 Sequi 6 Sherd and unstable if Sherd < Sequi, so that the disease pros-
pers if introduced in population where R0S0 > 1 (before it finally
fades away), and dies out otherwise. Coherently with this observa-
tion, if u tð Þ equals 1 after a finite time, then one has

S1 uð Þ 6 Sherd:

In this optic, attempting to reduce the epidemic final size by
finite-time intervention is equivalent to try to stop it as closely
as possible from the herd immunity threshold.

For any 0 < T 6 T 0 and a 2 0;1½ Þ, let Ua;T;T 0be the following sub-
set of admissible inputs:

Ua;T;T 0 :¼ u 2 L1 0;þ1ð Þ; a 6 u tð Þ 6 1 if t 2 T; T 0� �
;u tð Þ ¼ 1 otherwise

� �
:

We also consider the set of those functions uT;T 0 of Ua;T;T 0 defined
by

uT;T 0 ¼ 1 0;T½ � þ a1 T;T 0½ � þ 1 T 0 ;þ1½ Þ; ð3Þ

where the notation 1� denotes characteristic functions2, and denote
1 the function of L1 0;þ1ð Þ equal to 1 (almost) everywhere.

The main result of the paper is now given. It indicates how to
optimally implement distancing measures, in order to minimize
the epidemic final size. To state this result, introduce first the func-
tion w given by

w : T 3 0;1½ Þ# � IT T þ Dð Þ
IT Tð Þ þ a� 1ð Þc

Z TþD

T

IT T þ Dð Þ
IT tð Þ dt þ 1;

ð4Þ

where ST ; IT
� 	

denotes the solution to (1) with u ¼ uT;TþD defined in

(3).

Theorem 1. For any a 2 0;1½ Þ and D > 0, the optimal control
problem

sup
TP0

sup
u2Ua;T;TþD

S1 uð Þ Pa;Dð Þ

admits a unique solution. The optimal control is equal to the function
uT� ;T�þD defined in (3), where the value T� P 0 is characterized by the
fact that;

� if w 0ð Þ P 0, then T� ¼ 0;
� if w 0ð Þ < 0, then T� is the unique solution to
2

w T�ð Þ ¼ 0: ð5Þ
That is e.g. 1 0;T½ � tð Þ ¼ 1 if t 2 0; T½ �, 0 otherwise.
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Moreover, if T� > 0, then S T�ð Þ > Sherd if a > 0, and S T�ð Þ ¼ Sherd if
a ¼ 0. Last, fixing S0 2 Sherd;1ð Þ, it holds

lim
I0&0þ

T� ¼ þ1:

For subsequent use, we denote S�; I�ð Þ the optimal solution, and
S�1 the value function of problem (Pa;D), that is by definition:

S�1 ¼ S�1 S0; I0ð Þ :¼ sup
TP0

sup
u2Ua;T;TþD

S1 uð Þ: ð6Þ

Theorem 1 establishes that, among all intervention strategies
carried out on a time interval of length D with an intensity located
at each time instant between a and 1, a single one minimizes the
epidemic final size. The corresponding control is bang-bang and
consists in enforcing the most intense social distancing level a on
the time interval T�; T� þ D½ �, where T� P 0 is uniquely assessed
in the statement. The value of T� depends upon the initial value

S0; I0ð Þ through the solution ST ; IT
� 	

of System (1) appearing in

the expression (4).
Assessing the value of w Tð Þ for given T P 0 amounts to solve the

ordinary differential Eq. (1) and to evaluate the quantity in (4) —
tasks routinely achieved by standard scientific computational envi-
ronments. It is shown in the proof of Theorem 1 (Section 4.4) that,
if w 0ð Þ < 0, then w is negative on 0; T�ð Þ and positive on T�;1ð Þ.
This remark permits implementation of an efficient bisection algo-
rithm to assess the optimal value T�. More details concerning the
numerical methods may be found in the Supplementary materials.

We continue with some properties characterizing the depen-
dence of the value function with respect to the parameters.

Theorem 2. The value function S�1 is increasing with respect to the
parameter D > 0 and decreasing with respect to the parameter
a 2 0;1½ Þ.

The statement of Theorem 2 corresponds to the intuition
whereby longer or more intense interventions result in greater
reduction of the epidemic final size.
Proof of Theorem 2. Let 0 < D 6 D0 and 1 > a P a0 P 0, with
D;að Þ– D0;a0� �

, and denote for short S�1 and S0�1 the corresponding
optimal costs. From (6) and the observation that
Ua;T;TþD � Ua0 ;T;TþD0 , one deduces easily that S�1 6 S0�1. Assume by
contradiction that S�1 ¼ S0�1. Then the optimal value S0�1 is realized
for two different optimal controls: one in Ua;T;TþD and one in
Ua0 ;T;TþD0 nUa;T;TþD. This contradicts the uniqueness of the optimal
control, demonstrated in Theorem 1. One thus concludes that
S�1 < S0�1. h

Theorem 2 leads to the following question: what is the benefit
of increasing indefinitely the lockdown duration D, and is it possi-
ble by this mean to stop the disease spread arbitrarily close to the
herd immunity? The next result answers tightly this issue.

Theorem 3. For any S0 2 Sherd;1ð Þ, define

a :¼ Sherd
S0 þ I0 � Sherd

ln S0 � ln Sherdð Þ: ð7Þ

Then a 2 0;1ð Þ and the following properties are fulfilled.

(i) If a 2 0;a½ �, then

lim

D!þ1
S�1 ¼ Sherd: ð8Þ

(ii) If a 2 a;1ð �, then
lim

D!þ1
S�1 ¼ S1 a1ð Þ < Sherd: ð9Þ
3

In accordance with the notations introduced before, a1 � a on
0;þ1½ Þ, and S1 a1ð Þ is the limit of S tð Þ when t ! þ1, for the solu-
tion of (1) corresponding to u ¼ a1.

