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Abstract: Tumor microenvironment (TME) is characterized by mutual interactions of the tumor,
stromal and immune cells. Early and advanced colorectal tumors differ in structure and present
altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance
into immune suppressive or pro-inflammatory, antitumor response this way influencing patients’
prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of
cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic
cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding
tumor microenvironment processes could help in planning therapeutic interventions and more
accurate patient prognosis. To contribute to the comprehension of these processes within TME, we
reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data
were analyzed in the context of experimental studies and studies analyzing tumor infiltration with
immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment
cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17),
regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils,
myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural
killer (NK) cells and tumor cells.

Keywords: tumor microenvironment; colorectal cancer; cytokine; inflammation

1. Introduction

An increasing body of evidence supports the crucial role of cytokines in the de-
velopment of colorectal cancer (CRC). Cytokines can suppress tumor growth via pro-
inflammatory action or contribute to tumor progression via immunosuppression, angio-
genesis, or facilitation of immune escape [1].

Patients in various stages of colon cancer are characterized by different cytokine serum
profiles [2]. Defining serum biomarker profiles characteristic in the subsequent stages of
CRC may improve diagnosis of the early-stage disease, recurrence, or progression, and by
this way contribute to reductions in mortality [3]. Understanding of stage-specific cytokine
profile could provide further insights into the tumor microenvironment (TME) targeted ther-
apeutic interventions. For example, the plasticity of pro-tumor or antitumor polarization
lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2 cells), M1 and M2 macrophages,
N1 and N2 neutrophils) gives the possibility of reprogramming of immunosuppressive
TME and turning “cold” tumors into “hot” via TME targeting drugs [4]. Compartmentation
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of the immune response into inflamed, immune-excluded, and immune-desert phenotypes
has been proposed as the major predictor of response to cancer treatments [5,6].

Still, there is a paucity of data regarding cytokines profile changes during the devel-
opment of CRC as well as about mechanisms within the tumor leading to changes in the
cytokine levels. The current review aimed to summarize available clinical data of chosen
cytokines levels in early and advanced CRC stages. Data were analyzed in the context of
experimental studies and studies showing infiltration of tumors with immune cells. The
review presents data of cytokines secreted by lymphocytes Th1, Th2, Th17, regulatory T
cells (Treg cells), regulatory B cells (Breg cells) as well as M1/M2 macrophages, N1/N2
neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lym-
phoid cells (ILC) natural killer (NK) cells and tumor cells. The data were presented in a
non-quantitative, descriptive manner. Systemic cytokine levels were presented according
to clinical stages reported in original articles. Source papers reported CRC stages according
to American Joint Committee on Cancer system, assessing tumor, nodes, and metastasis
(TNM) in CRC patients. Shortly, stage 0 was considered as the earliest phase—carcinoma in
situ, with the tumor not grown beyond the mucosa of the colon or rectum. In stage I bigger
tumor could invade muscularis propria and in stage II tumor may infiltrate adjacent organs,
however, in stages 0–II there is no lymph nodes involvement or distant metastasis found.
In stage III, additionally, lymph nodes are infiltrated with the cancer cells, but still, there
are no distant metastasis. Stage IV patients suffer from advanced disease with metastasis
present in distant organs.

2. Review

The tumor microenvironment plays a central role in the immune response against
tumors in cancer, including CRC. From the early stages of CRC, cytokines can be produced
by tumor-infiltrating immune cells, stromal cells, and tumor cells (Figure 1). If we look at
early tumor structure, there are small tumors with many CD3, CD8, CD4, memory T cells,
and tertiary lymphoid organs (TLO) at the invasive margin and in the tumor center. T2 and
T3 tumors are larger and progressively have fewer T lymphocytes, fewer lymphatic vessels,
and more angiogenesis [7,8]. Moreover, smaller tumors do not show significant hypoxia,
which promotes macrophage polarization towards the M2 phenotype and modifies the
microenvironment by decreasing the release of antitumor cytokines [9]. The structure of
advanced, T4 tumors differs from earlier stages. There are very few T lymphocytes present,
more intensive angiogenesis, and domination of macrophages in advanced CRC stages.
Tumor-associated macrophages (TAMs) constitute up to 50% of the tumor mass cells in
the TME of advanced CRC [10,11]. Lymphocytes and neutrophils are also observed, but
few plasma cells or eosinophils are present [12–14]. Additionally, tumor cells themselves
produce immunosuppressive cytokines such as interleukin 6 (IL-6), vascular endothelial
growth factor (VEGF), transforming growth factor-beta (TGF-beta), and others, and can
convert effector T cells into regulatory T cells, this way contributing to immune-suppressive
TME. This influence might be more important in the later stages, due to the higher number
of tumor cells [15].

