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Abstract

Ischemia-reperfusion (I/R) injury describes the pathological process wherein tis-

sue damage, initially caused by insufficient blood supply (ischemia), is exacerbated
upon the restoration of blood flow (reperfusion). This phenomenon can lead to irre-
versible tissue damage and is commonly observed in contexts such as cardiac surgery
and stroke, where blood supply is temporarily obstructed. During ischemic conditions,
the anaerobic metabolism of tissues and organs results in compromised enzyme
activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading

to increased oxidative stress and the accumulation of reactive oxygen species (ROS).
This cascade ultimately triggers cell death through mechanisms such as autophagy
and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukary-
otic cells, facilitating the degradation and recycling of damaged, aged, or superfluous
organelles and proteins via the lysosomal pathway. This process is essential for main-
taining cellular homeostasis and adapting to diverse stress conditions. As a cellular
self-degradation and clearance mechanism, autophagy exhibits a dualistic function:
it can confer protection during the initial phases of cellular injury, yet potentially
exacerbate damage in the later stages. This paper aims to elucidate the fundamental
mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its
effects on both organ-specific and systemic responses. By comprehending the dual
mechanisms of autophagy and their implications for organ function, this study

seeks to explore the potential for therapeutic interventions through the modulation
of autophagy within clinical settings.
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Introduction

Ischemia—reperfusion (I/R) injury constitutes a pathological cascade initiated by the
reestablishment of blood flow to previously hypoxic tissues, presenting a significant
challenge to multiple organ systems [1]. It exacerbates morbidity and mortality across
a spectrum of diseases, including myocardial infarction, ischemic stroke, acute kidney
injury (AKI), trauma, circulatory failure, sickle cell disease, and sleep apnea [2]. Fur-
thermore, it may precipitate pathological responses such as systemic inflammatory
response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) when
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organ ischemia results in a disequilibrium between metabolic supply and demand [3,
4]. In the context of cardiac function, the reduction in oxygen supply to ischemic tis-
sues is intricately linked to a decline in mitochondrial oxidative phosphorylation, sub-
sequently causing a transition from aerobic to anaerobic metabolism [5]. Consequently,
ischemic injury has emerged as a significant challenge in organ transplantation as well
as in cardiothoracic, vascular, and general surgical procedures. The objective of reperfu-
sion is to avert cell death induced by ischemia, sustain cellular metabolism, and facilitate
the removal of metabolic waste by reinstating the supply of oxygen and nutrients [6].
Nonetheless, it is crucial to acknowledge that the reintroduction of blood flow following
prolonged ischemia can potentially exacerbate tissue damage, manifesting as heightened
local inflammation, mitochondrial dysfunction, and an acute surge in reactive oxygen
species (ROS) production [6, 7] Furthermore, oxidative stress and the initiation of self-
damaging tissue responses are also pivotal mechanisms underlying I/R injury [6]. Over
recent decades, oxidative stress has garnered significant attention as a pivotal contribu-
tor to cell death and tissue damage in I/R injury, particularly in the context of elucidat-
ing molecular mechanisms [8]. The reperfusion of blood following ischemia intensifies
both specific and nonspecific immune responses within cells, resulting in the release of
cytokines and chemokines, inflammation, and excessive apoptosis. These processes col-
lectively trigger a cascade of detrimental cell death pathways, including the activation of
autophagy [9].

Autophagy is a crucial cellular cyclic mechanism essential for preserving intracellu-
lar homeostasis [10—12]. Functioning as the primary intracellular degradation system, it
facilitates the entry of cytoplasmic material into the lysosome via the autophagic path-
way, where degradation occurs [3]. The objective of autophagy extends beyond mere
material elimination; it operates as a dynamic circulatory system that salvages deterio-
rating cells and supplies new building blocks and energy for cellular repair and homeo-
stasis by degrading and recycling damaged cellular components [3, 12]. For instance, the
inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activity can enhance
the occurrence of mitophagy, consequently mitigating apoptosis during AKI and offer-
ing a potential novel target for AKI treatment [5]. Mitophagy generally facilitates cel-
lular adaptation and protection through various mechanisms, including the elimination
of damaged mitochondria [13, 14]. In certain instances, excessive autophagy can result
in cell death, exemplified by the generation of mitochondrial bursts of ROS following
I/R. These cell death modalities encompass necrosis, mitochondrial permeability tran-
sition-driven necrosis, ferroptosis, pyroptosis, para-apoptosis, cuproptosis, apoptosis,
mitophagy, and autophagy, among others [3, 12]. Therefore, autophagy functions as a
double-edged sword, serving both as a mechanism for cellular survival and as a potential
pathway to cell death [10].

This review examines the dual role of autophagy in I/R injury, positing that it exhibits
both protective and deleterious effects. During ischemic conditions, autophagy mitigates
cellular damage and preserves cellular integrity by removing dysfunctional organelles
and proteins. Conversely, during reperfusion, autophagy can potentially exacerbate
damage and contribute to cell death. Through a comprehensive analysis of autophagy
and its regulatory mechanisms in the context of I/R injury, this study underscores the
critical importance of understanding the regulatory pathways governing autophagy in
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I/R injury. We anticipate leveraging its protective effects in therapeutic applications
while minimizing potential adverse effects, thereby offering targeted intervention strate-

gies to optimize organ protection and recovery processes.

The fundamental mechanism of autophagy

Autophagy is an intricate intracellular self-degradation mechanism meticulously gov-
erned by a multitude of regulators and signaling pathways, which collectively dictate
the initiation, progression, and termination of the process [15]. The most widely rec-
ognized form of autophagy involves the extensive processing of cytoplasmic compo-
nents via the autophagosome-dependent lysosomal pathway, commonly referred to
as macroautophagy [16]. In summary, the macroautophagy process comprises several
distinct stages: initially, the formation of the phagophore occurs, which is succeeded
by the expansion of the autophagosome membrane. This is followed by the fusion of
autophagosomes with lysosomes, culminating in the degradation of the sequestered
components within the autophagosome [17]. Beyond macroautophagy, the autophagic
process also encompasses chaperone-mediated autophagy (CMA) and microautophagy
[18]. In the course of the CMA process, the specific degraded protein associates with
the chaperone heat shock cognate (HSC) protein 70 via a distinct amino acid sequence
known as the KFERQ motif, which facilitates protein degradation within the CMA path-
way. This interaction subsequently enables the protein’s translocation into the lysosome
through its interaction with lysosome-associated membrane protein (LAMP)2A [18]. In
contrast, microautophagy entails the direct engulfment of cytoplasmic components by
lysosomes or the invagination of the endoplasmic reticulum [19]. Macroautophagy con-
stitutes a sophisticated intracellular degradation pathway characterized by a multistep
mechanism involving numerous critical proteins, which is crucial for preserving cellular
homeostasis [20]. The initiation of autophagosome formation in macroautophagy is trig-
gered by the activation of the Unc-51-like autophagy-activating kinase 1 (ULK1) com-
plex, a pivotal component in the autophagy initiation phase, subsequently leading to the
development of double-membrane vesicles that encapsulate cellular debris [19]. Adeno-
sine monophosphate (AMP)-activated protein kinase (AMPK) functions as a critical cel-
lular energy sensor and regulator, responding to fluctuations in the intracellular AMP
to adenosine triphosphate (ATP) ratio by modulating metabolic pathways to accommo-
date variations in energy availability. During the initiation of autophagy, AMPK inhibits
the mammalian target of rapamycin complex 1 (mTORC1), a principal regulator of cell
growth and proliferation, and facilitates the formation of autophagic vesicles by alle-
viating the inhibition of the ULK1 complex [19, 21]. Subsequently, the ULK1 complex
translocates to the endoplasmic reticulum, where phosphatidylinositol 3-kinase (PI3K)
I11, also referred to as vacuolar protein sorting (Vps) 34, serves as a pivotal enzyme in
the regulation of mammalian endocytosis, lysogenesis, autophagy, and intracellular traf-
ficking. Notably, Vps34 is essential during both the initiation and maturation phases
of autophagy, facilitating the formation of autophagosomes through the production of
phosphatidylinositol 3-phosphate (PI3P). This process recruits autophagy-related pro-
teins such as Beclin-1, WIPI2, and DFCP1ULK1 [22]. The Beclin-1/Vps34 complex
facilitates the expansion of autophagic vesicles. This process is initiated by the phospho-
rylation of B-cell lymphoma 2 (BCL-2) and BCL-2-interacting cell death mediator (BIM)
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by activated JNK kinases, leading to the release of Beclin-1 and the subsequent disso-
ciation of the Beclin-1/BCL-2 and BIM complexes. The liberated Beclin-1 subsequently
activates Vps34, forming a complex that produces PI3P, thereby promoting the elonga-
tion of autophagic vesicles [23]. Currently, autophagy-related genes (ATGs) and protein
complexes, such as ATG5-ATG12, which involve ATG7, ATG3, and ATG5-ATG12,
facilitate autophagy via a ubiquitin-like covalent binding mechanism. This process sub-
sequently enhances ATG8/microtubule-associated protein 1 light chain 3 (LC3) binding,
thereby promoting the expansion and closure of autophagosomes [24]. Furthermore, the
ATG12-ATG5 complex can associate with ATG16L to form a polymer complex essen-
tial for autophagosome assembly [25]. During the elongation phase, the Beclin-1 and
PI3K complexes play a crucial role in coordinating the nucleation of the autophagoso-
mal membrane [9]. LC3 plays a pivotal role in the autophagy pathway, wherein it tran-
sitions from its cytosolic form (LC3-I) to a membrane-bound form (LC3-II), a process
crucial for the formation and maturation of autophagosomes. Initially, the cysteine pro-
tease ATG4 cleaves LC3 to generate LC3-I, which is then processed by ATG3, ATG7,
and phosphatidylethanolamine to form LC3-II. Following this, LC3-II is amplified, the
ESCRT complex facilitates the completion of the closure phase, and LC3-II becomes
integrated into the autophagosomal membrane [24]. In the terminal phase, autophago-
somes merge with lysosomes to form autophagolysosomes, a process predominantly
facilitated by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors
(SNARE) complex. This complex plays a crucial role in regulating endomembrane fusion
events, particularly in the formation of proteins within the secretory pathway and during
endocytosis. STX17 (a t-SNARE protein), VAMPS8 (a v-SNARE protein), and SNAP29
(a member of the SNAP family) interact to facilitate the trafficking of complexes to the
autophagosomal membrane and the subsequent fusion of lysosomes and autophago-
somes. This process culminates in the completion of autophagy through the degradation
and recycling of cellular components [10, 23]. As discussed above, during this process,
the autophagosome recruits lysosomal fusion proteins while the ATG proteins on its
outer membrane are sequentially removed. During this process, STX17 undergoes dea-
cetylation, resulting in the embedding of its C-terminal hairpin-like structure within the
autophagosome membrane. This structural configuration facilitates interactions with
SNAP29 and the HOPS complex, a substantial protein assembly consisting of six core
subunits, thereby promoting the fusion of autophagosomes with lysosomes. Conse-
quently, the damaged organelle components are degraded into smaller molecules within
the fused autophagosome-lysosome structures and subsequently recycled [10, 22, 26].
To date, macroautophagy has effectively facilitated the lysosomal degradation of target
substrates, encompassing protein aggregates, damaged organelles such as mitochondria
and peroxisomes, carbohydrates, lipids, nucleic acids, and pathogens [27]. During this
process, lysosomes break down complex molecules and release amino acids, fatty acids,
and nucleotides, underscoring the significance of autophagy as a mechanism integral to
the metabolic precursor cycle [11].