Theorem 3 establishes that, provided that the lockdown is suf-
ficiently strong (more precisely, that a 6 a), then long enough
lockdown stops the disease propagation arbitrarily close after
passing the herd immunity level. On the contrary, if the lockdown
is too moderate (a > a), the power of such an action is intrinsically
limited. This phenomenon is clearly apparent in the simulations
provided in Section 3.
Proof of Theorem 3. One sees easily that a > 0, due to the fact that
S0 > Sherd. On the other hand,

a <
Sherd

S0 � Sherd
ln S0 � ln Sherdð Þ ¼ 1

S0=Sherd � 1
ln S0=Sherd < 1:

Assume now that a 6 a. Theorem 1 in Bliman et al., 2020
establishes that, for any e > 0, there exist D > 0 and u 2 Ua;0;D

such that S1 uð Þ 2 Sherd � e; Sherd½ �. As S�1 P S1 uð Þ, this shows that

lim sup
D!þ1

S�1 P Sherd:

Due to the fact that S�1 is increasing with respect to D, as
demonstrated by Theorem 2, and that S�1 6 Sherd for any D, one gets
(8).

Suppose now a > a. In such conditions, Bliman et al., 2020,
Theorem 1 shows that, for any D > 0 and u 2 Ua;0;D,

S1 uð Þ 6 S1 a1ð Þ < Sherd;

so that

lim sup
D!þ1

S�1 6 S1 a1ð Þ:

On the other hand, the value of S�1 increases with D (Theorem 2),
while S1 a1ð Þ is the limit of S1 a1 0;D½ �

� �
for D ! þ1. This yields (9)

and achieves the proof of Theorem 3. h

3. Numerical illustrations

We show in this Section the results of several numerical tests.
The algorithms designed to solve Problem (Pa;D) are provided in
the Supplementary materials, as well as a link to the resolution
codes. A case study is first presented in Section 3.1, based on esti-
mated conditions of circulation of the SARS-CoV-2 in France before
and during the confinement enforced between March 17th and
May 11th, 2020. This example is chosen merely for its illustrative
value, without claiming to a realistic description of the outburst.

The results provided and commented in Section 3.2 give a
broader view. They show the maximal final size reduction that
may be obtained for different basic reproduction numbers R0,
and for various realistic values of the maximal lockdown intensity
a and duration D. Results corresponding to a more comprehensive
set of values of R0 are provided in the Supplementary materials.

3.1. Optimal lockdown in conditions of Covid-19 circulation in France,
March–May 2020

The parameters used in the simulations of the present section
are given in Table 1. We assume that, on the total number
N ¼ 6:7	 107 of individuals corresponding to the French popula-
tion, there were initially no recovered individuals (R0 ¼ 0). The ini-
tial number of infected individuals is taken equal to 1000, a level
crossed on March 8th (Worldometer, 2020), so that
I0 ¼ 1	 103=6:7	 107 
 1:49		10�5. Estimates of the infection
rate b, of the recovery rate c and of the containment coefficient
alock in France between March 17th and May 11th 2020, are bor-



Table 1
Value of the parameters used in the simulations for system (1) (see Salje et al., 2020).

Parameter Name Value

b Infection rate 0.29 day�1

c Recovery rate 0.1 day�1

alock Lockdown level (France, March-May 2020) 0.231
S0 Initial proportion of susceptible cases 1� I0
I0 Initial proportion of infected cases 1:49	 10�5

R0 Initial proportion of removed cases 0
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rowed from Salje et al. (2020). They yield the following values for
the basic reproduction number and the herd immunity:
R0 
 2:9; Sherd 
 0:34:

With the initial conditions chosen here, the critical lockdown
intensity defined in (7) is
a 
 0:56:

The optimal solution S�; I�;R�;u�ð Þ of Problem (Pa;D) for a con-
tainment duration of 30 days (top), 60 days (middle) and 90 days
(bottom) is shown in Fig. 1, when total lockdown is allowed
(a ¼ 0). The evolution of the proportions of susceptible, infected
and removed cases is shown on the left, the optimal control on
the right. The optimal dates for starting the enforcement are
given in Table 2, together with the optimal asymptotic proportion
of susceptible cases and the peak value of the proportion of
infected.

As unveiled by close observation, one recovers the fact, estab-
lished in Theorem 1, that S T�ð Þ ¼ Sherd: when a ¼ 0, the optimal
confinement starts exactly when the herd immunity threshold
is crossed. Also, the optimal value S�1 is larger when D is larger
(Theorem 2), and it is known from Theorem 3 that this value con-
verges towards Sherd when D goes to infinity. It is indeed already
indistinguishable graphically from this value for D ¼ 60 and
90 days.

Fig. 2 shows the same numerical experiments than Fig. 1,
with a ¼ alock 
 0:231 < a 
 0:56. Optimal starting dates and
asymptotic proportions of susceptible are given in Table 3. The
results are qualitatively similar to Fig. 1. One sees that the lock-
down begins earlier in the previous case, and the achieved S�1
are smaller. An interesting feature is that the proportion of
infected at the peak of the epidemic is smaller for a ¼ alock than
for a ¼ 0. As a matter of fact, with a lockdown beginning earlier,
the peak of the epidemic is lower. This phenomenon, which may
seem paradoxical at first glance, clearly suggests that reducing
the final size and the peak value constitutes two conflicting
goals.