Still, it is not fully known, how the tumor structure translates into cancer-related
inflammation and systemic cytokine levels. To address this question, we analyzed cytokines
levels from clinical trials in different CRC stages. Results are shown in Tables 1 and 2 and
discussed in the following sections.
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Figure 1. Several cell types in tumor histology were found to be associated with poor patient out-
comes. These cells include M2 tumor-associated macrophages, N2 neutrophils, MDSCs (myeloid-
derived suppressor cells), regulatory T cells (Treg cells), subsets of T helper lymphocytes: Th2, Th9, 
and Th17 cells, cancer-associated fibroblasts (CAF), and regulatory B cells (Breg) cells playing 
mostly tumor-promoting functions. Other cells in TME showed antitumor activity related to a fa-
vorable prognosis. This group of cells includes tumor associated macrophages of M1 phenotype, N1 
neutrophils, Th1 cells, cytotoxic T cells, innate lymphoid cells (ILC) with natural killer (NK cells) 
cells. Some cells subtypes, like Th9, Th17, Th22 may play a dual, pro-tumor, or antitumor role de-
pending on the TME polarization. Mutual crosstalk among TME cells may shift the balance into 
immune suppressive or antitumor immunity, this way influencing patients’ prognosis. 

Still, it is not fully known, how the tumor structure translates into cancer-related in-
flammation and systemic cytokine levels. To address this question, we analyzed cytokines 
levels from clinical trials in different CRC stages. Results are shown in Tables 1 and 2 and 
discussed in the following sections. 
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Figure 1. Several cell types in tumor histology were found to be associated with poor patient outcomes.
These cells include M2 tumor-associated macrophages, N2 neutrophils, MDSCs (myeloid-derived
suppressor cells), regulatory T cells (Treg cells), subsets of T helper lymphocytes: Th2, Th9, and Th17
cells, cancer-associated fibroblasts (CAF), and regulatory B cells (Breg) cells playing mostly tumor-
promoting functions. Other cells in TME showed antitumor activity related to a favorable prognosis.
This group of cells includes tumor associated macrophages of M1 phenotype, N1 neutrophils, Th1
cells, cytotoxic T cells, innate lymphoid cells (ILC) with natural killer (NK cells) cells. Some cells
subtypes, like Th9, Th17, Th22 may play a dual, pro-tumor, or antitumor role depending on the TME
polarization. Mutual crosstalk among TME cells may shift the balance into immune suppressive or
antitumor immunity, this way influencing patients’ prognosis.

Table 1. Systemic cytokine levels in CRC patients vs. controls. Groups containing more than 1 stage
were assessed as a whole.

Cytokine 1 vs. Control II vs.
Control

III vs.
Control

I-III vs.
Control

II/III vs.
Control

0-IV vs.
Control;

Stage 0—In
Situ Cancer

I-IV vs.
Control

II-IV vs.
Control

IV vs.
Control

IL-1RA Not
increased

[16]

Not
increased

[17]

Not
increased

[18]

Increased
[19]

Not
increased

[17]

Not
increased

[17]

IL-1 beta Increased
[20]

Increased
[20]

Increased
[20]

Increased
[16]

Increased
[17]

Not
increased

[18]

Increased
[20,21]

Increased
[17]

Increased
[17,20]

IL-2
Not

increased
[16]

Not
increased

[17,22]

Increased
[17]

Not
increased

[17]

IL-4
Not

increased
[16]

Increased
[17]
Not

increased
[22]

Increased
[18]

Increased
[17]

Increased
[17]

IL-5
Not

increased
[16]

Increased
[17]

Not
increased

[18]

Increased
[17]

Not
increased

[17]
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Table 1. Cont.