The selective phagocytosis of cytoplasmic material by autophagosomes is governed
by highly specific and genetically regulated mechanisms, collectively referred to
as selective autophagy; an example of this is the targeted autophagic degradation
of mitochondria [16, 24]. Mitochondria, characterized by their double-membrane
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structure, primarily facilitate ATP production and regulate cellular energy metabolism
[28]. Beyond their role as energy producers, mitochondria also participate in diverse
physiological processes, including the mediation of Ca®* signaling in most cells [29].
In cardiomyocytes, mitochondria can account for over 30% of the cell volume to satisfy
their consistently elevated energy demands. Nonetheless, mitochondria are vulnerable
to cellular stressors, including hypoxia, which can result in the generation of ROS and
the release of pro-apoptotic proteins. These processes may ultimately culminate in
mitochondrial damage and potentially lead to cell death [28]. Mitochondrial quality
control represents a critical mechanism in the regulation of mitochondrial size,
quantity, morphology, quality, and biological activity [30], playing a pivotal role in
sustaining cellular homeostasis and survival. This process encompasses mitochondrial
biogenesis, fusion, fission, and mitophagy [25, 28]. In response to cellular stress-induced
mitochondrial damage, cells initially preserve their structural integrity and composition
through mechanisms including antioxidative defense, DNA repair, protein folding,
and degradation [31, 32]. Should the initial defense mechanisms prove inadequate,
an extensive quality control system encompassing mitochondrial biogenesis, fusion,
fission, and mitophagy is subsequently activated [31, 32]. In instances where damaged
mitochondria are irreparable, mitophagy serves as the final defense mechanism
to eliminate compromised mitochondria and preserve cellular viability before the
onset of apoptosis and necrosis [8]. Thus, the processes of mitochondrial biogenesis,
clearance, dynamics, and their interactions collectively form a robust quality control
system that responds to pathological stress and sustains mitochondrial function [28].
Currently, mitophagy pathways encompass both the PINKI1-Parkin-mediated and the
PINK1-Parkin-independent mitochondrial autophagy pathways [33]. These pathways
influence the dual role of I/R injury in the precise regulation of the autophagic process
[34]. The specific mechanisms underlying these pathways will be elaborated upon in
the subsequent sections. The role of gender in autophagy represents a complex and
significant area of research. Notably, studies have indicated that female patients with
Alzheimer’s disease exhibit a more pronounced accumulation of autophagosomes,
autophagic degradation, and mitophagy compared with their male counterparts.
This suggests that, owing to greater mitochondrial or protein damage, female patients
may engage in compensatory autophagy, potentially accelerating the pathogenesis of
Alzheimer’s disease [35]. Furthermore, it is crucial to address not only the differential
impact of diseases across genders but also the underrepresentation of women and
gender minorities in scientific research. These groups require increased support and
opportunities within the scientific community [36]. Further investigation is essential
to elucidate the mechanisms driving gender differences in autophagy and to develop
personalized therapeutic strategies targeting these pathways.

Additionally, during ischemia—reperfusion, autophagy may serve as a protective
mechanism in early ischemic conditions by eliminating damaged organelles and
proteins, thereby preventing the accumulation of toxic substances. However, during
reperfusion, excessive autophagic activity may result in the accumulation of undigested
materials within autophagic lysosomes, potentially leading to cellular damage. Currently,
there exists a significant gap in research concerning the translation of mitochondrial
autophagy mechanisms into effective targeted pharmacological interventions. The
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majority of mitochondrial autophagy inducers currently available are primarily
mitochondrial uncoupling agents or mitochondrial toxins, which present numerous
limitations. Furthermore, the clinical efficacy of mitophagy modulators remains
to be thoroughly validated [37]. A comprehensive understanding of the molecular
mechanisms that govern the transition of autophagy from protective to deleterious
effects is essential for the development of targeted therapeutic strategies. Such strategies
aim to modulate autophagy in the context of I/R injury to promote cellular recovery
rather than destruction. A schematic diagram of the basic mechanistic pathway of

autophagy is shown in Fig. 1.

The protective function of autophagy in I/R injury

Autophagy potentially serves a protective function in preserving cellular integrity during
I/R injury, particularly during the ischemic phase [3, 12]. It functions as an intracellular
“cleaner” by eliminating dysfunctional organelles and misfolded proteins, thereby
removing debris that could otherwise result in cell death [31]. For instance, during
the early stages of tumorigenesis, autophagy contributes to an antitumor response by
engaging in oxidative stress management and eliminating dysregulated cells, which
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Fig. 1 The basic mechanism of autophagy. Autophagy is a cellular process responsible for the degradation
and recycling of intracellular components, encompassing three primary forms: macroautophagy,
microautophagy, and CMA. Macroautophagy, in particular, serves as an intracellular self-digestion mechanism
characterized by a complex sequence of events involving the coordinated action of multiple key proteins.
This process can be delineated into four distinct stages: initiation of the autophagosome, elongation of the
autophagosome, maturation or blocking of the autophagosome, and the fusion of autophagosomes with
lysosomes. (Created using Adobe lllustrator)



Tang et al. Cellular & Molecular Biology Letters (2025) 30:42

helps maintain genomic stability and inhibit tissue damage and inflammation [38]. This
clearance mechanism holds significant importance within the central nervous system, as
ischemic injury swiftly disturbs the intricate equilibrium of the neuronal environment
[33]. During the reperfusion phase, autophagy assumes a crucial role in preserving
homeostasis within the intracellular milieu as oxygen and nutrients are reintroduced
[10, 11]. It facilitates the recycling of cellular components into usable substrates, thereby
supporting ATP production and promoting cellular recovery [20]. This metabolic
reorganization represents not merely a response to energy expenditure but also an
active strategy that equips cells to address the challenges associated with reperfusion,
including oxidative stress and inflammation [27]. Clinical research has demonstrated
that intravascular reperfusion therapies, such as intravenous thrombolysis or mechanical
thrombus extraction, administered within a defined time window, constitute a relatively
safe and restorative intervention for patients experiencing acute ischemic stroke
(AIS) [39-41]. Increased mitochondrial fragmentation and fission activity have been
documented during the ischemic phase in both brain tissue and cardiomyocytes, as well
as throughout I/R injury [42—45]. The neuroprotective effect of autophagy is attributed
to its capacity to mitigate the accumulation of toxic proteins and damaged mitochondria,
thereby preserving neuronal viability and function [33, 46]. The mechanism of ischemic
injury in patients with acute stroke is illustrated in Fig. 2.
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Fig. 2 The mechanism of ischemic injury in acute stroke. In the context of acute ischemic stroke (AIS), the
obstruction of cerebral blood flow results in damage to cerebral vascular endothelial cells and increased
permeability of the blood-brain barrier (BBB). This compromise of the BBB leads to vasogenic cerebral edema,
elevated intracranial pressure, and an imbalance in the neuronal microenvironment. Within the framework

