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Abstract

Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance 

imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of < 0.1 Hz. However, 

understanding of fast brain-wide networks at the timescales of neuronal events (milliseconds 

to sub-seconds) and their spatial, spectral, and transitional characteristics remain limited due to 

the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head 

coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide 

networks with neuronal-timescale dynamics, shedding light on the organizing principles of 

brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical 

neural tomography from resting-state EEG and extracted component-based co-activation patterns 

(cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the 

configuration/reconfiguration of resting human brains into recurring and transitional functional 

states, which are featured with the prominent spatial phenomena of global patterns and anti-state 

pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6 

Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional states. 

We further identified a superstructure that regulated between-state immediate and long-range 

transitions involving the entire set of identified cCAPs and governed a significant aspect of 

brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be 

functionally decomposed using cCAPs to reveal rich dynamic structures of brain-wide human 

neural activations.
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1. Introduction

Spontaneous fluctuations are a hallmark of neural signals, which have been observed in 

electrophysiological (Leopold et al., 2003; Hipp et al., 2012), hemodynamic (Biswal et 

al., 1995; Fox et al., 2005), and optical imaging studies (Arieli et al., 1996), in various 

species under different behavioral conditions (Fox et al., 2006; Larson-Prior et al., 2009). 

These spontaneous fluctuations exhibit inter-regional functional connectivity at multiple 

spatial scales ranging from function-specific resting state networks (RSNs) (Smith et 

al., 2009) to functional network connectivity (FNC) (Allen et al., 2014) to whole-brain 

networked activities (Yousefi et al., 2018; Raut et al., 2020; Takeda et al., 2021) defining 

a collection of distinctly structured brain-wide patterns. Spatial and dynamic structures of 

these brain-wide intrinsic networks have been observed with abnormalities in almost all 

major neuropsychiatric disorders (Greicius 2008), indicating their significant clinical value.

Brain-wide functional networks have been predominantly probed through noninvasive 

measurement of spontaneous hemodynamic signals using functional magnetic resonance 

imaging (fMRI) (Fox and Raichle 2007; Logothetis 2008). It has been assumed 

that inter-regional correlations observed in hemodynamic signals, reflecting spatial 

organizations of brain-wide intrinsic networks and their state-dependent changes, are 

converted from coordinated large-scale spatiotemporal dynamics of spontaneous neural 

activity via neurovascular coupling (Logothetis et al., 2001; Shmuel and Leopold 

2008). Numerous studies have reported the linkage between individual fMRI RSNs and 

electroencephalography (EEG) oscillations (Sadaghiani et al., 2022), e.g., the attention 

network with EEG alpha power and the default mode network with EEG beta power (Laufs 

et al., 2003). More recently, all major RSNs reported previously with fMRI data have 

been independently identified in magnetoencephalography (MEG) (Brookes et al., 2011) 

and EEG data (Britz et al., 2010; Yuan et al., 2016), which show spatial similarities to 

fMRI RSNs. Simultaneous EEG-fMRI studies have further demonstrated strong temporal 

correlations between corresponding RSNs revealed in EEG and fMRI beyond their spatial 

similarities (Yuan et al., 2016). While the evidence of neural origins for fMRI RSNs 

are accumulating, the knowledge of neural underpinnings for more brain-wide functional 

networks, e.g., FNC and whole-brain networks, are scarce, especially in human. To date, 

multiple heterogeneous dynamics of large-scale spontaneous neural networks have been 

reported in animals using optical imaging (Huang et al., 2010; Stroh et al., 2013) and 

neurophysiological studies (Steriade et al., 1993; Luczak et al., 2007), based on observations 

of propagational patterns from recordings of limited spatial coverage, i.e., restricted imaging 

areas (Ferezou et al., 2007; Stroh et al., 2013) and/or a few selected but largely-separated 

recording sites (Crunelli and Hughes 2010). In human, a scalp-based EEG study has 

suggested a long-range anteroposterior propagation (Massimini et al., 2004). These studies, 

while indirect and limited, attest to the existence of brain-wide neural networks, beyond 

RSNs, in humans that underlie brain-wide hemodynamic networks. More importantly, while 
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brain networks may be best defined spatially by fMRI in terms of their anatomy, to 

investigate their temporal organization patterns, it requires high temporal resolution data 

such as EEG or MEG (e.g., 1000 Hz) over fMRI (~1 Hz).

The gap between brain-wide neural and hemodynamic networks is intrinsically tied to the 

difference between neuronal and vascular structures. It is largely unknown how observed 

large-scale heterogeneous dynamics among neurons, e.g., traveling wave (Massimini et al., 

2004; Stroh et al., 2013) and spiral wave (Huang et al., 2010), are converted into the 

dynamics of vascular networks (Allen et al., 2014). Motivated to understand this gap, a 

strategy shift of fMRI data analysis from traditional correlation-based approaches to the 

ones integrating amplitudes has revealed several new brain-wide network patterns. This 

includes transient co-activation patterns (CAPs) (Liu and Duyn 2013; Karahanoglu and 

Van De Ville 2015; Liu et al., 2018; Gutierrez-Barragan et al., 2019) among a subset 

of anatomically connected cortical areas, i.e., a prominent feature similarly observed in 

hemodynamic correlation structures, and brain-wide propagational transitions (Mitra et al., 

2015; Matsui et al., 2016; Gutierrez-Barragan et al., 2019), bridging more toward neuronal 

waves. A novel wide-field optical imaging study concurrently monitoring calcium signals 

reflecting neuronal spiking activity and hemodynamic signals in mice (Matsui et al., 2016) 

indicates that transient neural CAPs, representing instantaneous brain states, are embedded 

in brain-wide propagations, characterizing dynamic transitions among various brain states. 

This observation suggests that these two new brain-wide patterns are associated, and brain-

wide transitions might play a critical role in formulating hemodynamic correlation structures 

of brain-wide patterns.

Currently, optical imaging systems sensitive to neural activities cannot effectively penetrate 

human skulls (Grienberger and Konnerth 2012), preventing human studies from directly 

reporting and visualizing cortical-level brain-wide coordinated neural electrical phenomena 

and dynamics. The present study was conducted to identify such patterns on the human 

cortex from classical EEG data using an advanced computational framework developed 

based on the state-of-the-art signal processing techniques. Our data indicate that brain-wide 

CAPs could be probed from high-density scalp-based EEG data, and their cortical constructs 

could be directly visualized in the form of reconstructed tomographies. Our data further 

indicate rich dynamic structures in identified brain states, i.e., CAPs, at multiple time scales, 

including recurring, transitional, and oscillatory patterns. Finally, we report a superstructure 

involving all identified brain states that regulates between-state spatial, temporal, and 

transitional relationships and leads to the characteristic long-range transitional patterns 

coordinated by a pair of global co-(de)activation brain states identified in all individuals.