The optimal starting dates given by the numerical resolution
constitute an evident difference with the effective implementa-
tion that took place during the Spring 2020 epidemic outburst:
they are located in May, essentially at the time when, after two
months of lockdown, first relaxation of the measures were intro-
duced! This should not be a surprise: the rationale behind this
policy was not aimed at reaching herd immunity, but at reducing
infections, in order to avoid overwhelming the health system and
to be able to implement contact tracing on a tractable scale. On
the contrary, the results in Fig. 1 and 2 show a peak of infected
cases almost equal to 30% of the population —about twenty mil-
lion people—, demonstrating that the strategy consisting of
reaching herd immunity without considering other factors would
not be sustainable, even if achieved under the optimal policy ana-
lyzed here.
4

3.2. Maximal final size reduction under given epidemic and lockdown
conditions

Once the optimal solution u� is computed, one may easily deter-
mine numerically, thanks to Lemma 2 below, the optimal value S�1,
by solving the equation

S� T� þ Dð Þ þ I� T� þ Dð Þ � c
b
ln S� T� þ Dð Þ ¼ S�1 � c

b
ln S�1;

where, as said before, S�; I�ð Þ is the optimal solution.
Taking advantage of this principle, one may compute the opti-

mal final size reduction corresponding to any epidemic and lock-
down conditions. To fix the ideas, the value c ¼ 0:1 day�1 is
considered in this Section, corresponding to a mean recovery time
of 10 days. The general case is obtained by scaling: for (1) with dif-
ferent c, the values of S�1 and T� are obtained as

S�1 ¼ S0�1; T� ¼ 0:1
c

T 0� day;

where S0�1; T 0� are the optimal cost and starting date obtained for the

normalized system defined by the parameters c0 :¼ 0:1 day�1 and

b0 :¼ b
c
0:1 day�1

; a0 :¼ a; D0 :¼ c
0:1

D day

(in such a way that R0 ¼ b0=c0 ¼ b=c).
As an illustration, we present in the sequel computations

obtained for R0 ¼ 2 and R0 ¼ 6. A more complete set of values is
provided in the Supplementary materials. Fig. 3 shows the optimal
final size value S�1=Sherd as a function of the duration D, for several
values of the lockdown intensity a ranging from 0 to 0:8. For D
tending to 0, all curves meet at a common value that corresponds
to the final size attained in absence of lockdown. One observes that
the optimal value S�1=Sherd increases as a function of the lockdown
duration D, and decreases as a function of its maximal intensity a,
as announced in Theorem 2. For 0 < a < a, the optimal value S�1
converges towards Sherd (the best value one can expect) when D
increases indefinitely; while for a < a 6 1, the optimal value is
strictly smaller, and decreases with respect to a, as predicted by
Theorem 3. Observe that the value of a is larger for larger value
of R0, making social distancing less efficient for diseases with lar-
ger basic reproduction number. This trend is corroborated by the
inspection of wider assortment of values for R0, see the Supple-
mentary materials. One sees that, depending upon the initial con-
ditions, the optimal lockdown policy may induce a significant
decrease of the final size.

For the same values of R0, we represent in Fig. 4 the depen-
dency of S�1=Sherd with respect to the parameter a, for values of D
corresponding to 1, 2, 4 and 8 months. For a tending to 1, the value
of S�1=Sherd goes to the value achieved without control.

In the same way that Fig. 3 and 4 revealed the dependence of
S�1=Sherd respectively upon D and a, Fig. 5 and 6 show the depen-
dence of T� with respect to these parameters. Fig. 5 shows the vari-
ation of T� with respect to D, for the same values of a than Fig. 3.
The value of T� decreases as a function of D and of a. One observes
that for D close to 0, the optimal intervention begins at the time
where herd immunity is crossed, for every value of a. It converges
to a positive limit when a > a, while it converges to 0 when a < a.
Notice that the value of T� depends drastically upon R0.

Fig. 6 shows the variation of T� with respect to a, for the same
values of D than Fig. 4. The value of T� also decreases with respect
to a. When a ¼ 0, the optimal starting point is at the crossing of the
immunity threshold.

For sake of space, the dependence of S�1 and T� with respect to
the initial conditions S0; I0ð Þ is not explored here. Partial results not
provided suggest that both quantities increase with S0 and



Table 2
Characteristics of the optimal solutions computed with the parameters of Table 1, with lockdown intensity a ¼ 0 and duration D ¼ 0 (no lockdown), 30;60 and 90 days. The
starting dates are computed from the epidemic initial time on March 8th, where the cumulative number of infected exceeded 1000 cases. See the curves in Fig. 1, and explanations
in text.

D T� S�1 S�1=Sherd maxtP0I tð Þ
No lockdown — 0:0668 0:194 0:288

30 days T� ¼ 74:3 days (May 21st) 0:255 0:739 0:288
60 days T� ¼ 74:3 days (May 21st) 0:323 0:937 0:288
90 days T� ¼ 74:3 days (May 21st) 0:340 0:985 0:288

Fig. 1. Optimal solution S� ; I� ;R� ;u�ð Þ to Problem (Pa;D) computed for a ¼ 0:0;D ¼ 30;60 and 90 days. See numerical values in Table 2 and comments in the text.
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Table 3
Similar to Table 2, with lockdown intensity a ¼ alock 
 0:231. See corresponding curves in Fig. 2.

D T� S�1 S�1=Sherd maxtP0I tð Þ
No lockdown — 0:0668 0:194 0:288

30 days T� ¼ 72:1 days (May 19th) 0:222 0:644 0:282
60 days T� ¼ 71:5 days (May 18th) 0:302 0:875 0:278
90 days T� ¼ 71:3 days (May 18th) 0:331 0:959 0:277

Fig. 2. Same than Fig. 1, with a ¼ alock 
 0:231. Numerical values are provided in Table 3.
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decrease with I0. Notice that this monotony property is at least true
on the set S0; I0ð Þ : 0 6 S0 6 Sherd; 0 6 I0; S0 þ I0 6 1f g, where the
optimal mitigation must start immediately. Also, it is compatible
6

with the fact that T� goes unbounded when I0 converges to 0, see
Theorem 1. Determining the set S of values of S0; I0ð Þ for which
it is optimal to start mitigation immediately is also an interesting



Fig. 4. Graph of S�1=Sherd for Problem (Pa;D) as a function of a, for D 2 30f ( ), 60 ( ), 120 ( ), 240 (–)g and R0 2 2;6f g.

Fig. 5. Graph of T� for Problem (Pa;D) as a function of D, for a 2 0:0f ( ), 0:2 ( ), 0:4 ( ), 0:6 ( ), 0:8 ( ), a (- -)g and R0 2 2;6f g.