of AlS, injured neurons may release damage-associated molecular patterns (DAMPs), which subsequently
stimulate the production of pro-inflammatory cytokines, including IL-8 and tumor necrosis factor-alpha
(TNF-a). The release of cytokines exacerbates cerebral injury by promoting inflammatory responses and
neuronal apoptosis. I/R therapy remains a crucial strategy in the management of AlS, as it alleviates both
ischemic and reperfusion injuries, thereby protecting cerebral tissue and facilitating neurological recovery.
(Created using Adobe Illustrator)
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The association between mitochondrial injury and the restoration of blood flow
represents a critical pathophysiological mechanism following I/R events [47].
Mitochondria that are functionally impaired, along with ROS generated through
oxidative stress within these organelles, serve as substrates that can trigger intracellular
autophagy [48]. This process facilitates the recovery or degradation of proteins and
damaged organelles across various diseases [49]. Mitophagy, a specialized form
of autophagy, specifically targets and degrades damaged mitochondria, enabling
the recycling of their components [28]. Mitophagy plays a critical role in cellular
homeostasis by selectively eliminating and degrading damaged or superfluous
mitochondria, thereby preventing the accumulation of mitochondrial DNA mutations
and facilitating the reprogramming of cellular metabolism [47]. The PINK1-PRKN/
Parkin axis is considered the principal regulator of the PINK1-Parkin-mediated pathway,
one of the two mitophagic autophagy pathways discussed above. This pathway initiates
selective autophagy by marking damaged mitochondria with ubiquitin chains [50,
51]. In this process, PINKI1 is hypothesized to function as a sensor for mitochondrial
damage, Parkin as a signal amplifier, and the ubiquitinated chain as a crucial effector
for signal transmission [37]. Nevertheless, the ubiquitinated chain does not directly
interact with the free autophagic membrane or the associated ATG8 family proteins,
indicating that ubiquitinated entities must be anchored to the autophagic membrane
via specific molecular pathways [52]. Autophagy aptamers are characterized as proteins
possessing mitochondrial ubiquitin-binding domains (UBDs), which facilitate the
recognition of ubiquitin tags, as well as LC3 interaction regions (LIRs) that engage with
ATGS8 family proteins. These proteins include sequestosome 1 (P62/SQSTM1) [24],
neighbor of BRCA1 gene 1 (NBR1) [53], nuclear dot protein 52 (NDP52/CALCOCO2),
TAX1BP1 [54], and optineurin (OPTN) [51]. As receptors, they function to recognize
ubiquitin chains on the mitochondrial surface and also bind to LC3B on phagocytic cell
membranes [50]. Conversely, PINK1 may facilitate mitophagy through mechanisms
independent of Parkin. For instance, the mitochondrial E3 ubiquitin ligase (MULL1), also
known as MITA, can be activated via phosphorylation by PINKI, thereby contributing
to the process of mitophagy [55]. Furthermore, the autophagy receptors involved in
mitophagy include BNIP3, NIX, FUNDC1, MCL-1, cardiolipin (CL), among others
[56]. PINK1 is pivotal in mitophagy, facilitating the removal of damaged mitochondria
through the activation of Parkin as well as via Parkin-independent pathways. The
process of mitophagy is also associated with the fusion of nascent mitochondria. Optic
atrophy 1 (Opal) is an inner mitochondrial membrane protein crucial for preserving
mitochondrial structure and function, and it plays a significant role in regulating
mitochondrial fusion and fission [42]. Research indicates that Opal undergoes apoptosis-
associated modifications, shifting the equilibrium of mitochondrial dynamics toward
fission by suppressing fusion [57]. While I/R injury primarily results in mitochondrial
dysfunction, causing disruptions in oxidative stress regulation, calcium homeostasis,
and apoptosis, targeting mitophagy-related pathways with specific molecules may offer
therapeutic benefits for certain patients experiencing ischemic stroke. Certain regulators
of mitophagy have demonstrated significant promise in clinical applications, particularly
during extended recovery periods, where mitophagy may offer critical neuroprotective

benefits and result in improved outcomes [58].
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To comprehensively harness the potential of mitophagy in clinical treatment, it is
imperative to further investigate and identify therapeutic targets capable of modulating
the mitophagy pathway, alongside the development of corresponding pharmacological
interventions. By conducting an in-depth analysis of the mechanisms through which
autophagy protects cells, we can elucidate the specific pathways involved in mitigating
I/R injury. This understanding will establish a theoretical foundation for the develop-
ment of targeted intervention strategies. Such insights will enhance our ability to arti-
ficially sustain cell survival while minimizing the risk of inducing excessive cellular
activation. Consequently, this research will offer scientific guidance for the development
of therapeutic approaches that effectively harness the protective benefits of autophagy.

The adverse function of autophagy in I/R injury

Autophagy has been identified as a crucial cellular survival mechanism, facilitating
the degradation and recycling of damaged organelles and proteins into nutrients that
support cell viability. By regulating the autophagic pathway, cells are effectively main-
tained during states of homeostasis, stress, and infection. Consequently, autophagy was
initially perceived primarily as a self-protective strategy enabling cells to mitigate dam-
age induced by external stimuli [59, 60]. Nevertheless, although autophagy serves as a
survival mechanism, its dysregulation may initiate a cascade of events culminating in
excessive autophagy and potentially resulting in cell death [33]. The activation process
of autophagy is intricate and modulated by environmental factors, with interactions at
multiple levels exerting a significant influence on the ultimate outcome [61]. Thus, the
protective function of autophagy in I/R injury is not unequivocal [28, 30], and distur-
bances in intracellular homeostasis beyond a certain threshold of time or magnitude
can lead to deleterious effects [62—64]. For instance, in the management of ischemic
stroke, while reperfusion strategies such as thrombolysis and thrombectomy are crucial
for re-establishing blood flow and enhancing patient outcomes, they may also result in
reperfusion injury, which can cause mitochondrial DNA damage and disrupt calcium
homeostasis within the cytoplasm and mitochondria [33].

Furthermore, the interplay between autophagy and cell death serves as a critical deter-
minant of cellular fate in I/R injury [10, 11, 65]. The role of autophagy in cell death can
be categorized into autophagy-dependent cell death (ADCD or ACD) and autophagy-
mediated cell death (AMCD) [10]. The two forms of autophagy associated with cell death
are not entirely independent and may coexist within the cell. In certain instances, these
modes can intertwine during the process of cell death [66]. ADCD typically occurs when
autophagy is excessively activated, and the lysosomal degradation capacity is inadequate
to process the substantial number of autophagosomes, which may include endoplasmic
reticulum phagocytosis, mitophagy, and self-mutilation. This form of cell death is char-
acterized by the accumulation of autophagosomes, resulting in disruptions to the intra-
cellular environment and damage to organelles. For instance, during reperfusion, the
disruption of autophagic flux can result in the accumulation of autophagosomes, thereby
creating a toxic intracellular environment that exacerbates cellular damage and may ulti-
mately lead to cell death [7, 10, 11, 20]. This disruption may arise from an imbalance
in lysosomal degradation capacity or from the inhibition of autophagosome-lysosome
fusion [22]. Lysosomes play a crucial role as degradative organelles within cells, and their
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proper functioning is essential for maintaining intracellular homeostasis [7, 10, 11]. Dur-
ing I/R injury, the lysosomal degradation capacity may become compromised owing to
various factors, including diminished lysosomal enzyme activity and inadequate energy
supply resulting from ischemia, both of which impair the enzymatic degradation of sub-
strates [26]. Furthermore, I/R injury may disrupt the intracellular acidic environment,
leading to lysosomal acidification disorders that adversely affect lysosomal enzyme
activity [33]. The fusion of autophagosomes with lysosomes represents a pivotal stage in
the degradation of autophagic substrates [7]. However, during I/R injury, this fusion pro-
cess may be impeded, leading to the inefficient breakdown of autophagic substrates [26].
AMCD is a distinct form of cell death that is entirely reliant on the autophagic process.
Various forms of cell death include autophagy, necrosis, pyroptosis, apoptosis, and fer-
roptosis [67]. Autophagy can interact with these cell death processes in complex ways,
depending on the specific cellular environment and signaling pathways involved [10].
Biochemically, autophagy is marked by increased expression of autophagy-related pro-
teins such as LC3-II and Beclin-1. In contrast, necrosis is a passive and uncontrolled
process triggered by external factors such as physical or chemical damage, leading to
cell swelling, membrane rupture, and release of intracellular contents, with biochemi-
cal markers including lactate dehydrogenase (LDH) release and increased levels of ROS
production [68]. Morphologically, necrotic cells are characterized by organelle swell-
ing and the loss of plasma membrane integrity, whereas apoptotic cells display contrac-
tion, nuclear condensation, and DNA fragmentation [69]. Apoptosis is a programmed
cell death process initiated by internal or external signals, leading to caspase activation
and subsequent cell division and dissolution [70]. Pyroptosis is integral to the immune
response, facilitating the elimination of pathogen-infected cells and inducing inflam-
mation to recruit immune cells [71]. In contrast, ferroptosis is distinct from pyroptosis
as it is an iron-dependent form of cell death marked by uncontrolled lipid peroxidation
within diverse and adaptable mechanisms [9, 63, 72]. Specific autophagic processes,
including ferritinophagy, lipophagy, and clockophagy, contribute to the initiation or
execution of iron-induced cell death by selectively degrading proteins or organelles
that protect against damage [9]. Additionally, other forms of selective autophagy, such
as reticulophagy and lysophagy, bolster cellular defenses against damage caused by iron
phagophores [7]. For instance, within cardiac tissue, Mammalian sterile 20-like kinase 1
(Mst1), a component of the Hippo signaling pathway [73], exerts a protective influence
against cardiac I/R injury. This is achieved through the activation of the Kelch-like ECH-
associated protein 1 (Keapl)/nuclear factor erythroid 2-related factor (Nrf2) axis and the
suppression of ROS production, indicating a significant role for Mstl in the transitional
management of cardiac I/R injury during heart transplantation [6]. Studies have dem-
onstrated that smoking can exacerbate autophagy through various mechanisms, con-
tributing to cellular aging and tissue damage: free radicals and reactive oxygen species
generated by smoking can harm cellular lipids, proteins, and DNA, resulting in oxida-
tive stress; carcinogens present in smoke can damage cellular DNA; and smoking also
induces mitochondrial damage and inflammation, which can further impair autophagy
[74]. Research has indicated that factors such as stress [75] and environmental pollution
[76] may trigger excessive autophagy in the body, potentially leading to depression under

chronic stress conditions and severe outcomes like miscarriage in pregnant females.
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Understanding the mechanism of autophagy in the context of I/R injury is of paramount
importance. It is essential to investigate the potential of autophagy as a therapeutic tar-
get, ensuring that its activation during treatment aims to preserve tissues and organs
rather than exacerbate cellular damage. This understanding is critical for accurately miti-
gating and regulating the detrimental effects of autophagy in clinical settings, such as
organ transplantation.