2. Methods

2.1. Dataset and preprocessing

The experiment of the main dataset was approved by the Institutional Review Board at the 

University of Oklahoma Health Science Center (OUHSC), and written informed consents 

were obtained from all healthy participants. Resting-state EEG data (Dataset 0: 10 min 

long, n = 34, 10 females, age: 24±5 years) with eye-closed were recorded at a sample 

frequency of 1000 Hz using the 128-channel Amps 300 amplifier (Electrical Geodesics 
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Inc., OR, USA). No sleep was noted as monitored by experimenters and/or reported by 

participants. Structural MRI was collected for each participant on a GE MR750 scanner at 

OUHSC MRI facility, using GE’s “BRAVO” sequence: FOV = 240 mm, axial slices per 

slab = 180, slice thickness = 1 mm, image matrix = 256 × 256, TR/TE = 8.45/3.24 ms. In 

addition, EEG sensor positions and three landmark fiducial locations (i.e., nasion, left and 

right pre-auricular points) were digitized by the Polhemus Patriot system. Two other datasets 

(see details in Supplementary Note 1) from healthy participants of our previous studies were 

included to validate the findings from Dataset 0. Briefly, dataset 1 (Shou et al., 2017) had 

eye-closed resting-state EEG data (5 min long, 128 channels, and sampled at 512 Hz; n = 19, 

13 females, age: 13±6 years) and no individual structural MRI, where age-appropriate MRI 

templates were used (Richards et al., 2016). Dataset 2 (Ding et al., 2014) had eye-closed 

resting-state EEG data (5 min long, 126 channels, and sampled at 1000 Hz; n = 20, all 

females, age: 49±7 years) and individual structural MRI data. These three datasets exhibited 

a significant age difference across groups (F(2) = 208, p < 1e-6). All three EEG datasets were 

first filtered by a notch filter at 58 to 62 Hz and a band-pass filter at 0.5–100 Hz. Noisy 

channels interpolation and ICs removal related to ocular, muscular and cardiac activities 

were conducted using the EEGLAB toolbox (Delorme and Makeig 2004). Finally, EEG data 

were down-sampled to 250 Hz and re-referenced to the common average. It is noted that 

no EEG segments were rejected to maintain the continuity of data for subsequent dynamic 

analysis.

2.2. Cortical source imaging: cortical current tomography

Cortical source imaging was performed individually to reconstruct cortical sources from 

scalp-level EEG signals (Fig. 1A). FreeSurfer (Fischl 2012) was used to segment individual 

MRI data to extract the surfaces of the scalp, skull, and brain for volume conduction model, 

and the interface between white and gray matters for cortical current density (CCD) source 

model. The surfaces of volume conduction model were each tessellated into triangular 

elements of 10,242 nodes and 20,480 triangles, while the surface of the CCD model 

was tessellated into triangular elements of 20,484 nodes and 40,960 triangles. On the 

CCD model, the nodes on the medial wall adjoining the corpus callosum, basal forebrain, 

and hippocampus were excluded, and the total number of source nodes was reduced to 

18,715. Each of these nodes was assigned with a dipole with its orientation set as the 

normalized vector sum of the normal directions of all triangles sharing the node. The 

electrical conductivities of the scalp, skull, and brain were assigned as 0.33/Ωm, 0.0165/Ωm, 

and 0.33/Ωm, respectively. EEG sensor locations were registered on the scalp surface by 

aligning three landmark fiducial points from both EEG and MRI recordings. Based on these 

models, the boundary element method (Hamalainen and Sarvas 1989) was used to build 

the forward relationship: Φ(t) = L·S (t), where L is the lead field matrix; Φ(t) and S(t) are 

functions of time for scalp EEGs and dipole amplitudes, respectively. The minimum-norm 

estimate (Hamalainen and Ilmoniemi 1994) was used to reconstruct dipole amplitudes on the 

cortical surface: S(t) = LT ·(L·L T + λ·I)−1 ·Φ(t), where λ was the regularization parameter 

and selected via the generalized cross validation method (Golub et al., 1979) and I was 

the identity matrix. To control the quality of reconstructed cortical sources, the selected λ 
values beyond three standard deviations of all values in each participant were considered 

as outliers and interpolated with the neighboring ones. Based on these adjusted λ values, 
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cortical current tomography was reconstructed as a function of time for each participant for 

subsequent analysis.

2.3. Group-level ICA: scalp-level representations of RSNs

A group-level ICA was used to decompose preprocessed scalp EEG data into multiple ICs 

(Ding et al., 2014; Shou et al., 2017). Briefly, individual EEG data were normalized to z 

values and temporally concatenated. A short-time Fourier transform was then performed 

on segmented 1-s epoch data without overlap to obtain time-frequency representations of 

EEG data on channels, which were the input for the time-frequency ICA model (Bingham 

and Hyvarinen 2000; Shou et al., 2012). The Fourier transform modulated rhythmic neural 

activities that were usually Gaussian distributed into more super-Gaussian to be better 

detected from artifacts (Bingham and Hyvarinen 2000; Shou et al., 2012). Here, the Fourier 

spectrum data were selected in the range of 1 to 100 Hz at a resolution of 1 Hz, which 

were individually normalized to account for the 1/f distribution over the spectrum. The 

ICA model was run for each model order from 25 to 64 with 64 finally being selected as 

the order of the ICA model for subsequent analyses, as it gave the best spatial patterns in 

identifying major RSNs. To obtain IC time courses, original EEG data were projected using 

the demixing matrix calculated from the group-level ICA. Thereafter, ICs showing neural 

activation characteristics in both of their spatial and spectral patterns, as compared to the 

ones reported in the literature (Brookes et al., 2011; Shou et al., 2012; Yuan et al., 2016; 

Shou et al., 2020), were selected as the scalp-level representations of cortical RSNs.

2.4. Statistical regression tomography: cortical representations of RSNs

For each participant, the cortical representation of each RSN was estimated via a statistical 

dual-regression analysis between time courses of individual cortical dipoles and the time 

courses of the selected ICs (Fig. 1A). First, both time courses were down-sampled to 100 

Hz and their instantaneous amplitudes (Sandoval and De Leon 2015) were calculated via 

the Hilbert transform (Baker et al., 2014; Coquelet et al., 2022). Second, to obtain cortical 

maps of RSNs, the first regression was performed with amplitude time courses of all 

selected ICs as the regressors and amplitude time courses of individual cortical dipoles as 

the response data. Considering highly autocorrelated nature of EEG signals (Nunez 1981), 

an autoregression (AR) model with the order of 6 was used to reduce the autocorrelation 

effect on regression, similar to the practice in reported fMRI studies (Woolrich et al., 2001). 

The order of the AR model was selected after testing three different values (i.e., 1, 6, and 

15), which found that the AR (6) model could significantly reduce the autocorrelation effect 

to the similar level as the AR (15) model more than the AR (1) model. Third, the second 

regression was performed to reconstruct time courses of cortical RSNs with cortical RSN 

maps obtained from the first regression analysis as the regressors and timeframe-wise spatial 

maps of cortical dipoles as the response data. As a result, cortical tomographies of RSNs 

were defined with their corresponding spatial and temporal patterns in individuals.

2.5. Identifying component-based CAPs: a K-means clustering analysis

Time courses of cortical RSNs obtained above were subject to a K-means clustering 

analysis to identify distinct recurring patterns that were characterized by different levels 

of co-(de)activations among different ICs (Fig. 1B), which was termed as component-based 
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CAPs (cCAPs). The clustering analysis was performed at the group level on matrix data, 

i.e., number of time points from all participants × number of RSNs. To account for different 

variances in different RSNs and participants, each time course was normalized as zero-mean 

and unit-variance per participant before the clustering analysis. In the clustering model, the 

L1-norm distance was used as the metric to measure the similarity among timeframe-wise 

data and, therefore, the co-activation here was defined on amplitudes (rather than temporal 

correlation) similar to reported fMRI CAP studies (Allen et al., 2014; Karahanoglu and Van 

De Ville 2015; Gutierrez-Barragan et al., 2019). After calculating the model order in a range 

from 2 to 20 for clustering, we chose the model order of 8 using the metrics of percentage 

of variance explained and average within-cluster sum of squares (see Supplementary Fig. 

2) to report our results. We further examined the spatial patterns of cCAPs obtained for 

the model orders between 6 and 10, which were highly similar (Supplementary Fig. 2C). 