Fig. 6. Graph of T� for Problem (Pa;D) as a function of a, for D 2 30f ( ), 60 ( ), 120 ( ), 240 (–)g and R0 2 2;6f g.

Fig. 3. Graph of S�1=Sherd for Problem (Pa;D) as a function of D, for a 2 0:0f ( ), 0:2 ( ), 0:4 ( ), 0:6 ( ), 0:8 ( ), a (- -)g and R0 2 2;6f g.

Pierre-Alexandre Bliman and M. Duprez Journal of Theoretical Biology 511 (2021) 110557
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problem, not considered here. The set mentioned above is con-
tained in S, and one may conjecture that S0; I0ð Þ 2 S implies that
S00; I

0
0

� � 2 S, whenever S00 6 S0; I
0
0 P I0.

4. Proof of Theorem 1

The proof is organized as follows. We first recall in Section 4.1
results obtained in Bliman et al. (2020) for the optimal control prob-
lem considered on intervention intervals of the type 0;D½ �;D > 0.
Using these results, one shows in Section 4.2 that any solution of prob-
lem (Pa;D) is of type (3) and may be determined by solving a 2D opti-
mization problem. It is subsequently shown in Section 4.3 that the
latter problem may be simplified to a 1D optimization problem,
whose study is achieved in Section 4.4. Last, the property on the limit
of T� is demonstrated in Section 4.5.

4.1. Optimal control on a finite horizon 0;D½ �

After introducing some notations, we recall here optimal con-
trol results from Bliman et al. (2020).

For any 0 6 t 6 t0, any input u, and any positive initial condition
X0 ¼ S0; I0ð Þ such that S0 þ I0 6 1, one denotes

X t0; t;X0;uð Þ :¼ S t0; t;X0; uð Þ; I t0; t;X0; uð Þð Þ
the value at time t0 of the solution of (1) departing at time t from X0,
with the control input u. This extended notation will be simplified
when clear from the context.

Also, introduce the function UR defined for any R > 0 by:

UR : R�
þ 	 Rþ 3 S; Ið Þ#Sþ I � 1

R
ln S: ð10Þ

An important property is now given, which allows to define sca-
lar quantities invariant along the trajectories. See details in Bliman
et al., 2020, Lemma 3.1.

Lemma 1. For any u 2 L1 0;þ1½ Þ; 0;1½ �ð Þ and c 2 R, one has

d
dt

UR S tð Þ; I tð Þð Þ½ � ¼ b
R
u tð Þ � c


 �
I tð Þ ð11Þ

along any trajectory of system (1). In particular, if u is constant on a
non-empty, possibly unbounded, interval, then the function
t # UR0u S tð Þ; I tð Þð Þ is constant on this interval along any trajectory of
system (1).

The proof of Lemma 1 is straightforward and may be found in
Bliman et al. (2020). This result allows to characterize the epidemic
final size resulting from the use of an input control in Ua;T;T 0 , as sta-
ted now, see details and proof in Bliman et al., 2020, Lemma 3.2.

Lemma 2. Let 0 6 T < T 0 and u 2 Ua;T;T 0 . For any trajectory of (1),
S1 uð Þ is the unique solution in 0; Sherd½ � of the equation

UR0 S1 uð Þ;0ð Þ ¼ UR0 X T 0;0;X0;u
� �� �

;

where UR0 is given by (10).

Due to the fact that any control input u 2 Ua;T;TþD is equal to 1
on T þ D;þ1½ Þ, the map t # UR0 X t;0;X0;uð Þð Þ is constant on that
interval. On the other hand, the map S# UR0 S;0ð Þ is decreasing
on the interval 0; Sherd½ �, so arguing as in Bliman et al. (2020), one
deduces that solving problem (Pa;D) is equivalent to solve

inf
TP0

inf
u2Ua;T;TþD

UR0 X T þ D; 0;X0; uð Þð Þ: ð12Þ

This property is central to our approach: it transforms (Pa;D),
which consists in maximizing the limit of S at infinity, into an opti-
mal control problem on a finite time horizon. This reduction proce-
8

dure is at the basis of the arguments in Ketcheson (2020) and
Bliman et al. (2020). Based on the latter one obtains the following
result. See details in Bliman et al., 2020, Theorem 2.3.

Theorem 4. For any a 2 0;1½ Þ and D > 0, the optimal control
problem

sup
u2Ua;0;D

S1 uð Þ ð13Þ

admits a unique solution. Moreover the optimal control, denoted
u�
0;D X0ð Þ, is equal to the function uT�0 ;D defined in (3), for some uniquely

defined T�
0 2 0;D½ Þ.

Theorem 4 shows that the optimal control is bang-bang with at
most two switches: a first one at some time T�

0 2 0;D½ Þ, and a sec-
ond one at time D. Moreover, the value of T�

0 appears as the result
of a 1D optimization problem, as

sup
u2Ua;0;D

S1 uð Þ ¼ sup
T�02 0;D½ Þ

S1 uT�0 ;D

� 	
:

4.2. Reduction to a 2D optimization problem

Consider now, for any 0 6 T < T 0, the general problem

inf
u2Ua;T;T0

UR0 X T 0;0;X0;u
� �� �

: ðPa;T;T 0 Þ

The problem (Pa;0;D) is equivalent to (13), which is the subject of
Theorem 4. The following result shows that problem (Pa;T;T 0 ), under
its equivalent form (12), benefits from this result.