The dual action mechanisms of autophagy

In the preceding section, we discussed the enigmatic dual function of autophagy in I/R
injury, a process governed by a variety of molecular mechanisms that modulate sign-
aling pathways and influence whether autophagy facilitates cellular survival or leads to
cellular destruction following I/R injury [10]. As previously noted, the genes implicated
in the regulation of the fundamental processes of this autophagy pathway, collectively
referred to as ATGs, encode proteins that are crucial for the formation and maturation
of autophagosomes [60, 61]. Previous research has identified that ATGs are integral
to processes such as protein secretion, pathogen degradation, and the maintenance of
genome stability [16]. The regulation of these ATGs is mediated through both genetic
and epigenetic mechanisms, which modulate the intensity and duration of autophagic
responses, thereby influencing their protective or harmful outcomes [61].

Furthermore, the extent of autophagy activation is intricately linked to its spatial
and temporal dynamics [62]. The thioredoxin-interacting protein (TXNIP)/regulated
in development and DNA damage responses 1 (Reddl) complex has been identified
as a promoter of autophagosome formation during myocardial I/R, indicating
an enhancement in autophagy activation [64]. While TXNIP is known to inhibit
autophagosome clearance through the elevation of ROS levels, the formation of
autophagosomes induced by TXNIP is not mediated by ROS. This conclusion is
supported by evidence showing that the use of ROS scavengers does not impede the
increased autophagosome formation observed in hearts overexpressing TXNIP [48, 64].
Ultimately, TXNIP directly interacts with and stabilizes the autophagy regulator Redd1,
resulting in mammalian target of rapamycin (mTOR) inhibition and the activation of
autophagy. This indicates that increased TXNIP/Reddl expression represents a novel
signaling pathway that exacerbates I/R injury by promoting excessive autophagy during
reperfusion [64]. Furthermore, autophagy exhibits dual functions in tumorigenesis,
serving as a tumor-suppressing mechanism in the early stages and a cancer-promoting
factor in the later stages [77]. The dual mechanisms through which autophagy influences
tumor development is illustrated in Fig. 3.

Posttranslational modifications (PTMs) are crucial in the precise regulation of
autophagy regulators’ functions [46, 78]. Building on prior research, the mechanism
by which the primary amino acid sequence of proteins dictates the material properties
of biomolecular condensates is well established [79]. Consequently, PTMs in proteins,
including phosphorylation and ubiquitination, function as molecular switches to
precisely regulate the dynamics of biomolecular condensates. Ubiquitination, a prevalent
and reversible PTM, influences biomolecular assemblies via two primary mechanisms
[78, 80]. Firstly, it modifies the molecular structure of protein constituents, thereby
altering the physicochemical properties of the biomolecular assemblies. Secondly, it
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Fig. 3 The dual role of autophagy in hepatic IRl. Autophagy plays a dual role in HIRI: moderate autophagy
facilitates the clearance of damaged organelles and mitigates oxidative stress, whereas excessive autophagy
can exacerbate cellular damage, leading to adverse outcomes. During the ischemic phase, protective
autophagy is activated via AMPK stimulation owing to reduced ATP and oxygen levels, which inhibits mTOR,
promotes ULK1 activation, and initiates the formation of protective autophagosomes. In the reperfusion
phase, increased ROS levels activate BNIP3, resulting in the dissociation of the Beclin-1/Bcl-2 complex and
the release of Beclin-1, thereby promoting autophagosome formation and contributing to the clearance

of damaged organelles and proteins. However, overactivation of autophagy can lead to the excessive
degradation of organelles and proteins, potentially forming harmful autophagosomes and exacerbating
cellular damage. Therefore, maintaining autophagic homeostasis is crucial for alleviating hepatic ischemia—
reperfusion injury. (Created using Adobe Illustrator)

facilitates valence by engaging with binding partners within molecular networks that
contain UBDs or ubiquitin-associated domains (UBAs) [80-82]. Furthermore, the
accumulation of ubiquitin in individuals with neurodegenerative disorders, including
amyotrophic lateral sclerosis (ALS), may be attributed to disruptions in autophagic
activity and the homeostasis of stress granules [83]. Consequently, ubiquitination is
crucial in regulating the dynamics of biomolecular aggregates associated with these
diseases [78]. Drawing from these preclinical studies [78, 80—82], we posit that targeting
ubiquitinated biomolecular aggregates holds significant promise in combating diseases
such as ALS. PTMs, including phosphorylation and ubiquitination, function as
molecular rheostats that dynamically modulate and regulate protein activity, stability,
localization, and interactions among proteins such as ULKI, Beclin-1, and PI3K
complexes. These processes are crucial in various biological functions, including cellular
metabolism, growth, differentiation, and apoptosis [22, 84].

Beclin-1 participates in numerous biological processes, with its most extensively
characterized function being its involvement in autophagy. It interacts with and
modulates the activity of the PI3KC3/Vps34 lipid kinase, which generates PI3P, a
critical regulator in the initiation of autophagy and intracellular membrane trafficking
[84, 85]. These interactions can either augment or suppress autophagy, contingent
upon the cellular context and the specific signaling pathways activated during I/R
injury [22, 62]. For instance, the phosphorylation of ULK1 by AMPK facilitates the
initiation of autophagy under energy-depleted conditions [22]. Research indicates that,
in intestinal diseases, the expression level of Beclin-1 is frequently downregulated,
potentially resulting in a reduction of autophagic activity [60]. Moreover, cyclic GMP-
AMP synthetase (cGAS) functions as a DNA-sensing receptor and exhibits increased
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expression in both human and mouse models of colitis. Research indicates that a
deficiency in cGAS can exacerbate colitis and decrease the levels of autophagic proteins,
such as Beclin-1 and LC3-II. However, administration of the autophagy activator
rapamycin has been shown to significantly alleviate the severity of colitis in cGAS
knockout mice [86]. The data indicate that the ubiquitination of Beclin-1 may influence
its interaction with anti-apoptotic proteins in the context of human inflammatory bowel
disease (IBD) and mouse models of colitis, thereby modulating the equilibrium between
autophagy and apoptosis to preserve intestinal epithelial homeostasis. Autophagy
induced by ischemia is associated with the activation of AMPK and is suppressed by
a dominant negative form of AMPK. However, during reperfusion, autophagy is
characterized by an upregulation of Beclin-1 without concurrent AMPK activation [62].
Research indicates that ischemia activates autophagy via AMPK-dependent pathways
during cardiac I/R injury, whereas ischemia/reperfusion itself induces autophagy
through mechanisms dependent on Beclin-1 but independent of AMPK [21]. Specifically,
during myocardial ischemia, myocardial cells experience significant stress due to energy
deprivation and ATP depletion, rendering mitochondrial function a critical determinant
[87]. Under ischemic and hypoxic conditions, anaerobic glycolysis predominates as the
primary metabolic pathway, leading to the accumulation of lactate and hydrogen ions,
thereby inducing intracellular acidosis [7]. The resultant decrease in pH and depletion
of ATP activate the Na*/H" ion exchanger and the Na*/HCOj transporter, while
inhibiting the Na*/K*-ATPase, culminating in a substantial intracellular accumulation
of sodium ions [31]. The accumulation of sodium ions and alterations in the Na*/Ca?*
exchanger on the muscle membrane contribute to elevated intracellular calcium levels
and mitochondrial swelling [8]. Autophagy is activated as a response to I/R injury,
oxidative stress, and energy depletion [8, 48]. Upon the restoration of blood flow and
reoxygenation of the respiratory chain, ROS production is intensified, which triggers
excessive autophagy and may ultimately result in cell death [48].

Autophagy has been demonstrated to exhibit a dual role in the pathological process of
I/R injury [30]. Elucidating the mechanisms by which these molecular regulators operate
is essential for comprehending the modulation of autophagy in the context of I/R injury
[11, 28]. The biological milieu plays a pivotal role in the execution of autophagy, with
its requirements varying across different stages of the autophagic process. Modulating
autophagic pathways to alter the mode of cell death post-clinical intervention—
transitioning from lethal to protective in the context of cardiovascular disease, or
from protective to lethal in cancer therapy—could substantially influence therapeutic
outcomes [88, 89]. For instance, in tumor cells, autophagy plays a crucial role in
mitigating cytotoxicity by facilitating the removal of deleterious proteins and superfluous
or damaged organelles, thereby inhibiting the progression of cellular malignancy. In
tumor cells, the reduction in autophagic activity facilitates cellular evasion of apoptosis.
Further research is required to substantiate the dual role of autophagy in tumors, which
appears to be contingent upon the cellular microenvironment and the level of autophagic
activity at specific temporal points [8, 48]. Moreover, the expression patterns of key
autophagic molecules across various tumor types and their prognostic implications
exhibit variability. To optimize therapeutic outcomes, it is essential to select suitable
autophagy inhibitors or agonists on the basis of the specific autophagic and genetic
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characteristics of the tumor, thereby formulating a targeted and personalized treatment
strategy. By focusing on these molecular regulators and their associated pathways,
we can potentially augment the beneficial effects of autophagy while minimizing its
detrimental impacts. This approach necessitates a comprehensive understanding of
the intricate interactions between autophagy and other cellular processes, as well as
the development of precise pharmacological tools to modulate these interactions. The
primary challenge lies in effectively harnessing these molecular mechanisms to direct
autophagy toward cellular rescue rather than cellular destruction.

The regulation of autophagy in I/R Injury

The regulation of autophagy presents a promising novel strategy for addressing I/R
injury; however, its underlying mechanisms are notably complex [28]. The primary
molecular regulators of autophagy include mTORC1, AMPK, p53, and endoplasmic
reticulum stress (ERS) [7]. Notably, mTOR and Beclin-1, as molecules associated with
autophagy, are pivotal during various stages of myocardial ischemia—reperfusion injury
(MIRI) [84]. During the ischemic phase, the mTOR operates via the AMPK/mTOR
and PI3K/AKT/mTOR signaling pathways [62]. In contrast, the expression of Beclin-1
is upregulated during the reperfusion phase [7]. The regulation of autophagy can be
achieved through various strategies, including pharmacological interventions, genetic
modifications, and alterations of environmental factors [47, 72, 90].