The output of the clustering analysis labeled each timeframe data of cortical RSNs to a 

unique cCAP (Fig. 1B). Thereafter, the cluster centers of individual cCAPs were obtained 

as the vectors of weights of selected RSNs via averaging original values of cortical RSN 

timeframe data (before normalization) with the same corresponding labels (Fig. 1B). The 

weights in these center vectors were further numerically ranked, i.e., from 1 to 8 in their 

absolute values, for each RSN across all eight cCAPs to illustrate relative activation levels of 

each RSN among all cCAPs. The distances between these center vectors were calculated and 

projected into a 3D space (Fig. 2C) using a multidimensional scaling tool from MATLAB 

(i.e., cmdscale.m) to examine the spatial relationship among all cCAPs. Finally, the cortical 

tomography of each cCAP was built for individual participants as the weighted sum of 

cortical tomographies of RSNs from individual participants with the corresponding center 

vector (Fig. 1B). Using the same means, cortical tomographies of all cCAPs at each 

timeframe were similarly reconstructed with instantaneous weights of RSNs from their time 

courses (Fig. 5 and Supplementary Movies 1–4).

2.6. Temporal metrics of cCAPs

Multiple temporal metrics (Fig. 1B) were calculated on data from individuals and 

then summarized to generate group-level statistics, e.g., means, standard deviations, and 

histograms. The metric of lifetime was defined as the duration of each occurrence of a 

cCAP. A transition happened when two neighboring timeframes were labeled with different 

cCAPs. The interval time of a cCAP was defined as the time difference between its two 

consecutive occurrences from the end of the early one to the beginning of the late one. To 

probe temporal long-scale relationship between the occurrences among all eight cCAPs, an 

alignment analysis was developed, where one cCAP was selected as a reference cCAP and 

then the occurrence probabilities of all cCAPs at certain distances in the time axis were 

calculated with respect to the reference cCAP. Specifically, the epochs of all occurrences 

of the reference cCAP were extracted with 5 s before the start of and 5 s after the end of 

an occurrence. Within the total 10 s for each epoch, the occurrences of all eight cCAPs at 

each time instant were calculated in individual participants and then divided by the total 

number of epochs to obtain their occurring probabilities, each presented as a function of 

time centered toward the reference cCAP (see Fig. 3D).
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2.7. Transitional patterns among cCAPs

To investigate the transition structures among cCAPs, two analyses focusing on different 

time scales were performed on individual participant data. First, one-step transition 

probabilities of a cCAP (at time t) to other cCAPs (at time t + 1) defined as the numbers of 

transitions from the cCAP to other cCAPs (i.e., outflow) or from other cCAPs to the cCAP 

(i.e., inflow), divided by the total number of occurrences of the cCAP. These probability 

data were used to form the outflow/inflow matrices with the current cCAP state at time t 
in the vertical direction and the next cCAP state at time t + 1 in the horizontal direction, 

in which the entries in any row of the outflow matrices summed to one and the entries in 

any column of the inflow matrices summed to one, known as percentage outflow/inflow 

rates of cCAPs (see Fig. 4). Second, we studied the transitions between two polarized 

brain states (i.e., cCAPs 7 & 8), which exhibit distinct spatial, temporal, and transitional 

patterns as compared to all other cCAPs (see Figs. 2–4). The 3D distance map (Fig. 2C) 

further indicates that cCAPs 7 & 8 represent two polarized brain states on the opposite 

boundary of the entire repertoire of brain states identified in the present study. Therefore, 

the events of visiting one polarized brain state (e.g., cCAP 7) after visiting another (then 

cCAP 8) and vice versa via other non-polarized brain states (from cCAP 1 to cCAP 6) were 

of investigational interests, termed as the long-range transitions and noted as cCAP 7→8 

and cCAP 8→7, respectively. Multiple temporal metrics were calculated on long-range 

transition data per participant and statistically compared using repeated measures ANOVA 

(rmANOVA) and t-test when appliable (Fig. 6) with all participants as metric data samples. 

These temporal metrics include occurrences (Fig. 6A), means and histograms of transition 

durations in continuous timeframes (Fig. 6B), numeric counts of total non-polarized cCAPs 

visited (counting repeated visits) and different non-polarized cCAPs visited (not counting 

repeated visits) during long-range transitions (Fig. 6C), and occurrence rate histograms of 

two types of transitions (i.e., cCAP 7→8 and cCAP 8→7) as a function of number of 

different cCAPs visited (Fig. 6C). To study the roles of the six non-polarized cCAPs in 

each type of long-range transitions, we calculated the occurrence rates of the transitions with 

the visit to a specific non-polarized cCAP (i.e., cCAPs 1–6) out of total number of the same-

type long-range transitions (Fig. 6D). We also broke down total occurrence data according to 

the number of different non-polarized cCAPs visited in each type of long-range transitions 

and calculated the occurrence rates of the transitions involving a specific non-polarized 

cCAP at different numeric counts of brain states visited during each type of long-range 

transitions (Fig. 6E). After that, two reference transitions (i.e., cCAP 7→7 and cCAP 8→8) 

involving cCAP 7 or 8 only (i.e., successive visits of one of two polarized states without 

visiting another) were introduced and their temporal metrics were assessed similarly. Note 

that these two reference transitions were not the long-range transitions defined in the present 

study, but their temporal metric values were used as references to evaluate distinct patterns 

of the same metric values from two long-range transitions. To investigate whether the long-

range transition patterns coordinated by cCAPs 7 and 8 were unique, similar long-range 

transitions and reference transitions based on two pseudo-polarized states made by all other 

possible pairs (total 27 pairs) of the eight cCAPs were examined and all above-mentioned 

calculations were repeated. Unless specified, p values were corrected by Bonferroni method.
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3. Results

3.1. Brain-wide EEG component clustering analysis reveals a set of spatially-structured 
functional brain states

Using concatenated high-density EEG resting-state data from 34 participants (128 channels, 

sampled at 1000 Hz, Dataset 0), mapped onto participant-specific models of cortical surfaces 

from FREESURFER (Fischl 2012) by our newly developed computational framework (Fig. 

1), we identified eight reproducible CAP patterns from EEG component signals (component-

based CAPs, cCAPs, Fig. 2A), where these component signals have been related to the 

definitions of electrophysiological resting state networks (RSNs, Supplementary Fig. 1A) in 

previous studies (Brookes et al., 2011; Yuan et al., 2016; Shou et al., 2020). Essentially, this 

framework finds, in a completely data-driven way, recurrent states of networked activities 

(i.e., cCAPs) in human brains with structured spatiotemporal properties. Spatially, almost all 

cCAPs (with the exception of cCAP 3 relatively focusing on the cingulate cortex) suggest 

brain-wide patterns of co-(de)activations in both their cortical maps (Fig. 2A) and activity 

levels of involved RSNs (Fig. 2B and Supplementary Note 2). These facts indicate that 

identified cCAPs activate anatomically connected and functionally related neural substrates 

in the dynamic behaviors of the resting human brain. Two cCAPs (cCAPs 7 and 8) 

indicate global co-activation and co-deactivation patterns, respectively, as all RSNs reach 

their own top (or close to top) levels of positive or negative magnitude of activity, which 

are further supported by their cortical maps. Moreover, default mode networks (DMNs, 

Supplementary Fig. 1A) and task-positive networks (TPNs, RSNs other than DMNs) reveal 

opposite co-activation patterns where high-magnitude DMN activations are accompanied by 

relatively low-magnitude TPN activations in cCAPs 2, 5 and 6 (Fig. 2B) and vice versa 

in cCAPs 1, 3, and 4. As a notable feature of CAPs identified in fMRI, the configuration 

into anti-state pairs is characterized by opposing patterns of functional co-(de)activations 

(Gutierrez-Barragan et al., 2019). We conducted a sequential search for such pairs based on 

the metric of vectorized spatial correlation coefficients. Apart from the hemisphere-mirrored 

pair (cCAP 2–6), the anti-state characteristic is especially prominent in the cCAP 7–8 pair 

(r = −0.90±0.05), but also apparent in the cCAP 1–4 pair (r = −0.41±0.23) and the cCAP 

3–5 pair (r = −0.27±0.18). The spatial distances among all eight cCAPs in the 3D space 

(see Methods) reveal a well-structured spatial relationship among the entire set of cCAPs 

(Fig. 2C), in which cCAPs 7 and 8 are positioned as two poles with the longest distance 

and the other six cCAPs are clustered halfway between them. Furthermore, cCAP 5 is 

significantly closer to cCAP 8 while both cCAPs 2 and 6 are significantly closer to cCAP 

7 than other cCAPs (Supplementary Note 2). The vectorized spatial correlation coefficients 

of eight cCAPs between those identified in individual participants and the group-level ones 

indicate that these cCAPs can be reliably detected in individual participants (Supplementary 

Fig. 3C). In particular, cCAPs 7 and 8 have the highest spatial correlations (only two r > 0.5) 

(Supplementary Fig. 3B).