Proposition 1. Let 0 6 T < T 0. There exists a unique optimal
control u�

T;T 0 X0ð Þ 2 Ua;T;T 0 for problem (Pa;T;T 0 ) and it verifies:

u�
T;T 0 X0ð Þ tð Þ ¼ u�

0;T 0�T X T;0;X0;1ð Þð Þ t � Tð Þ; t 2 T; T 0� �
: ð14Þ

Formula (14) and the fact that u�
T;T 0 X0ð Þ 2 Ua;T;T 0 imply that

u�
T;T 0 X0ð Þ is equal to 1 on 0; T½ � [ T 0;þ1� �

, so this function is
uniquely defined on the whole 0;þ1½ Þ by the statement. Proposi-
tion 1 says that the optimal control for problem (Pa;T;T 0 ) with initial
value X0 is equal to the optimal control for problem (Pa;0;T�T 0 ) with
initial value X T;0;X0;1ð Þ, delayed from the time duration T and
completed by 1 on the interval 0; T½ �. In turn, the point
X T;0;X0;1ð Þ is the value at time T of the solution of (1) departing
at time 0 from X0 with input equal to 1. Therefore, solving
(Pa;T;T 0 ) with initial condition X0 amounts to solve (Pa;0;T 0�T ) with
initial condition X T;0;X0;1ð Þ.

Before going further, let us prove the previous result.
Proof of Proposition 1. One may define a canonical bijection
C : Ua;0;T 0�T ! Ua;T;T 0 by

C uð Þ tð Þ ¼ 1 if t 2 0; T½ �; C uð Þ tð Þ ¼ u t � Tð Þ if t 2 T;þ1½ Þ
for any u 2 Ua;0;T 0�T . By the semi-group property deduced from the
fact that system (1) is stationary, one has for any u 2 Ua;T;T 0 and
any t 2 T; T 0� �

,

X t;0;X0;uð Þ ¼ X t � T;0;X T;0;X0;1ð Þ;C�1 uð Þ� �
:

Applying this formula with t ¼ T 0 yields

X T 0;0;X0;u
� � ¼ X T 0 � T;0;X T;0;X0;1ð Þ;C�1 uð Þ� �

:

Therefore, for any u 2 Ua;T;T 0 ,

UR0 X T 0;0;X0;u
� �� � ¼ UR0 X T 0 � T;0;X T;0;X0;1ð Þ;C�1 uð Þ� �� �

;

and this correspondence permits to achieve the demonstration. h
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Using the qualitative properties of the solutions of problem (12)
recalled above, we deduce from Proposition 1 that, for any T P 0,
the problem

inf
u2Ua;T;TþD

UR0 X T þ D;0;X0; uð Þð Þ

admits a unique solution of the type uTþeT;D ;TþD, for some eT;D 2 0;D½ Þ.
We thus have proved so far that problem (Pa;D) is equivalent to the
2D optimization problem

inf
TP0

inf
e2 0;D½ Þ

UR0 X T þ D;0;X0;uTþe;TþDð Þð Þ:
4.3. Reduction to a 1D optimization problem

In this section, we further reduce the complexity of the optimal
control problem under study. We first show that the problem
(Pa;D) admits a solution. This indeed amounts to show that no
unbounded maximizing sequence of times Tkf gk2N is to be found.

Proposition 2. Problem (Pa;D) admits at least one solution.
Proof. Consider �X :¼ �S;�I
� �

the solution associated to u ¼ 1, and let
�T be defined by �S �T

� � ¼ Sherd. For this value �T , define XT :¼ ST ; IT
� 	

as

the solution to system (1) associated to u�T;�TþD. Lemma 1 shows that

� the map t # UR0
�X tð Þ� �

is constant on 0;þ1½ Þ;
� the map t # UR0 XT tð Þ

� 	
is constant on 0; �T

� �
and on

�T þ D;þ1� �
;

� the value of UR0 XT tð Þ
� 	

on 0; �T
� �

is smaller than the value on
�T þ D;þ1� �

, because (11) implies that this map cannot increase
on �T; �T þ D
� �

.

Therefore, the fact that UR0
�X 0ð Þ� � ¼ UR0 X0ð Þ ¼ UR0 XT 0ð Þ

� 	
implies

UR0 XT �T þ D
� �� 	

< UR0
�X �T þ D
� �� �

;

and thus

S1 u�T;�TþD

� �� c
b
ln S1 u�T;�TþD

� �� �
< S1 1ð Þ � c

b
ln S1 1ð Þð Þ:

Since UR0 �;0ð Þ is decreasing on 0; Sherdð Þ and, by Lemma 2,
S1 u�T;�TþD

� �
; S1 1ð Þ < Sherd, we deduce that

S1 u�T;�TþD

� �
> S1 1ð Þ:

There thus exists T1 sufficiently large, so that

S1 1ð Þ < �S T1ð Þ < S1 u�T;�TþD

� �
:

Since S decreases along every trajectory, for each T > T1 and
e 2 0;Dð Þ, one has

S1 uTþe;TþDð Þ < �S T1ð Þ;
because uTþe;TþD � 1 on 0; T1½ � � 0; T þ e½ �. Therefore, one may thus
restrict the search for optimal solutions of problem (Pa;D) to those
T; eð Þ that belong to the set 0; T1½ � 	 0;D½ �. We conclude by observing
that the problem

inf
T2 0;T1½ �

inf
e2 0;D½ �

UR0 X T þ D;0;X0;uTþe;TþDð Þð Þ; ð15Þ

which consists in optimizing a continuous function on a finite-
dimensional compact set, admits a non-void set of solutions. h
9

We now show in the next result that every possible optimal
solution for problem (15) corresponds to e ¼ 0. In other terms,
any optimal policy consists in applying the more intense lockdown
intensity during a duration exactly equal to D, not less.

Proposition 3. Any solution of problem (Pa;D) is of the type uT;TþD

for some T P 0.

From Proposition 3 one deduces that problem (Pa;D) is equiva-
lent to solving

inf
T2 0;�T½ �

UR0 X T þ D;0;X0;uT;TþDð Þð Þ: ð16Þ

This achieves the announced reduction to a 1D optimization
problem.
Proof of Proposition 3. Assume by contradiction that uTþe;TþD is solu-
tion to problem (Pa;D) for some e > 0. Then
uTþe;TþD 2 Ua;Tþe;TþD \Ua;Tþe;TþeþD. We know from Proposition 2
and Theorem 4 that

inf
u2Ua;Tþe;TþeþD

UR0 X T þ D;0;X0;uð Þð Þ

admits a unique solution, which writes uTþeþd;TþeþD for some d P 0.
Since uTþe;TþD – uTþeþd;TþeþD, one has

UR0 X T þ D;0;X0;uTþeþd;TþeþDð Þð Þ < UR0 X T þ D;0;X0;uTþe;TþDð Þð Þ:
This is in contradiction with the optimality of uTþe;TþD for prob-

lem (Pa;D). Therefore, e ¼ 0 for any optimal control. h

4.4. Solving the 1D optimization problem (16)

We now achieve the demonstration of Theorem 1, through
the study of problem (16), establishing in particular unique-
ness of the optimum control. Denote T� an optimal solution
of (16).