Regarding pharmacological interventions, the administration of serine/threonine
kinase inhibitors, calcium channel inhibitors, and highly selective sodium-glucose
cotransporter 2 (SGLT2) inhibitors has been demonstrated to be associated with the
self-regulation of autophagy, yielding positive outcomes in clinical treatment [21]. The
PI3K/TOR signaling pathway is recognized as a negative regulator of autophagy in mam-
malian cells. Furthermore, depletion of cellular ATP significantly inhibits mTOR activity
without impacting the activation of PI3K or altering intracellular amino acid concentra-
tions [91]. As previously discussed, rapamycin serves as a potent and specific inhibitor of
the mTOR pathway, demonstrating its ability to enhance autophagy and exhibiting ther-
apeutic potential in preclinical models of I/R injury [92]. Empagliflozin has been shown
to mitigate cardiac microvascular I/R damage through the activation of the AMPKal/
ULK1/FUNDCI1/mitochondrial autophagy pathway [21]. In the context of colorectal
cancer, excessive activation of the mTOR pathway impedes the initiation of autophagy,
thereby facilitating tumor cell proliferation and survival [60].

While genetic manipulation offers precise control over the autophagy process,
its application in clinical settings remains constrained. For instance, the inhibition
of mTORC1 by circular RNA (circ-FoxO3) to enhance autophagy, or the knockout
or overexpression of the ATG gene, exemplifies these limitations [59, 61]. Research
indicates that the Sirtl/FoxO3a pathway provides a protective effect by modulating
autophagy in hepatic ischemia—reperfusion injury (HIRI), a mechanism that can be
disrupted by the specific Sirtl inhibitor EX-527 [93]. At the molecular level, circular
RNAs engage with autophagy-related microRNAs (miRNAs) [94, 95] and proteins
[96] to modulate various pathological processes. The interplay between microRNAs
(miRNAs) and autophagy is pivotal in the context of neurodegenerative diseases. Both
autophagy and miRNAs exhibit dual roles in these diseases [97]. miRNAs are integral
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to the regulation of autophagy-related genes and signaling pathways, influencing the
autophagic process; aberrant miRNA expression can result in autophagic dysfunction,
thereby exacerbating the progression of neurodegenerative disorders [98]. Conversely,
targeting specific miRNAs offers a therapeutic approach to modulate autophagy
levels, potentially mitigating symptoms of neurodegenerative conditions. For instance,
inhibiting miR-140, which enhances PINK1-mediated mitophagy, has been shown to
alleviate symptoms of Alzheimer’s disease [99]. In the context of spinal cord ischemia—
reperfusion injury (SCIRI), noncoding RNAs (ncRNAs) have the capacity to regulate
apoptosis, inflammation, autophagy, and oxidative stress, thereby mitigating the effects
of SCIRI [100]. The inhibition of the inhibitor Keapl, which regulates the Nrf2—an
oxidative stress sensor and pivotal transcription factor for cellular protection against
oxidative damage—results in the nuclear accumulation of Nrf2. This accumulation
subsequently activates the transcription of genes responsible for encoding a range of
cytoprotective, antioxidant, and anti-inflammatory proteins, thereby mitigating oxidative
stress damage [6]. For instance, the Mstl gene has been the subject of extensive research
in the context of various reperfusion injuries associated with organ transplantation,
including that of the heart [101]. As a pivotal mediator of oxidative stress, this serine/
threonine kinase is intricately associated with mitochondrial function and autophagic
processes [73]. Exposure to CoCl, has been shown to upregulate Mstl expression
and activate the Keapl/Nrf2 signaling pathway, while exacerbating cellular oxidative
damage through Mstl gene ablation and inhibition of the Keapl/Nrf2 pathway [6].
Furthermore, apoptosis initiated by extrinsic pathways is mediated by transmembrane
death receptors, which belong to the tumor necrosis factor receptor (TNFR) family and
possess “death domains” [7]. Through the death domain, specific ligands and associated
death receptors, such as the apoptosis-stimulating fragment ligand (FasL)/Fas receptor
(FasR), TNF-a/TNFR1, TNF-related apoptosis-inducing ligand (TRAIL)/death receptor
(DR), and TRAIL/DR5, mediate the transmission of apoptotic signals from the cell
surface to intracellular pathways [102]. Additionally, the p53 gene serves as a crucial
tumor suppressor, with the p53 protein in the cytoplasm capable of inhibiting the mTOR
activity by suppressing AMPK activity [103]. In colorectal cancer, mutations and loss of
function in the p53 gene are significantly associated with dysregulated autophagy and
tumor progression [60].

Environmental factors are pivotal in investigating the regulatory mechanisms of
autophagic activity, as they modulate various signaling pathways and molecular pro-
cesses [80]. For instance, low-dose hydrogen sulfide (H,S) has been shown to mitigate
the neuronal damage associated with cerebral ischemia—reperfusion injury (CIRI) [104].
The ubiquitination pathway, along with the PTEN-activated PINK1-Parkin pathway, rep-
resents typical regulatory mechanisms operative during mitosis [33, 84]. Furthermore,
autophagy fulfills various physiological functions, including the maintenance of cellu-
lar homeostasis, promotion of cell survival, regulation of the cell cycle, modulation of
oxidative stress, facilitation of muscle regeneration, preservation of the quiescent state
of stem cells, and promotion of muscle cell differentiation [105]. In eukaryotic cells,
the ubiquitin—proteasome system (UPS) and autophagy constitute two principal cellu-
lar degradation pathways that are essential for the clearance of misfolded or unfolded
proteins. These pathways are critical for maintaining cellular and tissue homeostasis,
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preventing alterations associated with aging, and mitigating a range of human diseases
[82]. For instance, the inhibition of the UPS results in the compensatory activation of
autophagy via multiple mechanisms. Conversely, the suppression of autophagy can
either activate or impair the proteasomal pathway, contingent upon the specific cellu-
lar context and environmental conditions [51, 83]. Furthermore, components of either
system may serve as proteolytic targets for the other [16]. Cells must precisely regulate
the induction of autophagy in response to diverse stress conditions. Reversible ubiquit-
ination of the core autophagy-inducing factor, specifically the ULK1 and PI3K complex
subunits, has been identified as a universal mechanism for both initiating and termi-
nating autophagy across various cellular contexts [13, 65]. The initiation of autophagy
is orchestrated by the ULK1 serine/threonine kinase, which associates with FIP200,
ATG13, and ATG101 to form functional complexes [20, 84]. In numerous cellular stress
responses, the activation of ULK1 initiates the phosphorylation of downstream factors,
subsequently inducing a cascade of autophagy [22]. A key effector of ULK1 is the PI3K-
II complex, comprising the lipid kinase Vps34 and the regulatory proteins Beclin-1,
Vps15, and ATG14 [22, 84]. ULK1 facilitates the activation of PI3K-III complexes and
recruits them to sites of autophagosome formation, where the produced PI3P plays a
critical role in the nucleation process of autophagosomes [106]. ATGY, the sole trans-
membrane protein integral to the core autophagy machinery, is postulated to supply
membrane resources essential for autophagosome formation [22]. Furthermore, ATG9
interacts with ATG2 and WIPI proteins (ATG18, a phosphatidylinositol 3-phosphate
effector in yeast), playing a crucial role in the initial phases of autophagosome formation
originating from the endoplasmic reticulum [65]. Additionally, the ubiquitination pro-
cess contributes to the timely induction of autophagy through a mechanism of positive
feedback [27]. The upregulation of Beclin-1 expression, a pivotal protein involved in the
regulation of autophagosome formation and processing, is responsible for the activation
of autophagy during reperfusion [84, 85]. In vitro studies have demonstrated that Beclin-
1-mediated autophagy is modulated by the BCL-2 protein in cardiomyocytes under con-
ditions of nutrient deprivation, such as amino acid and serum deficiencies [107]. In the
human breast cancer cell line MCF-7, Beclin-1 protein expression is markedly reduced
and, in certain instances, undetectable [108]. Stable transfection of the Beclin-1 gene has
been shown to significantly enhance cellular autophagic activity, thereby reducing carci-
nogenic potential. Furthermore, ROS may induce Beclin-1-mediated autophagy during
reperfusion [84]. In this context, elevated ROS levels serve not only as indicators of an
energy crisis but also as critical promoters of autophagy. The overexpression of Beclin-1
resulting from reperfusion is associated with increased oxidative stress [85]. In addition
to modulating the expression of Beclin-1, ROS also alter the oxidation state and activ-
ity of autophagy-related proteins, thereby facilitating the LC3, which subsequently trig-
gers autophagy [85]. Studies have demonstrated that Beclin-1 inhibits tumorigenesis by
inducing autophagic cell death in tumor cells. However, the downregulation of Beclin-1
gene expression markedly diminishes the autophagic response, shielding tumor cells
from autophagic cell death and consequently promoting their continued proliferation
[109]. Receptor-mediated mitophagy, encompassing the BNIP3 and FUNDCI1 pathways,
facilitates the recruitment of damaged mitochondria to autophagosomes through the
binding to specific proteins [110]. In addition to the role of autophagy in I/R, mitophagy
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is critically involved as a mechanism of cell death. An analysis of the expanding signifi-
cance of mitophagy in various other diseases is presented in Table 1.