3.2. Recurring patterns of cCAPs support the spatial structure formulated by the set of 
brain states

We then investigated cCAP dynamics with the goal of finding evidence to support the 

observation of multi-level spatial structures formulated by the eight cCAPs. We report the 
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occurrence rates of individual cCAPs that are within a range of 9% and 15% (Fig. 3A), close 

to the equal opportunity of occurrence (i.e., 12.5% for eight cCAPs). The lifetime of each 

cCAP occurrence was in the range between 25 and 35 milliseconds for mean values (Fig. 

3C). Both data suggest all cCAPs are recurring states that can be reliably detected at both 

group and individual levels as their variabilities among individuals are low comparing with 

their group-level mean values, which are consistent with individually reproducible cCAP 

spatial patterns discussed above. The cCAPs 7–8 pair reveals significantly lower occurrence 

rate (p < 0.0005, FDR corrected), longer lifetime (p < 0.00005, FDR corrected), and longer 

interval time between successive occurrences (p < 0.005, FDR corrected) than all other 

cCAPs. The two anti-state pairs (cCAP 1–4 and cCAP 3–5) that are spatially close (Fig. 2C) 

share similar data for these temporal metrics. The hemisphere-mirrored cCAP pair (cCAP 2–

6) have occurrence rates higher than the two polarized states (p < 0.005, FDR corrected) but 

lower than the four anti-states (p < 0.0005, FDR corrected). Their interval times are lower 

than the two polarized states (p < 0.05, FDR corrected) but higher than the four anti-states (p 
< 0.0005, FDR corrected). The lowest occurrence rates and longest interval times of cCAPs 

7 and 8 are consistent with these two states being at the boundaries of distance maps (Fig. 

2C), exhibiting low chances to be visited during between-state transitions (see Figs. 4 and 

5). Other states are more likely to be visited since they are closer to each other. In summary, 

the consistencies observed between cCAP spatial and temporal patterns at three different 

levels, i.e., individual cCAPs, cCAP pairs, and the entire set of all eight cCAPs, suggest 

that these observations are manifested from the same underlying source, i.e., dynamically 

coordinated and networked brain-wide activations.

3.3. Individual cCAPs show intrinsic temporal dynamics and cCAPs 7–8 further indicate 
coordinated large-scale fluctuations

The histograms of cCAP interval times (Fig. 3B) exhibit two characteristic peaks (~10 Hz 

and ~5 Hz, Supplementary Note 2) on top of exponentially decreasing curves. The wide 

ranges of interval times illustrated in the decreasing curves indicate that the occurrences of 

these recurring brain states are nonstationary, while two peaks reveal weak but observable 

intrinsic dynamic rhythms in cCAPs. These are consistently detected in data from individual 

participants (Supplementary Fig. 4A). Note that the significantly longer interval times of 

cCAP 7–8 are achieved via having fewer short intervals and more long intervals (the 

inset, Fig. 3B) without lengthening the characteristic peaks. The same mechanism is also 

observed in cCAP 2–6 for their moderately but statistically significantly longer interval 

times (p < 0.0005, FDR corrected), as well as for longer lifetimes of cCAPs 7, 8, 2, and 

6 (Fig. 3C). These observations suggest that both lifetimes and interval times of cCAPs 

are potentially modulated by some unrevealed mechanisms with longer temporal scales 

(Gutierrez-Barragan et al., 2019). To this end, we next examined long-scale temporal 

dynamics beyond interval times using an alignment analysis on occurrences of a target 

cCAP at different time distances toward all occurrences of a reference cCAP (see Methods). 

We observe two oscillatory phenomena elevated from the baseline of 12.5% (i.e., equal 

opportunity for eight cCAPs) that are exponentially decayed over the distance to the 

reference cCAP (Fig. 3D and Supplementary Fig. 5A). The short-scale oscillations have 

an inter-peak distance of ~100 ms, corresponding to the 10 Hz frequency component in Fig. 

3B. The long-scale oscillations show an inter-peak distance of ~1.6 s, corresponding to a 
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frequency of < 1 Hz. These elevated oscillatory phenomena could be reliably detected at 

both the group and individual participant levels (Supplementary Fig. 5B) but mainly when 

the target and reference cCAPs are same. One notable exception is the cCAPs 7–8 pair, in 

which elevated oscillations in one of them lead to symmetric but depressed oscillations in 

the other. This coordination between cCAPs 7 and 8, together with other data distinguishing 

them from the other cCAPs (Figs. 2 and 3A–C), suggests their important roles in modulating 

temporal dynamics of the resting human brain activity encoded in all cCAPs of brain-wide 

spatial patterns.

3.4. Immediate transition patterns across cCAPs support spatial structures formulated by 
cCAPs

We then moved on to study between-state transitions via firstly investigating one-step 

transitions among cCAPs. The outflow matrix indicates patterns of lower transitions from all 

cCAPs to cCAPs 7 and 8 (last two columns, Fig. 4A) than to the other 6 cCAPs. Similarly, 

the inflow matrix indicates lower transitions from cCAPs 7 and 8 to all other cCAPs (last 

two rows, Fig. 4B). More prominently, the immediate transitions between cCAP 7 and 8 

for both outflow and inflow are almost zero (<0.5%). All these observations support cCAP 

7/8 as a polarized state similarly suggested in their distance maps and recurring patterns 

(Figs. 2–3). To find which one(s) from other six cCAPs have more immediate transitions 

to cCAP 7/8, percentage outflow rates (i.e., elements of a column, Fig. 4A) and percentage 

inflow rates (i.e., elements of a row, Fig. 4B) for each of these six cCAPs were compared, 

respectively, as actual outflow/inflow data biased by their occurrence rates (Fig. 3). cCAPs 

2 and 6 show the maximal and significantly higher (as compared with the corresponding 

second largest) outflow rates (9% and 23% larger, respectively, both p < 0.05, corrected) 

and inflow rates (14%, p < 0.05, and 41% larger, p < 0.05, corrected, respectively) towards 

cCAP 7. cCAP 5 shows the maximal and significantly higher outflow rates (15% larger, p 
< 0.05, corrected) and inflow rates (24% larger, p < 0.05, corrected) towards cCAP 8. All 

other three cCAPs (i.e., 1, 3, and 4) show no significant differences between the largest and 

second largest outflow/inflow rates. These observations are consistent with the distance map 

(Supplementary Note 2) where cCAPs 2/6 are closest to cCAP 7 and cCAP 5 is closest to 

cCAP 8.

3.5. Unique characteristic patterns in long-range transitions between global co-activation 
and co-deactivation states

Driven by the observations in above results about the existence of large-scale spatial (Fig. 

2C) and temporal structures (Fig. 3D and Supplementary Fig. 5A) among the entire set of 

CAPs, we further investigated large-scale dynamics of transitional structures, beyond a pair 

of CAPs (Fig. 4), involving the entire set of CAPs. When visually inspecting movies of 

spontaneous cCAPs (Supplementary Movies 1–4 in continuous timeframes), we noticed that 

the long-range transitions usually took longer times and visited more non-polarized brain 

states (as well as more different non-polarized brain states) than the reference transitions. 

