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Simple Summary: Lynch-like syndrome (LLS) is defined as colorectal cancer cases with microsatellite
instability (MSI) and loss of expression of MLH1, MSH2, MSH6, or PMS2 by immunohistochemistry
(IHC) in the absence of a germline mutation in these genes that cannot be explained by BRAF mutation
or MLH1 hypermethylation. The application of the universal strategy for the diagnosis of Lynch
syndrome (LS) in all CRCs is leading to an increase in the incidence of cases of LLS. It has been
described that risk of cancer in relatives of LLS patients is in between of that found in Lynch syndrome
families and sporadic cases. That makes LLS patients and their families a challenging group for which
the origin of CRC is unknown, being a mixture between unidentified hereditary CRC and sporadic
cases. The potential causes of LLS are discussed in this review, as well as methods for identification
of truly hereditary cases.

Abstract: Lynch syndrome is an autosomal dominant disorder caused by germline mutations in DNA
mismatch repair (MMR) system genes, such as MLH1, MSH2, MSH6, or PMS2. It is the most common
hereditary colorectal cancer syndrome. Screening is regularly performed by using microsatellite
instability (MSI) or immunohistochemistry for the MMR proteins in tumor samples. However, in
a proportion of cases, MSI is found or MMR immunohistochemistry is impaired in the absence
of a germline mutation in MMR genes, BRAF mutation, or MLH1 hypermethylation. These cases
are defined as Lynch-like syndrome. Patients with Lynch-like syndrome represent a mixture of
truly hereditary and sporadic cases, with a risk of colorectal cancer in first-degree relatives that is
between the risk of Lynch syndrome in families and relatives of sporadic colon cancer cases. Although
multiple approaches have been suggested to distinguish between hereditary and sporadic cases, a
homogeneous testing protocol and consensus on the adequate classification of these patients is still
lacking. For this reason, management of Lynch-like syndrome and prevention of cancer in these
families is clinically challenging. This review explains the concept of Lynch-like syndrome, potential
mechanisms for its development, and methods for adequately distinguishing between sporadic and
hereditary cases of this entity.

Keywords: lynch syndrome; lynch-like syndrome; hereditary cancer; colorectal cancer; DNA
mismatch repair genes

1. Introduction

Lynch-like syndrome (LLS) is defined as colorectal cancer cases with microsatellite
instability (MSI) and loss of expression of MLH1, MSH2, MSH6, or PMS2 by immuno-
histochemistry (IHC) in the absence of a germline mutation in these genes that cannot
be explained by BRAF mutation or MLH1 hypermethylation [1]. Managing these cases
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is challenging because the subsequent carcinogenic process is yet to be unveiled. LLS is
probably caused by somatic mutations in the mismatch repair (MMR) genes, and, therefore,
it is sporadic [2,3]. However, patients with LLS and their relatives have an increased risk of
colorectal cancer (CRC), suggesting a possibility of inherited risk. Thus, the most probable
scenario is that LLS represents a mixture of sporadic MSI cases, unidentified Lynch syn-
drome (LS) cases, and possibly other hereditary cases of yet-to-be-determined origin [1,4].
Differentiating between both sporadic and hereditary origin has been a challenge, mainly
due to the difficulty in conducting mutational somatic studies of CRC samples. In this
review, the characteristics of LLS cases, the potential causes, and recommendations on
managing these cases are discussed.

2. Carcinogenic Pathways in Colorectal Cancer

CRC is the third most commonly diagnosed cancer after breast and lung cancer,
accounting for 10% of all cancers diagnosed worldwide, or approximately 2 million cases
every year [5]. Approximately 70–80% of CRC are considered to be sporadic [6].

Based on molecular characteristics, CRC can be subclassified into tumors that exhibit
chromosomal instability (CIN) and tumors with MSI. CIN includes structural abnormalities
or changes in the number of chromosomes [7]. Missegregation of chromosomes can lead
to both the activation of oncogenes, such as KRAS, and tumor-suppressor effects, such as
inactivation of APC [8,9]. Approximately 70–80% of colorectal tumors have chromosomal
abnormalities associated with poor prognosis [10]. CIN causes tumor progression by
increasing genomic alterations, making the tumor more aggressive and drug-resistant [11].
Most tumors with CIN are microsatellite stable (MSS) [12].