To investigate the regulatory mechanisms of mitophagy, it has been identified that,
beyond the classical receptors BNIP3 and FUNDCI, a range of autophagy receptors,
including BNIP3L/NIX, BCL2L13, AMBRAL, and FKBPS, are localized within the
outer mitochondrial membrane (OMM). These receptors possess the capability to
directly recruit LC3/GABARAP proteins, thereby facilitating mitochondrial degradation
independently of ubiquitin signaling [50, 166, 167]. Conversely, the inner mitochondrial
membrane (IMM) typically remains impermeable; however, during ischemic injury,
characterized by simultaneous nutrient and oxygen deprivation, the mitochondrial
permeability transition pore (mPTP) opens nonselectively. This opening results in the
uncoupling of oxidative phosphorylation, ATP hydrolysis, and the accumulation of
intramitochondrial inorganic phosphate [31]. CL plays a critical role in this regulatory
process, as most CL-mediated mitochondrial autophagy receptors contain LC3
interaction regions (LIRs), which enable them to bind tightly to LC3/GABARAP
proteins [168]. This interaction facilitates the induction of mitophagy under cellular
stress conditions through the association of CL with LC3 [50]. Moreover, lipids such as
ceramides may serve as signaling molecules or receptors for compromised mitochondria
[169]. Hypoxia and nutrient deprivation are potent inducers of autophagy; under anoxic
conditions, cells activate the autophagic pathway to degrade and recycle intracellular
components to maintain energy homeostasis and ensure survival [170, 171]. Autophagy
is significantly upregulated in response to nutrient deprivation, particularly in the
context of energy depletion due to deficiencies in amino acids and glucose [12, 72].
This process constitutes a cellular strategy to acquire essential nutrients and support
survival [170]. Additional regulatory mechanisms include the dysregulation of lysosomal
clearance, the involvement of NLRP3 inflammasomes in mediating pyroptosis, the role
of iron metabolism-related proteins in influencing ferroptosis, and the regulation of
mitochondrial damage by BCL-2 family proteins [172-174]. In recent years, ERS has
also garnered significant attention as a novel regulatory pathway of apoptosis [175].
ERS is implicated in a wide range of physiological and pathological processes, including
protein folding, intracellular Cat storage, oxidative stress, hypoxia, ischemia, and lipid
metabolism disorders, and is intricately associated with myocardial IRI [29]. Although
ERS is essential for cellular survival, its prolonged activation can lead to apoptosis [7].
The myocardial damage resulting from the accumulation of unfolded proteins during
ERS can further exacerbate ERS, thereby altering the metabolic state of cardiomyocytes
and causing more severe injury [176]. In the context of MIRI, ERS levels increase, and
the attenuation of ERS has been demonstrated to alleviate the effects of MIRI [29, 87,
100]. However, it is crucial to recognize that not all ERS responses are harmful. For
example, the ERS transcription factor ATF6 has been shown to provide cardiomyocyte
protection against ischemia-reperfusion injury [7]. Collectively, these mechanisms
contribute to the impaired clearance of damaged proteins and organelles within cells,
leading to their intracellular accumulation. This accumulation subsequently triggers
apoptosis, necrosis, and other forms of cell death, thereby exacerbating myocardial
damage [20]. Stress granules, which are membraneless organelles located within the
cytoplasm, are formed in response to a variety of environmental stressors, such as
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elevated temperatures, oxidative stress, and viral infections [177]. These granules
consist of messenger ribonucleoprotein complexes (mRNPs), including stalled mRNA,
RNA-binding proteins (RBPs), translation initiation factors, and various other proteins
[78]. Recent studies have highlighted the critical role of ubiquitination in regulating
the dynamics of stress granules, particularly concerning their assembly, disassembly,
and degradation processes [81, 177, 178]. The regulation of stress granule dynamics is
significantly influenced by PTMs, including phosphorylation and methylation [178].
Different stressors induce distinct patterns of ubiquitination within the stress granule
proteome; for instance, heat shock results in substantial ubiquitination of stress granule
components, whereas arsenite, a common inducer of stress granules, does not [81].

We propose the novel use of autophagy regulation as a therapeutic strategy to mitigate
organ damage and systemic effects resulting from I/R injury. To accomplish this, it is
imperative to explore the molecular mechanisms underlying the dual role of autophagy
and to develop pharmacological agents that are both safe and efficacious, ensuring their
timely and precise administration. The challenge lies in identifying the critical factors,
timing, and extent of autophagy activation, as well as synchronizing these interventions
with the dynamics of I/R injury. Consequently, it is imperative to rigorously evaluate the
impact of these regulatory strategies in preclinical models to ascertain their efficacy and
potential side effects. The exploration of autophagy’s therapeutic potential is currently
progressing, with each step offering new insights into the intricate balance between its
protective and detrimental properties. Here, we offer a summary of the factors that can
influence or regulate the process of autophagy, as delineated in Table 2.

The effects on organ damage and the whole body

Phagocytosis has extensive and significant implications for I/R-induced clinical organ
injury and its systemic effects [60]. As previously discussed, autophagy represents a
distinct form of cell death that operates independently of other apoptotic pathways or
excessive autophagic processes [10].

Cardiovascular disease represents a significant global public health challenge, emerging
as a leading cause of morbidity and mortality worldwide [183]. The investigation of
autophagy within the context of cardiovascular diseases (CVDs) encompasses intricate
vascular pathological processes that result in the impairment of vascular architecture
and cardiac functionality, thereby imposing a substantial burden on global health
systems and economic resources [184]. These conditions encompass atherosclerosis,
hypertension, MIRI, myocardial infarction, myocardial hypertrophy, heart failure, and
dilated cardiomyopathy [185, 186]. Adverse consequences of autophagy in MIRI are
illustrated in Fig. 4.

Mortality rates associated with cardiovascular disease have decreased as a result of
proactive preventive strategies and advancements in pharmacological treatments and
medical technology [166]. Nonetheless, the overall burden of cardiovascular disease
remains substantial, primarily owing to inadequate implementation of prevention
guidelines, challenges in adhering to preventive measures, and the prevalent
occurrence of risk factors for coronary heart disease, including lipid metabolism
disorders, hypertension, and diabetes mellitus [107]. The issue of IRI in the context
of myocardial infarction presents a significant challenge in cardiovascular medicine.
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Table 2 Autophagy-related influencing factors

Pharmacological interventions

Mechanism

Refs.

Rapamycin

Empadliflozin

Calcium channel inhibitors

Carfilzomib (CF2)

Overactivation of the mTOR pathway

Genetic manipulation
Circ-FoxO3

NcRNAs

Beclin 1

ATG gene

Environmental factors
H,S

Rapamycin serves as a highly effective and
selective inhibitor of the mTOR signaling
pathway, thereby promoting the process of
autophagy

The SGLT2 inhibitor, empagliflozin, confers
cardioprotection by mitigating autophagic
cell death in cardiomyocytes, which is
induced by excessive autophagy. Further-
more, empagliflozin alleviates ischemia/
reperfusion injury in cardiac microvasculature
through the activation of the AMPKa1/ULK1/
FUNDC1/mitochondrial autophagy signaling
pathway

The elevation of intracellular Ca®* levels and
the consequent swelling of mitochondria
expedite the autophagic process

The administration of CFZ resulted in elevated
levels of ubiquitinated BNIP3L and LC3B,
thereby promoting autophagic activity

In colorectal cancer, the hyperactivation of the
mTOR signaling pathway can suppress the ini-
tiation of autophagy, consequently facilitating
the proliferation and survival of tumor cells

Circ-FoxO3 facilitates the modulation of
autophagy or ATG through knockout or over-
expression by inhibiting mTORC1

In the context of spinal cord ischemia-rep-
erfusion injury (SCIRI), noncoding RNAs (ncR-
NAs) have the capacity to regulate apoptosis,
inflammation, autophagy, and oxidative stress,
thereby mitigating the effects of SCIRI

Beclin 1 modulates autophagy via phospho-
rylation, while the pro-apoptotic kinase Mst1
can suppress autophagy by phosphorylating
the BH3 domain of Beclin 1

The protein encoded by the ATG gene is
integral to the initiation and nucleation

of autophagosomes. Specifically, ATG1, in
conjunction with the ULK1/2 complex, and
ATG13 are pivotal during the early stages

of autophagosome formation. They form
complexes with ATG14 and FIP200, which
facilitate the initiation of autophagosomes.
ATG proteins engage in intricate interac-
tions to form various complexes, such as

the ATG5-ATG12-ATG16L1 complex and

the ATG8 (LC3) lipid system. Notably, the
lipidated form of LC3, known as LC3-1I, serves
as a hallmark of autophagosome formation.
These complexes are crucial for the expansion
of the autophagosome membrane and its
subsequent fusion

Low concentrations of hydrogen sulfide (H,S)
have the potential to mitigate neuronal dam-
age induced by cerebral ischemia-reperfusion
(CIR)

[91,92]

[21, 64, 166]

[5,8,32,176]

[30, 49, 50, 106]

(60]

[59,61]

[100]

[84,85]

[20-22, 50, 65, 85, 94]

[104]
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Pharmacological interventions

Mechanism

Refs.