Quantitatively, we observe that the long-range transitions between cCAPs 7 and 8 occur 

significantly lower (>85% lower, p < 1e-6, corrected, Fig. 6A), take about 1.6 times 

longer (p < 0.0005, corrected, the inset in Fig. 6B), and visit over 1.2 times more states 

(p < 1e-4, corrected, the inset in Fig. 6C) than the reference transitions (see more in 
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Supplementary Note 3). The breakdown data according to the transition duration (Fig. 6B) 

showed exponential decreasing patterns for both long-range and reference transitions and 

more occurrences of cCAP 8→7 and 7→8 for the durations over 100 ms (post-hoc t tests: 

p < 0.01 and consecutive durations>5), and less occurrences for the durations below 100 

ms than the reference transitions (post-hoc t tests: p < 0.01 and consecutive durations>5). A 

characteristic peak for both cCAP 8→7 and 7→8 appears around this point of separation 

(i.e., 100 ms) indicating that the shift towards longer durations is needed in order to visit 

more brain states (the inset in Fig. 6C). The extremely low short-duration transitions (i.e., 10 

ms and 20 ms) in cCAP 8→7 and 7→8 is consistent with the largest distance (Fig. 2) and 

almost zero one-step transitions (Fig. 4) between cCAPs 7 and 8.

It is further suggested that the long-range transitions between cCAPs 7 and 8 not only 

visit more other states, but also visit more different states (Fig. 6C). Percentage-wise, 

significantly more cCAP 8→7 and 7→8 than the reference transitions (rmANOVA: p 
< 1e-10, corrected; post-hoc t tests: p < 0.001, corrected) happen when the numbers of 

different states visited are high (i.e., 4, 5, and 6). When only one other state is visited, 

significantly less cCAP 8→7 and 7→8 (p < 1e-10, corrected) happen than the reference 

transitions. We further studied the occurrence rates of other six non-polarized cCAPs in 

these four transitions (Fig. 6D). It appears that these six cCAPs are visited significantly 

more during most long-range transitions than the reference transitions (p < 0.01, corrected). 

Moreover, cCAPs 1, 3, and 4 show similar occurrences between two reference transitions, 

while cCAPs 2, 5, and 6 show different patterns. High occurrences of cCAP 2/6 during 

cCAP 8→8 and cCAP 5 during cCAP 7→7 once again confirm the affinities of cCAP 

2/6 toward cCAP 8 and cCAP 5 towards cCAP 7 as in Figs. 2–4. On the other hand, 

significantly lowered occurrences of cCAP 5 during cCAP 8→8 and cCAP 2/6 during cCAP 

7→7 (p < 0.001, corrected) as compared with occurrences of other non-polarized cCAPs in 

either cCAP 8→8 or cCAP 2/6 during cCAP 7→7 suggest that these lowered occurrences 

might be the reasons behind no transition between cCAPs 7 and 8 during time windows of 

two reference transitions. When the occurrence data of long-range transitions involving a 

specific non-polarized cCAP are broken down according to the number of different states 

visited (Fig. 6E), significantly lowered occurrences of cCAP 5 in cCAP 8→8 and cCAP 2/6 

in cCAP 7→7 (at least p < 0.05, corrected) than two reference transitions in all conditions 

are similarly observed. No other cCAPs show consistently significant different occurrences 

over five different numbers of different states visited (Supplementary Fig. 7).

Long-range transition data based on 27 pairs of pseudo-polarized states (Supplementary 

Note 4) reveal, in comparison to similarly generated reference transition data, no similar 

patterns to the cCAP 7–8 pair on metrics of occurrence (Supplementary Fig. 8), duration 

(Supplementary Figs. 9–10), state visit (Supplementary Figs. 11–12), and state-specific 

occurrence (Supplementary Fig. 13). The long-range transitions between the two global 

co-(de)activation states were thus unique.

3.6. Reproducibility

We repeated the exact same analyses on other two datasets, which were independently 

collected (i.e., Datasets 1 and 2), and reproduced almost all phenomena reported from 
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Dataset 0 (see Supplementary Note 1). These phenomena include a set of cCAPs each 

showing distinct hemispherically-symmetric spatial pattern, a pair of polarized cCAPs 

with global co-(de)activation patterns, anti-state cCAP pairs (Fig. 7A), recurring temporal 

patterns and their differences among different cCAPs (especially the significantly lower 

occurrences in two polarized cCAPs, Fig. 7B), oscillations at <1 Hz, 5 Hz, and 10 Hz, 

one-step transition patterns, and long-range transition patterns coordinated by two polarized 

cCAPs (Fig. 7C). The only exception is the <1 Hz oscillation, which was detected in both 

Datasets 0 and 1, but not obvious in Dataset 2 (having the oldest participants out of three 

datasets). It is important to note that the superstructure among the entire set of cCAPs is 

identified in both Datasets 1 and 2. This superstructure is spatially supported by the distance 

map (Fig. 7A), where brain states closer to two polarized cCAPs are also identified similarly 

as in Dataset 0 (i.e., cCAPs 1 and 5 close to the polarized cCAP 2, and cCAP 6 close to 

the polarized cCAP 7 in Dataset 1; cCAP 1 close to the polarized cCAP 2 and cCAP 4 

close to the polarized cCAP 8 in Dataset 2), revealing the fine spatial constructs within eight 

cCAPs beyond two polarized cCAPs. The superstructure and its fine spatial constructs are 

then supported by one-step transition data and long-range transition patterns (Fig. 7C).

4. Discussion

Using an advanced computational framework, we reconstructed and visualized spatial maps 

of brain-wide intrinsic functional states and their dynamics in resting human brains from 

electrophysiological signals. Our results collectively indicate that spontaneous human brain 

neural activity is a nonstationary phenomenon, involving reconfiguration into recurring and 

dynamically transitional functional states, which replicate and extend previous discoveries 

from optical imaging studies in animals (Matsui et al., 2016; Gutierrez-Barragan et al., 

2019). Such recurring and transitional spontaneous neural activity results in synchronous 

neural co-(de)activations across hemispherically-symmetric and functionally-connected 

brain areas, including the prominent phenomena of global patterns (Mitra et al., 2015; 

Yousefi et al., 2018) and anti-state pairs of co-(de)activations (Liu and Duyn 2013; 

Karahanoglu and Van De Ville 2015; Gutierrez-Barragan et al., 2019) in their spatial 

tomographies. This view is further expanded by reporting that time-varying patterns of 

spontaneous resting-state EEG signals are governed by a limited number of functional states 

showing rich organized dynamic structures across a wide frequency band, i.e., multi-scale 

oscillations from fast (5 Hz and 10 Hz) to slow (0.6 Hz) rates. In parallel to oscillatory 

structures, we further found a superstructure among the identified entire set of functional 

states that regulates between-state one-step transitions and long-range transitions mediated 

by two unique states with opposite global co-(de)activation spatial patterns.

These findings advance our understanding of the principles underlying spontaneous neural 

networks in multiple directions. First, our results directly visualize large-scale brain-wide 

intrinsic functional states on the cortex based on electrical signals generated by the 

human brain, which have been mainly reported in human hemodynamic signals (Allen 

et al., 2014; Karahanoglu and Van De Ville 2015; Yousefi et al., 2018) but limited in 

EEG/MEG signals (Baker et al., 2014; Vidaurre et al., 2018; Coquelet et al., 2022). 