Between 20% and 30% of CRCs arise through the serrated pathway of carcinogene-
sis [13]. The serrated pathway includes tumors with MSS and MSI. Serrated polyps are the
precursor lesion in this pathway. A majority of serrated polyps (80–90%) are benign lesions,
with only a minority developing dysplasia. However, after dysplasia, carcinogenesis is
accelerated and CRC develops [14]. Most CpG island methylator phenotype (CIMP) tumors
are MSS or have low MSI, but if hypermethylation affects MLH1, CIMP tumors can also
have high MSI. BRAF mutation is the original somatic event in this pathway, with CIMP as
an early feature [13].

Finally, tumors with MSI represent 15% of all CRCs and are MMR-deficient (MMR-
D) [15–17]. The role of MMR system is to correct mismatches and small insertion/deletions
that occur during DNA replication. Microsatellites are repetitive sequences that are prone
to the accumulation of errors [18]. When there is a deficiency in the MMR machinery,
these errors cannot be corrected, resulting in microsatellites that are different in size and
MSI [19]. On the one hand, the most frequent cause of MMR-D is the hypermethylation
of MLH1, which occurs in 80% of tumor with MSI tumors, as a consequence of CIMP [20].
On the other hand, in a percentage of the remaining cases, MMR-D is caused by germline
mutations in the MMR genes MLH1, MSH2, MSH6, and PMS2 [21]. Currently, three CRC
phenotypes are related to the presence of MSI: MSI sporadic tumors, LS, and LLS (Figure 1).
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Figure 1. Carcinogenic pathways in CRC. CIN, chromosomal instability.

3. Lynch Syndrome

LS is the most common hereditary cancer syndrome and accounts for approximately
3% of all CRCs [22]. LS is an autosomal dominant disorder caused by germline mutations
in MLH1, MSH2, MSH6, and PMS2, as well as deletions in EPCAM. Germline EPCAM
deletions result in methylation of the surrounding genomic region, affecting the MSH2 pro-
moter located 18 Kb downstream. As a consequence, MSH2 gene expression is silenced [23].
Constitutional epigenetic silencing of MLH1 [24–36] and hypermethylation of MSH2 as a
consequence of EPCAM deletion [29] have been rarely reported in some families.

LS patients develop multiple tumors, most frequently colorectal and endometrial [37],
but also upper gastrointestinal, ovarian, biliary, urinary, brain, non-melanoma skin, and
prostate tumors [38]. LS patients are diagnosed at an early age; with a mean age of
diagnosis of around 45 years, they develop cancer a mean of 23 years earlier than the
general population [39]. Lynch tumors develop faster than sporadic CRC [40]. LS patients
have an increased risk of synchronous and metachronous neoplasias. Approximately
7% of LS patients have multiple cancers when diagnosed [40,41]. LS tumors are poorly
differentiated, and some present with mucinous features, a medullary growth pattern or
showing infiltrating lymphocytes [42,43]. Moreover, their location is predominately in the
proximal colon [40,44].

The diagnostic algorithm for LS starts by testing tumors for MSI and/or loss of im-
munochemical expression of MMR proteins. The Jerusalem guidelines, so-called ‘universal
screening’, recommend screening all CRCs and endometrial patients <70 years old for MSI
or MMR-D [45]. If MLH1 is lost in IHC, the tumor should then be tested for methylation
of the promoter of MLH1 and/or the BRAF V600E mutation to rule out sporadic CIMP
tumors. If testing negative, patients are submitted to germline testing, which includes the
sequencing and the analysis of deletions and duplications in the appropriate MMR genes.
Germline testing results confirm an LS diagnosis [46,47], whereas, if MLH1 is methylated
in a tumor, a complementary MLH1 methylation study in blood should be performed to
identify constitutional epimutation of MLH1 [48] (Figure 2).
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Figure 2. Universal screening strategy for Lynch-syndrome patients. CRC, colorectal cancer; MSI,
microsatellite instability; IHC, immunohistochemistry; MMR, mismatch repair; MMR-D, mismatch
repair deficiency; NGS, next-generation sequencing. Adapted from Valle et al. [49].