Cytokine 1 vs. Control II vs.
Control

III vs.
Control

I-III vs.
Control

II/III vs.
Control

0-IV vs.
Control;

Stage 0—In
Situ Cancer

I-IV vs.
Control

II-IV vs.
Control

IV vs.
Control

IL-6 Increased
[20]

Increased
[20]

Increased
[20]

Not
increased

[16,23]

Not
increased

[22]
Increased

[17]

Not
increased

[18]

Increased
[19–21]

Increased
[17]

Increased
[17,20,24]

IL-7 Increased
[16]

Not
increased

[17]

Not
increased

[18]
Increased

[25]

Not
increased

[17]

Not
increased

[17]

IL-8 Not
increased

[20]

Increased
[20]

Increased
[20]

Increased
[16]

Increased
[17,22]

Increased
[18]

Increased
[19,20,26,27]

Increased
[17]

Increased
[17,20]

IL-9
Not

increased
[16]

Increased
[17]

Increased
[18]

Decreased
[28]

Not
increased

[17]

Not
increased

[17]

IL-10 Increased
[29]

Increased
[29]

Increased
[29]

Not
increased

[16]

Not
increased

[17,22]

Not
increased

[18]

Not
increased

[19] Increase
[29,30]

Not
increased

[17]

Not
increased

[17] Increase
[29]

IL-12 Increased
[31]

Increased
[31]

Increased
[31]

Not
increased

[16]

Not
increased (ja)

[17]

Not
increased

[18]
Increase [31]

Not
increased

[17]

Not
increased

[17]

IL-13
Not

increased
[16]

Not
increased

[17]

Not
increased

[18]

Not
increased

[17]

Not
increased

[17]

IL-15
Not

increased
[16]

IL-17A
Not

increased
[16]

Not
increased

[17,22]

Increased
[18]

Increased
[21,32]

Not
increased

[17]

Not
increased

[17]

IL-23 Increased
[29]

Increased
[29]

Increased
[29]

Increased
[21,29]

Increased
[29]

IFN-gamma
Not

increased
[16]

Not
increased

[22]

Increased
[18]

TNF-alpha Increased
[20]

Increased
[20]

Increased
[20]

Increased
[16]

Increased
[18]

Increased
[19,20]

Increased
[20]

TGF -beta Increased
[33]

Increased
[33]

G-CSF
Not

increased
[20]

Increased
[20]

Increased
[20]

Increased
[16]

Increased
[22]

Increased
[18]

Increased
[20]

Increased
[20]

GM-CSF Increased
[20]

Increased
[20]

Increased
[20]

Not
increased

[16]

Not
increased

[22]

Not
increased

[18]

Increased
20]

Increased
[20]

M-CSF Increased
[19]

VEGF

Increased
[23]
Not

increased
[16]

Increased
[22]

Not
increased

[18]

VEGF-A
Increased

[20,34] Increased
[20,34]

Increased
[20,34]

Increased
[20]

Increased
[20,34]

VEGF-B Increased
[34]

Increased
[34]

Increased
[34]

Increased
[34]

VEGF-C
Not

increased
[34]

Increased
[34]

Increased
[34]

Increased
[34]
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Table 1. Cont.

Cytokine 1 vs. Control II vs.
Control

III vs.
Control

I-III vs.
Control

II/III vs.
Control

0-IV vs.
Control;

Stage 0—In
Situ Cancer

I-IV vs.
Control

II-IV vs.
Control

IV vs.
Control

VEGF-D
Not

increased
[34]

Not
increased

[34]

Increased
[34]

Increased
[34]