Such visual constructs confirm hypothesized brain-wide networked dynamics based on 

electrical recordings from a limited number brain sites (Massimini et al., 2004). As 
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several cortical-level spatial prominent features of identified functional states resemble those 

from recent reports of human fMRI data (Karahanoglu and Van De Ville 2015; Yousefi 

et al., 2018), our greater temporal resolution of electrophysiological recordings extends 

those observations and provides novel mechanistic understanding of neural determinants 

of brain-wide hemodynamic structures. Second, the use of signal amplitude as the basis 

for clustering similarities and identifying differences among moment-to-moment cortical 

activation tomographies provides a means to discover brain-wide co-activation patterns in 

population-level electrical signals. In contrast, correlation-based methods applied to resting-

state EEG/MEG signals have led to largely regionally activated neural patterns (Brookes 

et al., 2011; Hipp et al., 2012; Shou et al., 2020) as compared to distributed network 

patterns seen in corresponding correlation-based fMRI studies. Finally, in contrast to the 

slow response in hemodynamic signals to be <0.1 Hz (Logothetis et al., 2001; Shmuel 

and Leopold 2008; Gutierrez-Barragan et al., 2019), our present results have revealed rich 

frequency-specific phenomena in the classical range of EEG between 0.1 Hz and 50 Hz 

(Fig. 3), similar to previous EEG/MEG based brain state studies (Britz et al., 2010; Baker 

et al., 2014; Michel and Koenig 2018). Future studies can expand observations on both ends 

of the spectrum (i.e., <0.1 Hz and >50 Hz) to investigate more frequency-specific neuronal 

communications as well as cross-frequency mechanisms (Canolty and Knight 2010).

Our results indicate that the number of functional states (i.e., 8) that explain most resting-

state EEG temporal dynamics is considerably lower than the common number of RSNs (e.g., 

15–50) identified as spatial independent sources (ICs) using ICA from resting-state fMRI 

(Damoiseaux et al., 2006). Meanwhile, the dynamic states arising from these spatial sources 

have been suggested to be typically small (e.g., 4–8) in resting-state fMRI from both humans 

(Calhoun et al., 2014) and animals (Gutierrez-Barragan et al., 2019). Our eight recurring 

functional states (Fig. 2) are in fact constructed from 14 RSN components (Supplementary 

Fig. 1). This is consistent with the suggestion that ICs present a spatial parcellation of 

the brain rather than distinct states of functional connectivity (Liu et al., 2013), which 

has been used to identify function-based parcellations of the human brain (Smith et al., 

2013). Therefore, our observations suggest, together with previous studies on dynamic 

states (Shou et al., 2020), that, under resting conditions, most of these spatial independent 

sources may be concomitantly engaged in coordinated patterns of co-(de)activations. Co-

(de)activations of these distinct spatial sources then inevitably generate brain-wide cortical 

patterns indicating involvement of distributed neural network systems that generate moment-

to-moment dynamics as suggested by fMRI data (Fox et al., 2005; Allen et al., 2014), 

which reveal phenomena that have or have not been revealed via exploring data correlation 

structures before as discussed below.

First, the identified states exhibit brain-wide co-activations both across anatomically 

homologous areas between hemispheres and across functional brain regions that are 

spatially separated, e.g., along the anterior-posterior direction. Strong hemisphere-mirrored 

symmetries (observed in cCAPs 1, 3, 4, 5, 7, 8, and the cCAP 2–6 pair) are the hallmark 

of RSNs (Smith et al., 2009) and resting-state functional connectivity in fMRI (Gutierrez-

Barragan et al., 2019). Electrophysiological and optical studies have also suggested such 

hemispheric symmetries during the propagation of brain waves in both animals (Stroh et al., 

2013) and humans (Mitra and Raichle 2016; Raut et al., 2020; Takeda et al., 2021). The 
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pattern in cCAP 2 recapitulates the cardinal feature of DMN organization from the anterior 

brain, i.e., medial prefrontal cortex, to the posterior brain, i.e., posterior cingulate cortex 

and temporo-parietal junction (Buckner et al., 2008). These anterior-posterior structured 

activations, together with temporal lobe activations, reflect a full distributed membership of 

cortical nodes for DMN as established in human fMRI data. Similar DMN patterns have 

been revealed in human MEG data but with missing posterior nodes using spatial ICA 

(Brookes et al., 2011) or more lateralized distributions using seed-based correlation methods 

(de Pasquale et al. 2010; Hipp et al., 2012). As spatial ICs are more relevant to anatomic 

parcellations and correlation methods are stationary, the differences in characterizing DMN 

of our present results and previous EEG/MEG studies support the prevailing notion of 

time-varying functional connectivity across brain regions reported in previous studies 

(Allen et al., 2014; Calhoun et al., 2014; Liu et al., 2018; Gutierrez-Barragan et al., 

2019). Second, the opposing co-activations between DMN and various constituents of TPN 

revealed in cCAPs 1, 2, 3, 4, and 5 (Fig. 2B) corroborate the presence of a tight inverse 

coupling between these two systems (Popa et al., 2009). The widely reported brain-wide 

anticorrelated functional networks characterized using hemodynamic signals (Fox et al., 

2005) are believed to be manifestations of this inverse coupling at the spatial scale of 

the entire cortex, while no studies, to the best of our knowledge, have reported their 

brain-wide presence in neural electrical signals. This phenomenon supports the notion 

that large-scale hemodynamic correlation-based network structures are converted from 

large-scale spatiotemporal dynamics of spontaneous neural activity (Tagliazucchi et al., 

2012). Finally, global co-activations as indicated in cCAPs 7 and 8 in our results have 

only been reported when human hemodynamic signals are analyzed beyond the correlation 

structure (Mitra et al., 2015; Yousefi et al., 2018). For example, the presence of strong 

correlated DMN and TPN, that usually lead to global co-activation patterns, has been 

discovered in human hemodynamic signals under the influence of global signal (Liu et al., 

2017) using a quasiperiodic pattern searching algorithm (Yousefi et al., 2018). Transient 

global co-activations have been observed in searching globally propagating waves in both 

hemodynamic and neural signals from rodents (Matsui et al., 2016). Furthermore, slow 

oscillations (<1 Hz) of membrane potential are characterized with global traveling waves of 

both depolarizing and hyperpolarizing components (Stroh et al., 2013), which support the 

existence of transient global co-activations with opposite patterns.

Lifetimes and interval times between visits of these short-lived brain states exhibit 

large value ranges (Fig. 3B–C), which suggest that cortical networks in wakefulness are 

predominantly asynchronous. As a matter of fact, awake behaving states are traditionally 

called “desynchronized EEG” in contrast to large-amplitude slow oscillations observed 

in quiet sleep (Steriade et al., 1993). These asynchronous behaviors follow exponentially 

decreasing patterns as the scale increases, suggesting scale-free properties (Van de Ville et 

al. 2010), which are consistent with observations in brain states reported from microstate 

(Michel and Koenig 2018; Coquelet et al., 2022) and hidden Markov model (HMM) 

studies (Baker et al., 2014; Vidaurre et al., 2018). On top of scale-free phenomena, weak 

and selective coherences are presented with evidence for both slow (0.6 Hz) and fast 

oscillations (5 Hz and 10 Hz). Frequency-specific oscillatory synchronizations are essential 

mechanisms for efficient neuronal coordination across the entire brain (Siegel et al., 2012). 
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Both 5 Hz and 10 Hz oscillations have been well established in EEG literature as theta 

(Kahana et al., 1999) and alpha rhythms (Halgren et al., 2019). The <1 Hz oscillation 

has been discovered as an overriding EEG pattern during non-REM sleep (Steriade et 

al., 1993; Crunelli and Hughes 2010), while recent experimental evidence indicates that 

slow-wave-like activity is also present in awake animals (Vyazovskiy et al., 2011). These 

intermittently recurring oscillations are similarly manifested in all identified brain states, 

although their occurrence patterns (e.g., occurrence rates) indicate statistically significant 

differences. Therefore, our observations suggest, on top of largely nonstationary dynamics, 

the presence of rich multi-scale ongoing intrinsic neural rhythms under awake resting 

conditions, which are independent from each other and not constrained towards specific 

brain states. It is important to note that several recent studies have started to investigate 

brain states defined with spectral parameters (Vidaurre et al., 2018) and on band-specific 

signals (Li et al., 2022) (rather than wideband signals considered in the present study), while 

asynchronous behaviors have not been separately considered. Future studies are needed 

to further clarify whether such brain-wide states are of both scale-free and poly-rhythmic 

nature or asynchronous and various oscillatory signals should be characterized separately 

with different brain-wide states.