4. Lynch-like Syndrome

Up to 50% of cases of suspected LS in patients with CRC that test positive for MMR-D
by IHC or MSI do not have any germline mutation in an MMR gene, BRAF alteration
or MLH1 hypermethylation [1]. These cases are defined as Lynch-like syndrome (LLS).
LLS possibly describes a heterogeneous group of conditions that possibly includes a mix
between sporadic and hereditary cases. Although multiple approaches have been suggested
to distinguish between hereditary and sporadic cases, accurate testing and a consensus on
the adequate classification of these patients are still lacking.

4.1. Demographics

The risk of developing CRC and other LS-related cancers in LLS cohorts and their
first-degree relatives is lower than in LS patients. However, LLS patients are more likely to
have CRC than sporadic cases [1,44,50,51]. Moreover, the age at diagnosis follows the same
pattern, and it is higher than in LS but lower than in sporadic cases [1,52]. LLS tumors share
the pathological characteristics of MSI CRC, as they are mainly located on the proximal
colon, frequently have a large size, and usually present a higher concentration of infiltrated
lymphocytes [1,4,44]. On the other hand, no differences in sex have been found. Some
series show a predominance of female patients, but without significant differences [1,53].

4.2. Family History

LLS patients can be clinically differentiated into two groups. One group includes
patients with family history that suggests a hereditary origin. These families probably have
a hereditary factor that predisposes them to a high risk of CRC. However, in these cases,
the genetic alteration is unknown. Furthermore, there are other LLS families who do not
have a history of cancer. In that case, it is possible to find a double somatic mutation in
MMR genes that explains their MSI. These cases could be considered sporadic [4,52,54].
As noted previously, LLS cases are a heterogeneous group that includes sporadic and
inherited cases, and it is necessary to define molecular tools to efficiently differentiate
between both groups. Moreover, there are no differences in the clinical or pathological
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characteristics that differentiate between hereditary and sporadic cases [54]. The validation
and implementation of molecular analysis of MMR genes in tumors as a part of routine
diagnosis is still a challenge in many laboratories.

4.3. Pathology and IHC

All CRCs undergo IHC for MMR proteins MLH1, MSH2, MSH6, and PMS2 and/or
MSI testing [45]. Tumors are considered MMR-D when they exhibit a loss of expression
of the MMR proteins by IHC. Universal IHC or MSI testing increases the detection of
LLS [53]. IHC has shown that the main defective protein in LLS tumors is MLH1 [55]. Picó
et al., found that 50% of LLS patients lack MLH1/PMS2 and 27.9% lack MSH2/MSH6
expression [54]. These results are similar to previous studies that obtained the same data.
Perez-Carbonell et al., identified a lack of MLH1 protein in 29 of 62 patients, followed
by MSH2 and MSH6 loss (19 patients), and Overbeek et al., exposed MLH1 deficiency
in 5 of 16 families [51,53]. Although one publication reported that grade 1 dysplasia was
predominant in LLS, in contrast to grade 3 in LS [11,14], no other histological characteristics
have been found [4,56].

4.4. Cancer Risk

First-degree relatives of patients with LLS CRC have an increased risk of CRC and
non-CRC LS-related cancers. However, this risk is lower than that found in LS families. This
can be seen in Rodriguez-Soler et al., who estimated a standardized incidence ratio (SIR)
for CRC of 2.12 in LLS cases versus 6.04 in LS patients. In addition, Picó et al., estimated an
SIR for CRC (4.25 in LS vs. 2.08 in LLS) and LS-associated neoplasms (5.01 in LS vs. 2.04 in
LLS) [1,4,50]. Regarding non-CRC cancers associated with LS, they estimated an SIR of 1.69
in LLS families vs. 2.81 in LS patients [1,52]. These results are supported by Win et al., who
showed that the risk of a first-degree relative of an LS patient developing CRC (hazard ratio
(HR) = 5.37) is higher than in LLS (HR = 2.06) and MMR-D non-LS groups (HR = 1.04) (50).
LS families also have a higher risk of developing endometrial tumors. Other studies have
shown an excess risk of pancreatic cancer in LLS families [4]. Due to this increased risk of
developing CRC in LLS families, if it is not possible to safely identify truly sporadic cases,
LLS families should be considered a high-risk group, and some authors suggest screening
colonoscopies every 3 years for first-degree relatives of LLS patients [57].