BNIP3L

ULK1

PI3K

PINK1-Parkin

CL

Ceramides

Hypoxia

Nutritional deprivation

NLRP3 inflammasomes

BNIP3 has been characterized as a pro-apop-
totic protein, the induction of which has been
demonstrated to enhance the insertion and
activation of BAX (BCL2-associated X, apopto-
sis regulator) and BAK (BCL2 antagonist/killer
1) within the mitochondria

The phosphorylation of FUNDC1 by ULK1
has been demonstrated to activate FUNDC1-
dependent mitophagy

Phosphatidylinositol 3-kinase (PI3K)-activated
protein kinase B (PKB) undergoes activation
through direct phosphorylation of a pivotal
component of the mTORC1. Phosphatidylino-
sitol (3, 4, 5)-trisphosphate (PIP3) can activate
PKB, which subsequently inhibits autophagy
by phosphorylating and suppressing the
activity of mTOR. In contrast to class | PI3K,
class Il PI3K plays a crucial role in the initiation
of autophagy. Class Ill PI3K generates PI3P, a
critical step in the formation of autophago-
somes. Additionally, PIP3 functions as a sec-
ond messenger, modulating other signaling
molecules and kinases, thereby exerting an
indirect regulatory effect on autophagy

The PINK1-PRKN/Parkin pathway facilitates the
tagging of impaired mitochondria with ubig-
uitin chains, thereby initiating their selective
autophagic degradation

Cardiolipin-mediated mitophagy triggers the
initiation of mitophagy in response to cel-
lular stress through the interaction between
cardiolipin (CL) and microtubule-associated
protein 1A/1B-light chain 3 (LC3)

Ceramides have the capacity to induce
autophagy through multiple mechanisms.
They activate intracellular signaling pathways,
including ERK and p38 MAPK, which play a
crucial role in the initiation of autophagy

Following hypoxic conditions, anaerobic
glycolysis becomes the primary metabolic
pathway, resulting in the accumulation of
lactic acid and hydrogen ions, which in turn
causes intracellular acidosis

Under conditions of nutrient deprivation,
cells initiate the degradation of their own
components, including damaged proteins,
organelles, and other biological macromol-
ecules, to facilitate the synthesis of new
molecules or to serve as an energy source.
Furthermore, nutrient deprivation results in
decreased levels of intracellular amino acids
and growth factors, thereby inhibiting the
mTOR signaling pathway and promoting the
induction of autophagy

The activation of the NLRP3 inflammasome is
induced by ROS and adenosine triphosphate
(ATP), subsequently resulting in the secretion
of the pro-inflammatory cytokines interleu-
kin-1 beta (IL-1B) and interleukin-18 (IL-18), as
well as the initiation of pyroptosis

[49,63,110,179]

[13,21,22,65,82,85,106]

[3, 22,24, 28, 85,94, 180]

[50,51]

[50,172]

[169]

[170,171]

[12,72]

[174]
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Table 2 (continued)

Pharmacological interventions Mechanism Refs.

Lysosomal clearance dysfunction  Lysosomal dysfunction can result in the accu-  [3, 12]
mulation of autophagic substrates within the
cell, thereby impairing cellular function and
potentially leading to cell death. Moreover,
rupture or dysfunction of lysosomes may
cause the release of their enzymes into the
cytoplasm, which can initiate an inflammatory
response and contribute to cellular demise

Ferroptosis Ferroptosis is characterized by the accu- [9,63,72]
mulation of lipid ROS originating from iron
metabolism, with its primary features being
mitochondrial condensation and increased
bilayer membrane density

Nrf2 Nrf2 promotes the expression of antioxidant  [6, 181]
genes and, under nonstressed conditions, is
sequestered in the cytoplasm through direct
interaction with Keap1

AMPK Activated AMPK has the capability to mitigate  [182]
oxidative stress by suppressing NADPH
oxidase activity and enhancing antioxidant
responses mediated by Nrf2

The acute loss of myocardial tissue due to an ischemic event results in profound
metabolic and ionic disturbances within the affected myocardium, culminating in
cell death [187]. Even when blood flow is subsequently restored, the heart’s limited
regenerative capacity poses a substantial obstacle to cell replacement [188]. The role
of autophagy in cardiac function is complex and somewhat paradoxical. In conditions
such as obesity and high-fat diet-induced cardiac dysfunction, autophagy plays a
protective role by modulating cardiometabolism and safeguarding the heart against
ischemia—reperfusion damage [30, 189, 190]. Conversely, cardiomyocytes are heavily
reliant on oxygen for oxidative phosphorylation to sustain their function. Under
hypoxic conditions, the reduction in mitochondrial ATP production leads to calcium
overload, acidosis, and oxidative stress, all of which contribute to myocardial injury
[191]. In the context of cardioprotective effects, pretreatment has been shown to
enhance autophagic flux by activating AMPK and PI3K while inhibiting mTOR [192].
Additionally, it has been proposed that drug posttreatment (PPC), administered
within minutes during the early stages of reperfusion, offers greater efficacy and
flexibility compared with conditioning or ischemic conditions [193]. Several studies
have indicated that fluctuations in oxygen levels, rather than sustained low oxygen
levels, constitute the most detrimental factor in myocardial hypoxia—reperfusion
injury. Therefore, it is imperative to regulate the reperfusion process in hypoxia—
reperfusion injury to prevent significant myocardial damage caused by abrupt,
extensive blood reperfusion [194].

Cerebral ischemic injury is a significant contributor to global morbidity and
mortality, precipitating various central nervous system disorders, including AIS
and chronic ischemic AD [111]. Research indicates that, during cerebral ischemia/
reperfusion events, there is a reduction in ATP levels, which activates the intracellular
energy sensor AMPK. This activation subsequently inhibits mTORCI1, resulting in
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the dephosphorylation of ATG13 and ULK1. These molecular events facilitate the
assembly of ULK1 complexes and expedite the initiation of autophagy [195, 196].
During the initial phase of reperfusion, autophagy plays a cytoprotective role by
degrading damaged organelles and misfolded proteins, thereby releasing amino acids
and nucleotides for recycling [197]. Conversely, prolonged activation of autophagy
in the later stages of reperfusion may result in the excessive degradation of healthy
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organelles and proteins, culminating in autophagic cell death and secondary injury
to histiocytes. This indicates that autophagy has a dual role in brain I/R injury [198].
HIRI represents a significant complication associated with hepatectomy and liver
transplantation, profoundly affecting patient outcomes [199]. Research indicates that
upregulated autophagy plays a crucial role in the restoration of liver function following
I/R injury. From an energy metabolism perspective, autophagy contributes to the
maintenance of metabolic homeostasis by facilitating the removal of damaged organelles
and proteins, thereby recycling their constituent nutrients and supplying energy to
cells [200]. During oxidative stress, autophagy plays a crucial role in mitigating cellular
damage by eliminating deleterious substances, including ROS. This process helps
to attenuate the detrimental effects of oxidative stress on cells. Furthermore, within
the context of the inflammatory response, autophagy serves to inhibit the release of
inflammatory cytokines, thereby reducing the inflammatory cascade and alleviating
liver injury [27, 201]. Nonetheless, it is important to note that excessive autophagy can
result in the degradation of normal organelles and proteins, which may impair cellular
function and potentially exacerbate liver injury [202]. The regulatory mechanisms
governing autophagy are intricate, and the interactions among various pathways render
the role of autophagy in HIRI a subject of ongoing debate [201]. The AMPK/mTOR
signaling pathway is unequivocally central to the regulation of autophagy and remains
a prominent subject of contemporary research. Studies have demonstrated that the
induction of autophagy correlates with reduced expression and activity of mTOR during
HIRI. Furthermore, autophagy displays dual regulatory roles in the progression of HIRI,
exerting a protective effect on cells during the early stages, while potentially contributing
to adverse outcomes in prolonged ischemic conditions [202]. As previously discussed,
the removal of damaged mitochondria is dependent on the selective autophagic process
mediated by the PINK1/Parkin pathway, known as mitophagy [203]. The upregulation
of PINKI1 protein via this pathway has been demonstrated to trigger mitophagy,
subsequently inhibiting the NLRP3 inflammatory pathway and mitigating HIRI [204].
Autophagy is an essential mechanism for the kidneys to sustain normal physiological
functions, including the preservation of podocyte morphology and functionality [13, 61].
The targeted deletion of ATG5 or ATG7 in renal epithelial cells has been demonstrated
to induce CKD in murine models, characterized by podocyte and tubular dysfunction,
glomerular and tubulointerstitial damage, and progressive organ failure [205]. Moreover,
the specific deletion of ATG5 in mouse podocytes facilitates the onset of age-dependent
glomerulopathy, evidenced by the accumulation of oxidative and ubiquitinated proteins,
heightened endoplasmic reticulum stress, podocyte loss, and proteinuria [61]. These
studies have substantiated the critical role of autophagy in mitigating age-related glo-
merular disease and the deterioration of renal function [61]. Beyond glomerular disease,
the damage and apoptosis of tubular epithelial cells represent a significant characteristic
of AKI, which has the potential to progress to CKD if the injury is recurrent or inad-
equately repaired [206]. Cisplatin-induced tubular apoptosis has been demonstrated
to decrease when autophagy inhibitors, such as 3-methyladenosine or bafilomycin, are
used, or when Beclin-1 expression is downregulated. This is particularly relevant for
chemotherapeutic agents such as cisplatin, which induce AKI through the promotion
of autophagy [207]. Nonetheless, certain studies have indicated that the enhancement
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of autophagy by cisplatin may, in contrast, aggravate renal injury and apoptosis [208].
Various injuries, including renal I/R, sepsis, and exposure to nephrotoxins, can result
in nutrient depletion and oxidative stress, which subsequently trigger the activation of
autophagy [13, 14, 61]. Renal fibrosis is a characteristic feature of CKD, with transform-
ing growth factor-p1 (TGF-P1) playing a pivotal role in its progression. TGF-1 not only
facilitates the activation of fibroblasts but also significantly contributes to the develop-
ment of renal fibrosis [209, 210]. In the context of chronic kidney diseases, including
diabetic nephropathy, primary nephrotic syndrome, immunoglobulin A nephropathy,
and doxorubicin-induced nephropathy, autophagy may be activated as an intrinsic pro-
tective mechanism within renal tubular epithelial cells and podocytes. The extent of
autophagic disruption is associated with the severity of chronic kidney disease exacerba-
tion [211-213].