Step 1: necessary first order optimality conditions Let u ¼ uT;TþD be
an optimal control for problem (Pa;D). Let us introduce the criterion
j given by

j Tð Þ :¼ UR0 ST T þ Dð Þ; IT T þ Dð Þ
� 	

¼ IT T þ Dð Þ þ ST T þ Dð Þ � c
b
ln ST T þ Dð Þ
� 	

;

where, as done in the definition of w in (4), ST ; IT
� 	

is the solution

corresponding to the control uT;TþD. For sake of simplicity, we will
usually omit these subscripts in the sequel. With this notation,
(16) simply writes

inf
TP0

j Tð Þ: ð17Þ

By using Lemma 2, one has for the solution ST ; IT
� 	

:

I tð Þ þ S tð Þ � c
b ln S tð Þ ¼ c0 in 0; T½ �;

I tð Þ þ S tð Þ � c
ab ln S tð Þ ¼ I Tð Þ þ S Tð Þ � c

ab ln S Tð Þ in T; T þ D½ �;
ð18Þ

where c0 :¼ I0 þ S0 � c
b ln S0. Eliminating I tð Þ from (1) with

u ¼ uT;TþD, thanks to (18), we infer that S solves the system

_S ¼ �bS c0 � Sþ c
b
ln S


 �
; in 0; Tð Þ; ð19aÞ

_S ¼ �abS c0 þ c
b

1� 1
a


 �
ln S Tð Þ � Sþ c

ab
ln S


 �
; in T; T þ Dð Þ;ð19bÞ

with the initial value S 0ð Þ ¼ S0. Using (18), one gets
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j Tð Þ ¼ I T þ Dð Þ þ S T þ Dð Þ � c
b ln S T þ Dð Þ

¼ I Tð Þ þ S Tð Þ � c
ab ln S Tð Þ þ c

b
1
a� 1
� �

ln S T þ Dð Þ
¼ c0 þ c

b ln S Tð Þ � c
ab ln S Tð Þ þ c

b
1
a� 1
� �

ln S T þ Dð Þ;
so that the cost function reads

j Tð Þ ¼ c0 þ c
b

1
a
� 1


 �
ln

ST T þ Dð Þ
ST Tð Þ

 !
:

We point out that this expression depends upon T through
the arguments T and T þ D at which the function ST is consid-
ered; but also through the value of the function ST itself, which
depends upon T through the input uT;TþD. Special care is there-
fore needed to compute the derivative j0 of j with respect to T.
This constitutes the subject of the following technical lemma,
whose proof is postponed to the end of the section, for sake of

clarity. For simplicity, we denote in the sequel dS T þ Dð Þ; dS Tð Þ
and dS tð Þ the derivatives of the functions ST T þ Dð Þ; ST Tð Þ and
ST tð Þ with respect to T, that is:

dS T þ Dð Þ :¼ @ ST TþDð Þ½ �
@T ; dS Tð Þ :¼ @ ST Tð Þ½ �

@T ;dS tð Þ :¼ @ ST tð Þ½ �
@T ; t 2 T; T þ Dð Þ:

Lemma 3. The following formulas hold.

dS T þ Dð Þ ¼ bST T þ Dð ÞIT T þ Dð Þ �1þ a� 1ð ÞcIT Tð Þ
Z TþD

T

ds

IT sð Þ

 !
;

ð20aÞdS Tð Þ ¼ �bST Tð ÞIT Tð Þ; ð20bÞ

dS tð Þ ¼ a� 1ð ÞbST tð ÞIT tð Þ 1þ cIT Tð Þ
Z t

T

ds

IT sð Þ

 !
; t 2 T; T þ Dð Þ:

ð20cÞ
Thanks to identities (20a)-(20b), one may compute

j0 Tð Þ ¼ c
b

1
a� 1
� � dS TþDð Þ

S TþDð Þ �
cS Tð Þ
S Tð Þ


 �
¼ c 1

a� 1
� �

I T þ Dð Þ �1þ a� 1ð ÞcI Tð Þ R TþD
T

ds
I sð Þ

� 	
þ I Tð Þ

� 	
¼ c 1

a� 1
� �

I Tð Þ � I TþDð Þ
I Tð Þ þ a� 1ð Þc R TþD

T
I TþDð Þ
I sð Þ dsþ 1

� 	
:

We deduce that j0 Tð Þ ¼ 0 is equivalent to

w Tð Þ ¼ 0; ð21Þ
for the function w defined in (4).

Step 2: Zeros of j0 and uniqueness of the optimal time T� Integrat-
ing the second equation in (1) for u ¼ uT;TþD, one has for any

t 2 T; T þ Dð Þ, I tð Þ ¼ I T þ Dð Þ exp R t
TþD abS sð Þ � cð Þds

� 	
. Then, using

the expression of w in (4), it follows that

w Tð Þ ¼ � exp
Z TþD

T
abS tð Þ � cð Þdt


 �
þ a� 1ð Þc

Z TþD

T
exp

Z TþD

s
abS tð Þ � cð Þdt


 �
dsþ 1:

Introducing u tð Þ :¼ exp
R TþD
t abS sð Þ � cð Þds

� 	
for t 2 0; T þ D½ �,

the last expression writes simply
10
w Tð Þ ¼ �u Tð Þ þ a� 1ð Þc
Z TþD

T
u tð Þdt þ 1

¼ �u Tð Þ þ a� 1ð Þc
Z D

0
u T þ tð Þdt þ 1:

Differentiating the expressions in u with respect to t and after-
wards w with respect to T yields first

u0 tð Þ ¼ ab S T þ Dð Þ � S tð Þ þ
Z TþD

t

dS sð Þ ds

 �

u tð Þ; t P 0;

and then

w0 Tð Þ ¼ �ab S T þ Dð Þ � S Tð Þ þ
Z TþD

T

dS sð Þ ds

 �

u Tð Þ

þ a� 1ð Þcab
Z D

0
S T þ Dð Þ � S T þ tð Þ þ

Z TþD

Tþt

dS sð Þ ds

 �

u T þ tð Þdt:

On the one hand, S decreases along the trajectory, so
S T þ Dð Þ � S T þ tð Þ < 0 for any t 2 0;D½ Þ. On the other hand,dS tð Þ < 0, see formula (20c). One then deduces that both terms in
the addition in the previous formula are positive. The function w
is thus increasing on 0;1ð Þ.

Step 3: The case a > 0. Assume now that a > 0. Then, for any T

large enough in such a way that ST Tð Þ < Sherd, one has
abST tð Þ � c < abSherd � c ¼ c a� 1ð Þ for any t 2 T; T þ Dð Þ, because
the function ST is decreasing along every trajectory. For such a suf-
ficiently large T, one has

u tð Þ ¼ exp
Z TþD

t
abS sð Þ � cð Þds


 �
< ec a�1ð Þ TþD�tð Þ; t 2 T; T þ Dð �;

ð22Þ
and thus

w Tð Þ ¼ �u Tð Þ þ a� 1ð Þc R D
0 u T þ tð Þdt þ 1

> �ec a�1ð ÞD þ a� 1ð Þc R D
0 e D�tð Þc a�1ð Þdt þ 1 ¼ 0:

Therefore, the function w being increasing, if w 0ð Þ > 0, then (21)
has no solution. Equivalently there is no T such that j0 Tð Þ ¼ 0, and
thus T� ¼ 0. Conversely, if w 0ð Þ � 0, then (21) admits a unique solu-
tion T�, which is the unique critical point of j. In the particular case
where w 0ð Þ ¼ 0, one has T� ¼ 0.

Remark 1. Notice that the function j is decreasing on 0; T�ð Þ and
increasing on T�;1ð Þ. This observation is useful for the numerical
implementation.

The fact that S T�ð Þ > Sherd if T� > 0 comes as a byproduct of the
previous considerations. Indeed, it has been shown that w Tð Þ > 0 if
ST Tð Þ < Sherd. Therefore, if T

� > 0, then w T�ð Þ ¼ 0 and S T�ð Þ P Sherd.
Noticing that the inequality in (22) is strict for any t 2 T; T þ Dð Þ
yields the strict inequality S T�ð Þ > Sherd.

Step 4: The case a ¼ 0 In the case a ¼ 0, the solution ST corre-
sponding to uT;TþD is constant on T; T þ Dð Þ, and we deduce that

j Tð Þ ¼ I T þ Dð Þ þ S Tð Þ � c
b
ln S Tð Þð Þ ¼ e�cD � 1

� �
I Tð Þ þ c0:

We conclude using the fact that I Tð Þ is maximal when
S Tð Þ ¼ Sherd, therefore T� is such that S T�ð Þ ¼ Sherd.

To terminate the work done in Section 4.4, it now remains to
prove Lemma 3.
Proof of Lemma 3. Using the notation ST previously defined, one has
(see (19b)) on T; T þ Dð Þ

_ST ¼ �abST c0 þ c
b

1� 1
a


 �
ln ST Tð Þ
� 	

� ST þ c
ab

ln ST

 �

;
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and at time T; ST Tð Þ is defined thanks to (19a) byZ ST Tð Þ

S0

dv
bv c0 � v þ c

b lnv
� 	 ¼ �T: ð23Þ

By differentiating (23) with respect to T, one infers

dST Tð Þ ¼ �bST Tð Þ c0 � ST Tð Þ þ c
b
ln ST Tð Þ
� 	
 �

¼ �bST Tð ÞIT Tð Þ;

that is (20b).
Furthermore, using (19b), one hasZ ST TþDð Þ

ST Tð Þ

dv
v c0 þ c

b 1� 1
a

� �
ln ST Tð Þ
� 	

� v þ c
ab lnv

� 	 ¼ �abD:

Differentiating this relation with respect to T yieldsdST TþDð Þ
ST TþDð Þ c0þ c

b 1�1
a

� �
lnST Tð Þ�ST TþDð Þþ c

ab lnS
T TþDð Þ

� 	
�

dST Tð Þ
ST Tð Þ c0þ c

b lnS
T Tð Þ�ST Tð Þ

� 	
�c
b

1�1
a


 � dST Tð Þ
ST Tð Þ

Z ST TþDð Þ

ST Tð Þ

dv

v c0þ c
b 1�1

a

� �
lnST Tð Þ�vþ c

ab lnv
� 	2¼0:

Let us simplify this latter identity. Observe first that, because of
(18), one has

c0 þ c
b

1� 1
a


 �
ln ST Tð Þ ¼ IT tð Þ þ ST tð Þ � c

ab
ln ST tð Þ

for each t 2 T; T þ Dð Þ. By using at the same time the change of vari-
able v ¼ S tð Þ and the expression of IT tð Þ; t 2 T; T þ Dð Þ, extracted
from this identity, we infer thatR ST TþDð Þ

ST Tð Þ
dv

bv c0þc
b 1�1

að Þ ln ST Tð Þ�vþ c
ab ln vð Þ2

¼ R TþD
T

1

bST sð Þ IT sð Þð Þ2
_ST sð Þds ¼ R TþD

T
�aST sð ÞIT sð Þ
ST sð Þ IT sð Þð Þ2 ds

¼ �a R TþD
T

ds
IT sð Þ :

Combining all these facts leads to

0 ¼
dST T þ Dð Þ

ST T þ Dð ÞIT T þ Dð Þ þ bþ c 1� að ÞbIT Tð Þ
Z TþD

T

ds

IT sð Þ ;

and we arrive at (20a).