5. Potential Causes of Lynch-like Syndrome

Different plausible causes to explain the origin of LLS tumors have been described.
According to the hereditary origin, unknown mechanisms or germline mutations in other
genes than those involved in the classical MMR system could mimic the Lynch phenotype
with MMR-D. In addition, some LLS cases could be LS with unidentified germline MMR
mutations. In contrast, LLS could be due to somatic defects in genes related to tumor
onset and progression or due to biallelic alterations in MMR genes outside MLH1 promoter
methylation [2,3,58], thus having a sporadic origin. A frequent explanation for LLS cases
that should always be ruled out is false-positive IHC/MSI results, which represent approxi-
mately 19% of cases in some series [59], and confirmation of MSI and IHC status should be
the first step before classifying a case as LLS. Figure 3 describes different potential causes
of LLS. It is important to clarify that, if some LLS cases after their molecular analysis can be
classified in another category, they will no longer be considered LLS. They will be included
in the surveillance program of the new group.
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Figure 3. Potential mechanisms for Lynch-like syndrome. MMR, mismatch repair; wt, wild type.
Adapted from Pico et al. [54].

5.1. Germline Mutations in Other Genes Affecting the MMR System

The fact that LLS patients are younger at diagnosis than sporadic cases and some
of them have a family history of LS-related neoplasias suggests that germline mutations
in other genes could also be involved in cancer development in some of these cases (Fig-
ure 3). It is important to distinguish whether MMR-D is driving tumor formation or is a
secondary event. Germline mutations in MUTYH and POLE have been reported in some
patients with MMR-D [31,60–62]. Mutations in MUTYH have been previously associated
with MUTYH-attenuated polyposis [31,62]. In addition, mutations in MUTYH have been
described in MLH1-methylated tumors [31,62]. Approximately 1–3% of LLS cases carry
biallelic mutations in MUTYH [31,62]. In addition, mutations in the exonuclease domain of
POLE and POLD1 cause a hypermutator phenotype that confers a high predisposition to
developing attenuated colorectal polyposis at an early age. POLE and POLD1 mutations
may be associated with MMR-D in some cases due to MMR mutations secondary to the
hypermutator phenotype [60,61,63–65].

On the other hand, Xavier et al., found potentially pathogenic variants in a group of
genes involved in the regulation of cellular activity (EXO1, POLD1, RFC1, and RPA1) [55].
EXO1 is related to the union of MLH1 and MSH2, and a mutation in these genes may
trigger MMR-D [66]. In addition, RPA1 and POLD1 are associated with harmful effects in
tumors with mutations in these genes [67,68]. RFC1 has been described in the development
of different malignancies. Huang et al., noted the presence of a variation of this gene in a
plasmatic cell tumor [69]. Moreover, somatic mutations in RFC1 were reported in 10.2%
of uterine carcinomas and 5.5% of CRCs [70]. This gene also plays an important role in
genomic integrity because it is a member of the BRCA1-associated genomic surveillance
complex [71]. Golubicki et al., found unknown variants in four genes (POLE, ERCC6,
RAD54L, and PALB2) in a group of LLS patients [72]. ERCC6 and PALB2 have been associ-
ated with CRC [61,73,74], and the PALB2 variant was previously reported in a suspected
case of LS [75].

Next-generation sequencing (NGS) studies have allowed the identification of pathogenic
variants that could be candidates for familial CRC with unknown genetic basis. Recently
published studies have identified pathogenic variants in genes that maintain DNA integrity
resulting in a variety of clinical phenotypes. Germline variants in NTHL1 cause adeno-
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matous polyposis and CRC [76]; MCM9 variants are associated with hereditary mixed
polyposis, CRC, and primary ovarian failure [65,77]; and variants in FAN1 cause hereditary
CRC by impairing DNA repair [78]. Following this line of inquiry, variants in BUB1 and
BUB3 [79], SETD2 [80], WRN [81], BARD1 [81], MCPH1 [81], and REV3L [81] have been
found in the germline analysis of LLS cases, linking the mutation of WRN, BARD1, MCPH1,
and REV3L for the first time with CRC.

5.2. Hereditary Cases: Unknown Mutations in MMR Genes

In some cases, LLS patients are actually LS patients whose pathogenic variants have
not been identified (Figure 3). Current techniques cannot easily identify complex and
cryptic mutations. Intronic regions, structural changes such as inversions, and/or copy
number variation (CNV) are rarely analyzed genetic changes but may play an important
role in unveiling mutations in these patients. For example, the mutation 478 bp upstream
of exon 2 in MSH2 creates a canonical splice donor site. The pseudo-exon that is created
contains a stop codon that results in a truncated protein [65,82].