Beyond asynchronous and oscillatory temporal behaviors, brain-wide functional states 

characterized by cCAPs in the present study further share other similarities in dynamic 

parameters to brain states obtained from microstate (Michel and Koenig 2018; Coquelet 

et al., 2022) and hidden Markov model (HMM) analyses (Baker et al., 2014; Vidaurre 

et al., 2018) in EEG/MEG literature, which include small number of brain states (~10) 

and transient nature (tens to hundreds milliseconds). It is therefore tempting to know 

whether the brain states from cCAPs in the present study are same as classical sensor-

based microstates. Our results of reconstructed sensor-level EEG topographies based on 

timeframes for individual cCAP brain states (see Supplementary Fig. 14) indicate that 

they are different from classical microstate topographies reported in literature (Michel and 

Koenig 2018; Coquelet et al., 2022), despites their similarities in several dynamic features. 

These dynamic similarities might be explained due to universal features of transient brain 

events, where, for example, small number of brain states and scale-free dynamics have 

been observed in different neuroimaging data (Tagliazucchi et al., 2012; Calhoun et al., 

2014) and in different species (Gutierrez-Barragan et al., 2019). On the contrary, several 

steps in our proposed computational framework (Fig. 1) might alter the variance spatial 

structure of data for clustering, as compared with the data on the sensor domain, leading 

to the identifications of brain states different from microstates. For example, cortical source 

imaging deconvolutes the volume conductor effect on mixing and altering brain signals from 

different brain regions, and normalizing time courses of ICA latent variables reduces the 

bias on clustering due to their potential different strength levels. In the literature, spatial 

sources of EEG microstates have been reported with regional patterns (Custo et al., 2017) 

(rather than brain-wide spatial patterns) and show similar spatial distributions as individual 

RSNs (similar to those in Supplementary Fig. 1) as compared with fMRI RSNs (Britz et 

al., 2010; Yuan et al., 2016) and MEG RSNs obtained via ICA (Brookes et al., 2011). 

It is also noted that brain states identified with microstate and HMM analyses have been 

indicated with significantly different spatial patterns (Coquelet et al., 2022). The use of 
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different analytic approaches leading to different definitions of brain states have been widely 

reported in other neuroimaging data, e.g., fMRI (Calhoun et al., 2014). It remains to be 

seen in future studies about the relationship between different sets of brain states identified 

with different analytic choices since they are from same raw data of same human brains and 

if “optimal” analytics are available in defining brain states or the selection of analytics is 

problem dependent.

One of the most intriguing and novel findings of our present is the identification of a 

superstructure that governs the spatial, temporal, and transitional relationships among the 

identified brain states, which describes an important aspect in the dynamic control of 

states of brain functions under wakeful resting conditions. The superstructure, built with 

two polarized states and six intermediate states, is first established via visualizing spatial 

distances (Fig. 2C) among these states and then supported by the occurrence data, which 

indicate statistically significantly fewer visits to two polarized states (Fig. 3A). Single-step 

transition data (Fig. 4) further suggest close-to-zero direct transitions between two polarized 

states. Finally, long-range transitions between two polarized states, mediated by other states, 

take statistically longer times (Fig. 6A) and more visits to intermediate states (Fig. 6C) than 

no transitions between two polarized states. These consistent data from multiple different 

facets support the genuine existence of such a superstructure, which have been replicated 

in two independently collected datasets (Fig. 7), and no similarly structured transitional 

patterns exist in simulations using pseudo-polarized states (Supplementary Figs. 8–13). 

The generation of the superstructure is believed to be driven by structured brain-wide 

transitions among identified brain states coordinated by two polarized states with global 

co-(de)activation patterns. Beyond them, six intermediate states further exhibit layered 

structures in which some states are more affined to two polarized states (i.e., cCAP 5 to 

cCAP 8; cCAP 2/6 for cCAP 7) than others in terms of both spatial distance and transition 

probability.

The cellular mechanism and physiological significance of this superstructure of co-

activations remains an open question. Our results indicate many similarities between the 

identified superstructure and the slow-wave oscillation of membrane potentials (Steriade 

et al., 1993), including their transitional nature, occurring frequency, and correspondence 

between the pairs of global co-activations and the UP and DOWN states of slow-wave 

oscillations (Jercog et al., 2017). Moreover, the mean lifetimes of identified brain states 

forming the superstructure are in the similar time scale of atomic wavelet events on 

membrane potentials during both slow-wave depolarization and hyperpolarization (i.e., 20–

35 ms) (Steriade et al., 1993). However, there are still significant gaps of knowledge in 

how these cellular neuronal phenomena are manifested in the phase-locked behaviors of 

neural populations recorded in EEG (Wang 2010), and how neuronal waves recorded at 

spatially discrete locations are converted into structured dynamics of brain-wide spatial 

patterns (He et al., 2008). It is possible that other types of neuronal processes underlie such 

structured co-activations, such as, massive activations of cortical regions during episodic 

high-frequency field-potential oscillations in hippocampus (Logothetis et al., 2012) and 

potential neural activity associated with certain conscious processes, e.g., mind wandering, 

occurred during wakefulness. As animal studies (Matsui et al., 2016; Schwalm et al., 

2017) have convincingly linked the transitions among brain-wide functional states from 
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concurrent hemodynamic and neural recordings, future concurrent EEG and fMRI studies in 

humans (Yuan et al., 2016) to directly study such a linkage might provide evidence on the 

cellular mechanisms of the identified superstructure, and shed new light on the link between 

fast, sub-second EEG brain-wide dynamics and infra-slow fMRI brain-wide dynamics 

(Wirsich et al., 2020). Regarding its physiological significance, a close relationship to 

RSNs and slow-wave oscillations may already indicate its importance to understanding 

brain-wide memory consolidation (Tambini et al., 2010). As several fMRI studies have 

reported functional connectivity changes after task learning (Lewis et al., 2009) and the 

relationship between global co-activations and global BOLD signals, it is of great interest 

for future works to study how behavioral context influences the dynamics of these structured 

co-activations.

A methodological advancement that needs further innovative ideas is how to best compare 

tomographic, dynamic, and transitional co-activation patterns across different datasets, 

different conditions, and/or different brain signals. Leveraging the reproducibility of our 

identified co-activations, we have demonstrated its detections in three independent EEG 

datasets. However, linking co-activation patterns identified from different brain signals, e.g., 

EEG and fMRI, will require other algorithms. For example, the clustering algorithm used in 

our present study assumes all snapshots from individual time points belong to one of eight 

clusters, which is different from assumptions made in searching algorithms for transient 

events in fMRI (Liu et al., 2013; Karahanoglu and Van De Ville 2015). The adoption 

of our current algorithm is due to the noisy nature of EEG recordings, the complexity 

of computational processes in reconstructing brain-wide co-activations (see Methods), and 

the potential of much more complicated dynamic patterns in humans compared to small 

animals (Mitra and Raichle 2016). The important aspects of future research are to develop 

more advanced computational processes on potentially less noisy data from new sensors 

(Boto et al., 2018; Aghaei-Lasboo et al., 2020) to perform such comparisons and design 

analytical approaches accordingly. Finally, while the present study examined brain-wide 

functional states on wideband signals (i.e., 0.5–50 Hz), investigations of brain-wide states on 

narrow-band oscillatory signals and even asynchronous signals are needed in future studies 

as discussed above. One challenge (and the limitation of the present cCAP study) is to 

accurately estimate instantaneous amplitude of wideband signals, which would need more 

advanced algorithms (Nakhnikian et al., 2016; Munia and Aviyente 2019) than the Hilbert 

transform.
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Data and code availability statement

The data that support the findings of this study are available on request from the 

corresponding author (L.D.) through a data use agreement. The data are not publicly 

available due to them containing information that could compromise research participant 

privacy or consent. EEG preprocessing was performed using EEGLAB toolbox (https://

eeglab.org) and FASTER plugin (https://sourceforge.net/projects/faster/). The segmentation 

and modeling were performed using FREESURFER (https://surfer.nmr.mgh.harvard.edu). 