Similar arguments allow for the computation of dS tð Þ. This
achieves the proof of Lemma 3. h

4.5. Limit behaviour of T� when I0 vanishes

To complete the demonstration of Theorem 1, it now remains to
prove the last property of the statement. The following result is
instrumental for this purpose.

Lemma 4. Assume S0 2 Sherd;1ð Þ. For any �T P 0, there exist c > 0
and �I0 > 0 such that
8I0 2 0;�I0
� �

; max
T2 0;�T½ �

w Tð Þ < �c < 0; ð24Þ

where w defined in (4) depends upon I0 through the initial value of

ST ; IT
� 	

.

11
Using the characterization (already demonstrated above) of T�

given in Theorem 1, one deduces straightforwardly from Lemma
4 that

lim
I0&0þ

T� ¼ þ1:

Proof of Lemma 4. Let T P 0. From the fact that _IT 6 bS0�ð
cÞIT ; IT 0ð Þ ¼ I0, one deduces that 0 6 IT tð Þ 6 I0e bS0�cð Þt; t 2 0; T þ D½ �.

From this, one deduces that j _ST j ¼ bu tð ÞST IT 6 g I0ð ÞST , where
g I0ð Þ represents, here and in the sequel, quantities that converge
to 0 when I0 vanishes, uniformly on 0; T þ D½ � when they depend
upon time t. Therefore,

ST tð Þ ¼ S0 þ g I0ð Þ; t 2 0; T þ D½ �:
Define now x :¼ abS0 � c. From the foregoing, one has

_IT ¼ bS0 � cð ÞIT þ I0g I0ð Þ; t 2 0; T½ �;
_IT ¼ xIT þ I0g I0ð Þ; t 2 T; T þ D½ �:

(
ð25Þ

By integration one deduces from (25) that
IT tð Þ ¼ I0e bS0�cð Þt þ I0g I0ð Þ for any t 2 0; T½ �, and in particular that
IT Tð Þ ¼ I0 e bS0�cð ÞT þ g I0ð Þ� �

.
Assume first x – 0, then integration of the second formula in

(25) yields

IT tð Þ ¼ IT Tð Þex t�Tð Þ þ I0g I0ð Þ
¼ I0 e bS0�cð ÞTex t�Tð Þ þ g I0ð Þ� �

; t 2 T; T þ D½ �: ð26Þ

Using (26) to compute the value w Tð Þ in (4) then shows that

w Tð Þ ¼ �exD þ a� 1ð Þc e
xD � 1
x

þ 1þ g I0ð Þ

¼ a� 1ð Þc
x

� 1

 �

exD � 1
� �þ g I0ð Þ: ð27Þ

If x > 0, then due to the fact that a� 1 is negative, the first fac-
tor of the product is negative, while the second one is positive. If
x < 0, then the second factor is negative, while the first one is pos-
itive, because

a� 1ð Þc�x ¼ a� 1ð Þc� abS0 þ c ¼ ab Sherd � S0ð Þ < 0;

with Sherd defined in (2). In any case, the zero-order term in (27) is
negative when x– 0.

The case x ¼ 0 is similar, with (27) replaced by

w Tð Þ ¼ �1þ a� 1ð ÞcDþ 1þ g I0ð Þ ¼ a� 1ð ÞcDþ g I0ð Þ: ð28Þ
As the higher-order terms g I0ð Þ in (27) and (28) vanishwhen I0 goes

to 0 uniformly on any compact of 0;þ1½ Þ, this demonstrates (24). h

5. Conclusion

Voluntarily ignoringmany features important in the effective han-
dling of a human epidemic (unmodeled sources of heterogeneity in
the spread of the disease, limited hospital capacity, imprecise epi-
demiological data, partial respect of the enforcement measures. . .),
we investigated here the effects of social distancing on a simple SIR
model. In this simplified setting, we have shown that it is possible
to exactly answer the following question: given maximal social dis-
tancing intensity and duration (but without prescribed starting date),
how can one minimize the epidemic final size, that is the total num-
ber of individuals infected during the outbreak? Our contribution is
threefold: we have proved the existence of a unique optimal policy,
shown some of its key properties, and demonstrated how to deter-
mine it numerically by an easily tractable algorithm. As an outcome,
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this provides the best possible policy, in the worst case where no vac-
cine or therapy exists. Numerical computations have been provided
that exemplify the theoretical results and allowed to tabulate the
maximal gain attainable in terms of cumulative number of infected
during the outbreak, under various experimental conditions.

It is somewhat intuitive that the best policy achievable by
imposing a lockdown of possibly time-varying, but limited, inten-
sity on a time interval of which only the duration is restricted, is
reached by enforcing the strictest distancing during the whole time
interval. However, up to our knowledge this had not been proved
or conjectured so far. Moreover, our results show that the onset
of the lockdown is uniquely determined as the unique solution of
a numerically tractable equation.

The fact that the optimal control does not begin from the earli-
est possible time is only an apparent paradox. As a matter of fact,
epidemics behave somehow as wildfires —the propellant being
the susceptible individuals. On the one hand, attempting to contain
the spread too early is pointless, as essentially the same amount of
propellant will be present after the end of the intervention, leading
ultimately to the same epidemic final size. On the other hand, act-
ing too late is also useless, as in this case most of the stock of pro-
pellant will have been already consumed at the time of the
intervention. The best time to proceed lies in between, somewhere
around the peak of the epidemic when the herd immunity thresh-
old is crossed —typically some weeks after the beginning of the
epidemics—, with larger or more intense intervention inducing lar-
ger mitigation effect. The results provided allow to determine pre-
cisely what is the best time to initiate social distancing.

As a last remark, notice that in the simplified setting considered
here, limited hospital capacity or deaths caused by supplementary
mortality are ignored. Among other extensions, we plan to address
in the future the issue of minimization of the epidemic final size
under adequate constraints.
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