Structural changes have been found in some families, such as the inversion of MSH2
exons 1–7 in 10 families in North America [83–85] and the inversion of MSH2 exons 2–6
in two families in Australia [86]. Another example of structural genetic changes is the
MLH1-LRRFIP2 fusion after a paracentric inversion of chromosome 3 [87] or deletion in
that same locus [65,88]. Moreover, Hellen et al., show a retrotranspositional insertion in
PMS2 mediated by LINE-1 between exon 7 and 8 [89].

Regulatory regions of MMR genes should also be taken into account. In some cases,
variants in the promoter region of MMR have been associated with reduced promoter
activity or transcriptional silencing of the allele [80,90]. The accumulation of mutations in
the 3′UTR of genes affects mRNA stability and, therefore, protein expression. Germline 3′

UTR mutations in MLH1 have been associated with loss of expression [91]. On the other
hand, abnormal regulation of protein expression by miRNA could cause a loss of MMR
gene expression. High levels of miRNA-21 downregulate MSH2 and MSH6 and have been
found in CRC with loss of MSH2 expression [92]. The same has been seen with MLH1
and miRNA-155 [92]. These examples show the importance of more extensive sequencing
methods to detect complex mutations in families of patients with MMR-D and without
germline mutations by routine procedures.

Somatic mosaicism could also account for some LLS cases. For instance, Sourrouille
et al., described a case of somatic mosaicism in MSH2 after de novo mutation of this
gene [58]. Another study described somatic mosaicism in a woman with synchronous
gynecological tumors at 44 years old. The MLH1 mutation was only present in 20% of
the allele fraction in normal tissue, but her sister and father, who were also affected with
LS-related tumors, carried the same mutation [93]. A recent study reported a case of de
novo somatic mosaicism in which the MLH1 mutation was detected in the tumor and at a
lower level in peripheral blood but not in any other family member [94]. Mosaicism can be
detected using highly sensitive NGS with high coverage, and more genetic-driven cases
could be correctly identified.

Another important factor to consider is the presence of variants of uncertain signifi-
cance (VUS) in approximately 30% of cases [95]. Some of them could be pathogenic but
cannot be classified due to the absence of clinical, molecular, or functional evidence. Fami-
lies carrying VUS are managed based on their family history of cancer until further variant
classification is available [65].

5.3. Somatic Alteration in Other Cancer Genes or Epigenetic Structures

Some patients with sporadic cancers do not exhibit any alteration in MMR genes but
lack these proteins. In these cases, other molecular mechanisms could be leading to MMR-D
and a MSI phenotype. These tumors could be due to somatic alterations in cancer genes or
epigenetic events outside of the MMR system [96].
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Li et al., found a relationship between the epigenetic histone marker H3K36me3 and
the MMR system. H3K36me3 recruits the mismatch recognition protein hMutSα (MSH2-
MSH6) onto chromatin interacting with MSH6. This protein and the histone methyltrans-
ferase SETD2, which also acts in the trimethylation of H3K36, are required for activation of
the MMR system [97]. Li et al., demonstrated that depletion of SETD2 and/or H3K36me3
in cells resulted in an MMR-D mutator phenotype, providing a molecular explanation of
tumors that are positive for MSI with the MMR-D phenotype [98]. Another important
molecule is proliferation cell nuclear antigen (PCNA), which plays an important role during
DNA replication. Ortega et al., showed that the phosphorylation of PCNA by epidermal
growth factor receptor (EGFR) alters its interaction with MMR proteins, revealing another
possible mechanism of cancer development via suppression of MMR function [99].

AT-rich interaction domain 1A (ARID1A) is mutated in a large proportion of tu-
mors [100]. These proteins interact with MSH2, recruiting it to chromatin during DNA
replication. Shen et al., demonstrated that impairment of ARID1A contributes to MMR-
D [101]. In addition, a somatic exonuclease domain mutation in POLE would be involved
in phenocopying defective MMR DNA in 25% of unexplained endometrial cancers with
MSI [102].