Clustering analysis was conducted using the MATLAB kmeans function (https://

www.mathworks.com/help/stats/kmeans.html). Group independent component analysis 

was performed using Fourier ICA code (https://www.cs.helsinki.fi/group/neuroinf/code/

fourierica/html/fourierica.html). Codes for minimum-norm estimate in cortical source 

imaging and regression analysis in statistical regression tomography were implemented 

using MATLAB and are available from the corresponding author on reasonable request.
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Fig. 1. 
Schematic illustration of the method. (A) Spatial definitions of cortical RSNs and their 

dynamics calculated using a statistical dual-regression analysis between the instantaneous 

amplitudes of sensor-level IC time courses and cortical-level source time courses. IC 

time courses are calculated from a group-level ICA on preprocessed EEG data temporally 

concatenated across all participants. Cortical source time courses are calculated by cortical 

source imaging from EEG and MRI data of individual participants. (B) Recurring brain 

states and their dynamic transitions captured and classified by clustering timeframe data of 

cortical RSNs into short-lived spatially congruent patterns (i.e., cCAPs) using the k-means 

algorithm. Four temporal and transitional measures, i.e., lifetime, interval time, one-step 

transition, and long-range transition, are illustrated. P: participant; T: timecourse.
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Fig. 2. 
A set of spatially-structured functional states with brain-wide patterns, i.e., cCAPs, from 

the resting human brain. (A) Cortical maps of the cCAPs identified at the group level 

in which both cCAPs 7 and 8 show global co-(de)activation patterns. Red-yellow colors 

indicate co-activations (i.e., high neuronal currents), and blue indicates co-deactivations 

(i.e., low neuronal currents). (B) The weight vectors, i.e., columns, of the cluster centers 

of all cCAPs. Colors indicate weight amplitudes (with±signs) of individual RSNs at the 

cluster centers of cCAPs and numbers indicates the amplitude ranks (no signs) of same 

individual RSNs across all cCAPs. DMN: Default mode network. (C) The distance map 

of the weight vectors of all cCAPs projected into a 3D space. Same-color dots: anti-state 

pairs and hemisphere-symmetric pair; red dots: two polarized states, i.e., cCAPs 7 and 8, 

connected by the dashed line; blue lines: connecting brain states that are structurally closest 

to two polarized states (see more in Supplementary Fig. 3A); gray circular plane: halfway 

between two polarized states.
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Fig. 3. 
Temporal characteristics of recurring functional brain states, i.e., cCAPs. (A) Occurrence 

rates of cCAPs (mean±SEM) where cCAPs 7 and 8 show significantly lower occurrences 

than others (p < 0.05, FDR corrected). (B) Mean (±SEM) values (left) and histograms (right) 

of interval times of cCAPs. Note that cCAPs 7 and 8 have significantly longer mean interval 

time than others (p < 0.05, FDR corrected). All histograms show two peaks (around 60 ms 

and 170 ms) and the occurrences of cCAPs 7 and 8 become higher than other cCAPs beyond 

the interval time of 650 ms (the inset). (C) Mean (±SEM) values (left) and histograms (right) 

of lifetimes of cCAPs. Note that cCAPs 7 and 8 have significantly longer mean lifetime than 

others (p < 0.05, FDR corrected). The occurrences of cCAPs 7 and 8 become higher than 

other cCAPs beyond the lifetime of 60 ms (the inset). (D) Occurrence probabilities of all 
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cCAPs as functions of time distances toward all occurrences of the target cCAP 7 (top) and 

cCAP 8 (bottom). See other cCAPs as the target cCAP in Supplementary Figs. 5B–C. SEM: 

standard error of mean.
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Fig. 4. 
The immediate transition probability (one-step from time t to time t + 1) among functional 

brain states: (A) the outflow matrix (normalized in rows) and (B) the inflow matrix 

(normalized in columns). The signs ‘+’ and ‘−’denote significantly higher or lower transition 

probability values, respectively, than the equal probability value (i.e., 1/7, p < 0.05, 

Bonferroni adjusted). The black rectangles highlight the columns (in A) and rows (in B), 

in which the cCAPs with the largest outflow or inflow values that are significantly higher 

than the second largest values are labeled (‘+’: p < 0.001, Bonferroni adjusted, ‘*’: p < 0.05, 

unadjusted). These identified cCAPs (labeled as ‘+’ or ‘*’) appear only to be the ones that 

are spatially close to two polarized states (Fig. 2C).
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Fig. 5. 
Representative occurrences for two long-range transitions and two reference transitions 

between two polarized functional brain states (Fig. 2) on the inflated cortical surface from 

a participant: cCAP 7→7, cCAP 7→8, cCAP 8→8 and cCAP 8→7. Each map represents 

the averaged cortical pattern of an occurred cCAP over all timeframes within its lifetime 

window (labeled above) during the sequenced transition. See Supplementary Movies 1–4 for 

corresponding videos in continuous timeframes.
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Fig. 6. 
Patterns of transitions between two polarized functional brain states of cCAPs 7 and 8. 

(A) Occurrences of two long-range transitions: cCAP 7→8 and cCAP 8→7, and two 

reference transitions: cCAP 7→7 and cCAP 8→8. (B) Boxplots (inset) of mean durations 

and histograms of durations (SEM: shaded areas) as functions of time for four types 

of transitions. (C) Occurrence rates of four types of transitions (SEM: shaded areas) as 

functions of the number of different cCAPs (the six non-polarized cCAPs) visited per 

occurrence. Inset: Participant-level means (±SEM) of numbers of different cCAPs (left 

y-axis and boxplots with solid-fills) and total numbers of cCAPs (right y-axis and boxplots 

with no-fills) visited per occurrence. Post-hoc t tests indicate significant differences (p < 

0.01, adjusted) when the number of different cCAPs equals to 1, 4, 5, and 6 between 
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two long-range transitions and two reference transitions. (D) Occurrence rates of the six 

non-polarized cCAPs within each type of transition. (E) Occurrence rates of cCAPs 2, 6 

and 5 within each type of transition as functions of number of different cCAPs visited per 

occurrence. See Supplementary Fig. 7 for cCAPs 1, 3, and 4. The condition of number of 

cCAPs as 6 is omitted since all occurrence rates are 100% by the definition of this metric.
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Fig. 7. 
Reproduced key results of brain-wide functional states and their spatial, temporal, dynamic 

patterns from Datasets 1 and 2. (A) Spatial maps of two polarized global co-(de)activation 

brain states, i.e., cCAPs 2 and 7 in Dataset 1 and cCAPs 3 and 8 in Dataset 2, and the 3D 

distance maps among all cCAPs. Same-color dots: anti-state pairs; red dots: two polarized 

states connected by the dashed line; blue lines: connecting brain states that are structurally 

closest to two polarized states; gray circular plane: halfway between two polarized states 

(see Fig. 2). (B) Occurrence rates of cCAPs (see Fig. 3). (C) Occurrence rates of four types 

of transitions as a function of the number of cCAPs visited per occurrence (see Fig. 6 for 

more details).
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