Furthermore, autophagy is essential for preserving endothelial cell function and vascu-
lar integrity during pulmonary I/R injury [185]. Autophagy, a crucial cellular degradation
and recycling mechanism, plays a vital role in preserving damaged mitochondria and
preventing the release of cytotoxic substances, thereby sustaining mitochondrial func-
tion and cellular viability. The regulation of autophagy within endothelial cells influences
the equilibrium between pro-survival and pro-apoptotic signaling pathways, potentially
altering cellular fate under ischemic conditions [214]. Furthermore, autophagy inhib-
its apoptosis, maintains intracellular homeostasis, and safeguards blood vessels from
damage by modulating angiogenesis [25]. For instance, P66shc facilitates the removal
of damaged mitochondria through the promotion of mitophagy, thereby contribut-
ing to the maintenance of mitochondrial function and vascular integrity in endothelial
cells [185]. Dysfunction of pulmonary endothelial cells (ECs) is a key characteristic of
pulmonary I/R injury, leading to excessive fluid accumulation in the lungs (i.e., edema),
reduced efficiency of gas exchange, and diminished lung elasticity [215]. The occurrence
of I/R injury following lung transplantation is unavoidable and can result in the initial
dysfunction of the transplanted organ. This condition contributes to heightened morbid-
ity and mortality among postoperative patients and may also precipitate immune rejec-
tion, a critical determinant of postoperative mortality in recipients [216]. Dysfunction
in autophagy can result in vascular injury and disease. Consequently, strategies aimed
at modulating autophagy, including the application of autophagy inducers, inhibitors, or
gene therapy, are anticipated to enhance vascular integrity and offer therapeutic benefits
for vascular diseases [84, 92]. Moreover, interventions targeting autophagy-related sign-
aling pathways, as well as the use of natural products and lifestyle modifications, present
additional avenues for modulating autophagy to improve vascular health [217, 218].

The impact of autophagy on the immune system’s inflammatory response is
significant: autophagy has the potential to attenuate inflammation by degrading pro-
inflammatory cytokines and modulating antigen presentation to immune cells [27].
Nevertheless, an imbalance in this regulatory mechanism can lead to exacerbated
inflammation, potentially initiating a cascade of events culminating in multi-organ
dysfunction syndrome [12]. Nod-like receptors (NLRs), including NOD1 and NOD2
signaling pathways, play a crucial role in immune defense by inducing autophagy and
suppressing inflammatory responses. Additionally, autophagy modulates inflammatory
pathways in macrophages, such as the NF-kB pathway, the RIG-I/STING pathway,
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and the inflammasome pathway [60, 201]. Disruptions in autophagy can result in
heightened inflammatory responses, including conditions such as IBD, systemic lupus
erythematosus (SLE), and arthritis. For instance, a deficiency in ATG?7 is associated with
elevated levels of IL-1p and pyroptosis, while a deficiency in ATG5 increases vulnerability
to Mycobacterium tuberculosis [46, 201]. Consequently, investigating the interplay
between autophagy and macrophage function is crucial for elucidating the mechanisms
underlying inflammatory responses and for devising novel therapeutic strategies for
inflammatory diseases [27]. Comprehending the organ-specific and systemic functions
of autophagy in I/R injury is essential for the advancement of targeted therapeutic
strategies. It is imperative to sustain a delicate equilibrium to avert dysregulation in the
role of autophagy within these processes. The dual roles of autophagy in the IRI process
of different organs are listed in Table 3.

Future therapeutic approaches must meticulously modulate autophagic activ-
ity to optimize its protective benefits while mitigating the potential risk of harm [12].
An important consideration is that autophagy inhibitors impact various stages of the
autophagic process, resulting in distinct therapeutic outcomes. During the initiation
phase of autophagy, inhibitors such as 3-methyladenosine, wortmannin, and LY294002
can impede the onset of autophagy. This inhibition leads to a downregulation in the
expression of autophagy-related proteins, specifically LC3-1I and Beclin-1, consequently
diminishing autophagic flux. During the fusion phase of autophagy, inhibitors such as
pafimycin Al and chloroquine impede the fusion of lysosomes with autophagosomes,
thereby obstructing the degradation of autophagic contents. This results in a reduc-
tion of autophagic activity, yet concurrently leads to an upregulation in the expression
of autophagy-related proteins and an enhancement in autophagic flux [199]. This thera-
peutic approach within precision medicine necessitates an in-depth and comprehensive
understanding of the cellular context, as well as the interactions between autophagy and
other cell death mechanisms. Such understanding is essential to accurately discern the
intricate balance between autophagy and cellular rescue or destruction following I/R
injury. This knowledge may offer novel insights for the development of innovative treat-
ments for I/R injury.

Conclusions

The dual role of autophagy in ischemia—reperfusion (I/R) injury presents both a challenge
and an opportunity in therapeutic strategies. As a double-edged sword, autophagy can
either protect or harm cells, depending on the context and extent of activation. This
duality demands a nuanced understanding of its mechanisms and regulatory pathways.
During the ischemic phase, autophagy acts as a protective mechanism by clearing
dysfunctional organelles and misfolded proteins, thus maintaining cellular integrity. This
is particularly important in organs such as the brain and heart, where rapid response to
damage is critical. Autophagy recycles cellular components to restore energy balance,
thereby facilitating recovery upon reperfusion. Conversely, excessive autophagy during
reperfusion can exacerbate tissue damage. Overactivation might lead to autophagic cell
death or an imbalance in cellular homeostasis, as seen in cases where it contributes to
mitochondrial fragmentation and ATP depletion. Understanding the thresholds of
protective versus detrimental autophagy is crucial, especially in therapeutic contexts
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such as cancer treatment or organ transplants, where modulation of autophagy could
shift outcomes significantly. The therapeutic potential lies in precisely regulating
autophagy to harness its protective benefits while minimizing harmful effects. This
requires a sophisticated approach, potentially involving the use of autophagy modulators
at specific stages of the process. For instance, targeting the AMPK/mTOR pathway
could effectively modulate autophagy in liver and kidney injuries, improving outcomes
in organ transplantation and chronic disease management. The future of I/R injury
treatment could be revolutionized by therapies that finely tune autophagic responses.
Investigating molecular targets such as the PINK1/Parkin pathway in mitochondrial
autophagy could provide insights into reducing oxidative stress and inflammation.
Additionally, understanding the interplay between autophagy and other cell death
pathways could lead to more effective and personalized therapeutic strategies.

In conclusion, autophagy’s dual role in I/R injury underscores the need for targeted
therapeutic approaches that leverage its protective aspects while controlling its poten-
tial to cause harm. As research advances, the potential for autophagy-based therapies
in improving outcomes for diseases involving I/R injury appears promising, provided
that we achieve a deeper comprehension of its regulatory mechanisms and their clinical
implications.

Abbreviations

AR B-Amyloid

ACD Autophagic cell death

AD Alzheimer’s disease

ADCD Autophagy-dependent cell death

AlS Acute ischemic stroke

AKI Acute kidney injury

ALl Acute lung injury

ALS Amyotrophic lateral sclerosis

AMBRA1 Activating molecules of the autophagy regulator 1
AMCD Autophagy-mediated cell death

AMD Age-related macular degeneration
AMP Adenosine monophosphate

AMPK AMP-activated protein kinase

ATGs Autophagy-related genes

ATP Adenosine triphosphate

BAK BCL-2 antagonist/killer 1

BAX BCL-2-associated X

BBB Blood-brain barrier

BCL-2 B-cell ymphoma 2

BIM BCL-2 interacting mediator of cell death
CIRI Cerebral ischemia-reperfusion injury
circ-FoxO3  Circular RNA FoxO3

cGAS Cyclic GMP-AMP synthetase

CKD Chronic kidney disease

CL Cardiolipin

CMA Chaperone-mediated autophagy
COPD Chronic obstructive pulmonary disease
CVDs Cardiovascular diseases

DAMPs Damage-associated molecular patterns
DR Death receptor

Drp1 Dynein-associated protein 1

ECs Endothelial cells

ERS Endoplasmic reticulum stress

FasL Fas ligand

FasR Fas receptor

GABARAP Gamma-aminobutyric acid receptor-associated protein
H,S Hydrogen sulfide

HF Heart failure

HIRI Hepatic ischemia-reperfusion injury
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HSC
IBD
IMM
I/R
Keap1
LAMP
LC3
LIRs
LRRK2
MAPK
MIRI
miRNA
MODS
mPTP
mRNPs
Mst1
mtDNA
mTOR
mTORC1
MUL1
NAFLD
NBR1
ncRNAs
NDP52
NLRP3
NLRs
Nrf2
OMM
Opal
PI3K
PI3P
PIP3
PKB
pTau
PTMs
RBPs
RGCs
ROS
SCIRI
SGLT2
SIRS
SLE
SNARE
SOD
SQSTM1
TGF-B1
TNF-a
TNFR
TRAIL
TXNIP
UBAs
UBDs
ULK
UPS
Vps

Heat shock cognate

Inflammatory bowel disease

Inner mitochondrial membrane
Ischemia-reperfusion

Kelch-like ECH-associated protein 1
Lysosome-associated membrane protein
Microtubule-associated protein 1 light chain 3
LC3 interaction regions

Leucine-rich repeat kinase 2
Mitogen-activated protein kinase
Myocardial ischemia-reperfusion injury
MicroRNA

Multiple organ dysfunction syndrome
Mitochondrial permeability transition pore
Messenger ribonucleoprotein complexes
Mammalian sterile 20-like kinase 1
Mitochondrial DNA

Mammalian target of rapamycin
Mammalian target of rapamycin complex 1
Mitochondrial E3 ubiquitin ligase
Nonalcoholic fatty liver disease

Neighbor of BRCA1 gene 1

Non-coding RNAs

Nuclear dot protein 52
Nucleotide-binding domain and leucine-rich repeat containing protein 3
Nod-like receptors

Nuclear factor erythroid 2-related factor
Outer mitochondrial membrane

Optic atrophy 1

Phosphatidylinositol 3-kinase
Phosphatidylinositol 3-phosphate
Phosphatidylinositol (3,4,5)-trisphosphate
Protein kinase B

Tau protein

Posttranslational modifications
RNA-binding proteins

Retinal ganglion cells

Reactive oxygen species

Spinal cord ischemia-reperfusion injury
Sodium-glucose co-transporter 2
Systemic inflammatory response syndrome
Systemic lupus erythematosus

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors
Superoxide dismutase

Sequestosome 1

Transforming growth factor-B31

Tumor necrosis factor-alpha

Tumor necrosis factor receptor
TNF-related apoptosis-inducing ligand
Thioredoxin-interacting protein
Ubiquitin-associated domains

Ubiquitin binding domains

Unc-51 like autophagy activating kinase
Ubiquitin—proteasome system

Vacuolar protein sorting
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