Local inflammation also promotes genetic and epigenetic alterations in CRC [103] and
has been determined to be an important factor in damage to the MMR system [104]. An
increase in the concentration of proinflammatory cytokine IL-6 has been demonstrated
to alter MMR function. IL6 can activate STAT3, which drives MSH3 out of the nucleus
and prevents it from performing its nuclear function [105]. In the same way, high levels of
reactive oxygen species (ROS) can induce DNA damage, resulting in MMR-D. Chang et al.,
showed that non-cytotoxic H2O2 can damage MMR complexes, triggering a reduction in
these proteins [106].

Somatic methylation could also explain the MMR-D present in some LLS cases
(Figure 3). Many tumor suppressor genes are methylated in sporadic cancers, including
RB [107,108], VHL [109], and BRCA1 [110], as well as MLH1 promoter hypermethylation
in sporadic CRC caused by the CIMP phenotype [111]. Recently, Buckley et al., reported
an association between the methylation of SHPRH and MSI burden [112]. In addition,
epimutations in MLH1 and MSH2 have been reported in some families [24–30,32–36], but
other MMR genes can also be targets of somatic methylation [65].

5.4. Somatic Biallelic Alteration in MMR

Recent studies have shown that somatic mutations in MMR genes are responsible for a
proportion of LLS cases [2,3,58,113,114]. In one study, 17 CRC cases with MSI were screened
for somatic mutations, resulting in one out of seven MLH1-D tumors with two somatic
mutations in MLH1 and three out of eight MSH2-D tumors with two somatic mutations
in MSH2 [58]. Moreover, the combination of somatic mutation and loss of heterozygosity
(LOH) as a second hit was studied in 25 tumors, finding two somatic hits in 13 tumors
(8/18 in MLH1 and 5/7 in MSH2) [2]. Porka et al., identified two somatic events in MMR
genes in 11 out of 14 tumors and a somatic mutation and LOH in 10 out of 11 (4/10 in
MLH1, 5/10 MSH2, and 1/10 PMS2), whereas only one tumor was characterized as having
two somatic mutations (MSH6) [56]. Lefol et al., also looked for somatic variants, LOH, and
single events in 85% [97/113] of LLS tumors (85%), but double somatic hits were found
in only 63% (72/113) [114]. Another study looked for CNV in addition to mutation and
LOH in 40 LLS cases; 16/24 carried double somatic hits in MLH1 and 5/12 in MSH2 [3].
Vargas-Parra et al., obtained the same results; they found a double somatic hit in MSH2
and MSH6 in five tumors from four LLS patients (80). All of these results agree with those
obtained by Xicola et al., who showed a somatic mutation in one MMR allele and LOH in
the other allele in 4/9 LLS cases (3/4 in MLH1 and 1/4 in MSH2) [81]. It seems that the
most common double somatic hit is a somatic mutation combined with LOH, followed by
two somatic mutations. Based on these studies, the number of cases explained by somatic
inactivation could be approximately 50% (32–82%) of LLS tumors [2,3,58]. Nevertheless,
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the percentage of tumors with a double somatic hit could be underestimated because
some tumors also exhibit VUS or uninformative LOH, and the causative effect on the MSI
phenotype is uncertain. That point is reinforced with the study of Elze et al., where they
show a proportion of somatic deficient MMR tumors with somatic exon deletion that is not
detectable by sequencing [115].

When comparing tumors with double somatic alterations to LS tumors, no significant
histopathological difference was found [116]. Tumor sequencing is the adequate way to
evaluate double somatic mutations. Therefore, tumor sequencing should be considered to
clarify sporadic versus hereditary causes of unexplained MMR-D [65,117].

Different studies investigated promoter methylation of MMR genes in LLS patients.
Methylation of MSH2 was only found in one [117,118] out of 53 LLS patients with loss of
expression of MSH2 by IHC studied [80,117,118]. The MSH6 promoter was unmethylated
in 108 patients with LLS and MMR-D [80,119,120], and the same happened with the PMS2
promoter in 100 cases with loss of expression of PMS2 or MLH1 who were negative for
PMS2 promoter methylation [121]. In summary, based on these studies, somatic promoter
hypermethylation of MMR genes does not seem to be the underlying cause of MMR-D in
these unexplained tumors.

Therefore, there is a subgroup of LLS that can be explained by double somatic inacti-
vation, and these cases should probably be excluded from the LLS classification due to the
probable sporadic origin. However, this approach still has some open questions, because
there is no standardized universally accepted technique or protocol for differentiating these
cases. Moreover, the biallelic somatic inactivation of MMR genes can also be due to any
of the previously described mechanisms, some of them generated by germline genetic
alterations. Classifying patients as sporadic or potentially hereditary cases should also
be the subject of clinical validation by adequately comparing pedigrees, with long-term
follow-up of these families in order to find differences in the incidence of CRC and other
LS-related disorders. When some groups advocate for generalization of a somatic study
of LLS cases, it is necessary to reach a consensus on how to perform such a study and
which cases could be confidently considered as sporadic with no indication for follow-up
of patients and relatives. This algorithm has not been clinically validated. Table 1 show a
summary of potential causes of LLS.

Table 1. Potential causes of LLS. LLS, Lynch-like syndrome; MMR, mismatch repair.

Mutations in other Genes
Affecting MMR System

(Germline)

Unknown Mutations in MMR
Genes

(Germline)

Somatic Mutations in Cancer
Genes

(Somatic)

Biallelic Alteration in MMR
(Somatic)

MUTYH Mutation EXON 2 MSH2 H3K36me3 Double somatic hit

POLE/POLD1 Inversion EXON 1-7 MSH2 SETD2 Somatic mutations in MMR genes

EXO1/RFC1/RPA1 Inversion EXON 2-6 MSH2 PCNA Methylation in MMR genes

ERCC6/RAD54L/PALB2 MLH1-LRRFIP2 fusion ARID1A

PIK3CA MLH1 3′ UTR mutation POLE

FAN1/MCM9 Deep intronic variant in MSH2 IL-6 and oxidative stress

NTHL1 miRNA 21 AND miRNA 155 Methylation in other genes

BUB1/BUB3/WRN/MCPH1/REV3L Mosaicism

VUS

6. Future Research

Although approximately 50–60% of LLS cases can be explained by double somatic
inactivation of MMR genes [2,3,114], this does not exclude the possibility that patients carry
germline variants of susceptibility that increase the risk of developing cancer. Although
somatic mutational testing of tumor samples could be implemented as usual practice in
select centers, this practice is still used very little in regular clinical practice. Therefore, it
is important to establish firstly accurate protocols and guidelines for the study of somatic



Cancers 2022, 14, 1115 10 of 16

mutations in tumors and then determine whether any germline variants could trigger
carcinogenesis. These discoveries could be incorporated into clinical multigene panels to
improve the diagnostic algorithm for these cases.

Implementing the use of NGS technologies in the diagnostic routine will allow for
the characterization of the molecular profile of patients with LLS [122]. However, a col-
lateral effect could be finding a number of VUS with uncertain pathogenicity. This will
be important to increase efforts for adequate classification of the increased number of
VUS, allowing personalized diagnosis, treatment, and surveillance for LLS families, even
when new alterations previously unrelated to CCR are detected. All of these advances will
cost-effectively decrease mortality. Exome-based studies looking for new genes involved in
LLS are ongoing in several research groups [72,123]. Approaches based on the application
of simultaneous somatic and germline studies in these patients can also help differentiate
between hereditary and sporadic cases. An analysis of up-front somatic testing and its
applicability in clinical practice and ability to differentiate germline and somatic mutations
is another interesting line for future research [124].

7. Conclusions

Although some recent studies suggest that LLS cases can be explained by somatic
mutations [2,3,114], the fact that relatives of LLS patients have an increased risk of CRC
implies that there may be an inherited risk factor [4]. Therefore, LLS is probably heteroge-
neous and composed of both hereditary and sporadic cases. Differentiating these cases is a
current challenge in the management of high-risk conditions. The first step in the study of
potential causes of LLS must be the confirmation of the diagnosis, including MSI and lack of
expression of MMR proteins by IHC, without BRAF mutation or MLH1 hypermethylation.
There are then four potential explanations for the observed MSI and MMR-D phenotype
in LLS: germline alterations in other genes; atypical germline alterations in MMR genes;
somatic alterations in other genes that trigger a cascade, affecting MMR expression; and
somatic biallelic inactivation of MMR genes. With recent advances in and availability
of NGS, it is possible to improve somatic and germline testing and possibly distinguish
which force is driving carcinogenesis in these cases. Clinical validation of these findings
is also needed to improve the algorithms for adequate and safe management and genetic
counselling of patients.
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