Abbreviations: IL-1RA—interleukin 1 receptor antagonist; IL-1 beta—interleukin 1 beta; IL-2—interleukin 2; IL-4—
interleukin 4; IL-5—interleukin 5; IL-6—interleukin 6; IL-7—interleukin 7; IL-8—interleukin 8; IL-9—interleukin 9;
IL-10—interleukin 10; IL-12—interleukin 12; IL-13—interleukin 13; IL-15—interleukin 15; IL-17A—interleukin
17A; IL-23—interleukin 23; IFN-gamma—interferon gamma; TNF-alpha—tumor necrosis factor alpha; TGF-
beta—transforming growth factor-beta; G-CSF—granulocyte colony-stimulating factor; GM-CSF—granulocyte-
macrophage colony-stimulating factor; M-CSF—macrophage colony-stimulating factor; VEGF—vascular endothe-
lial growth factor; VEGF- A—vascular endothelial growth factor A; VEGF-B—vascular endothelial growth factor
B; VEGF-C—vascular endothelial growth factor C; VEGF-D—vascular endothelial growth factor D.

Table 2. Systemic cytokine levels in patients with different stages of CRC.

Cytokine Stage IV vs. I Stage IV vs. II Stage IV vs. III Stages III, IV vs. I/II Stages IV vs. I-III

IL-1 beta Increased [20] Not increased [20] Not increased [20] Increase [21]

IL-6 Increased [20] Not increased [20] Not increased [20] Not increased [21] Increased [24,35]

IL-8 Increased [20] Not increased [20] Not increased [20] Increased [26,27,35]

IL-9 Decrease [28]

IL-10 Increased [29] Increased [29] Increased [29] Increased [30] Increased [30]

IL-12 Decreased [31] Decreased [31] Decreased [31]

IL-17A Increased [21,32]

IL-17F Increased [36]

IL-23 Increased [21] Increased [36]

IFN-gamma Increased [36]

TNF-alpha Not increased [20] Not increased [20] Not increased [20] Not increased [36]

G-CSF Increased [20] Not increased [20] Not increased [20]

GM-CSF Not increased [20] Not increased [20] Not increased [20]

VEGF Increased [24]

VEGF-A Increased [20,34] Not increased
[20,34]

Not increased
[20,34]

VEGF-B Not increased [34] Not increased [34] Decreased [34]

VEGF-C Increased [34] Not increased [34] Not increased [34]

VEGF-D Increased [34] Increased [34] Not increased [34]

Abbreviations: IL-1 beta—interleukin 1 beta; IL-6—interleukin 6; IL-8—interleukin 8; IL-9—interleukin 9; IL-
10—interleukin 10; IL-12—interleukin 12; IL-17A—interleukin 17A; IL-17F—interleukin 17F; IL-23—interleukin
23; IFN-gamma—interferon gamma; TNF-alpha—tumor necrosis factor alpha; G-CSF—granulocyte colony-
stimulating factor; GM-CSF—granulocyte-macrophage colony-stimulating factor; VEGF—vascular endothelial
growth factor; VEGF-A—vascular endothelial growth factor A; VEGF-B—vascular endothelial growth factor B;
VEGF-C—vascular endothelial growth factor C; VEGF-D—vascular endothelial growth factor D.

2.1. Immunosuppressive Cells/Tumor Cells and Their Cytokines Panel
2.1.1. Lymphocytes Th2

Th2 cells show mainly immunosuppressive action supporting tumor development and
act opposite to Th1 lymphocytes which contribute to anticancer immunity. Th2 lymphocytes
stimulate macrophage differentiation into pro-tumor M2 phenotype in TME, maintain the
differentiation of Th2 naïve lymphocytes into Th2 cells and promote humoral responses via
stimulating B cells. Th lymphocytes demonstrate some level of plasticity, such that Th1 cells
can differentiate into Th17, Th2, and Treg cells upon chronic stimulation in suppressive
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TME [37]. Lymphocytes Th2 secrete interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 9
(IL-9), interleukin 10 (IL-10), interleukin 13 (IL-13) [38]. Basophils, mast cells, and innate
lymphoid cells type 2 (ILC2) cells are activated by Th2 cytokines and share a similar
cytokines secretion profile to Th2 cells.

CRC tumor microenvironment is described by a shift from Th1 to Th2 cytokines in
the blood and increased immunosuppression within TME. Indeed, in analyzed studies, it
was possible to observe several Th2 cytokines increase in early CRC stages, namely IL-4
and IL-5 (clinical stages II and III) vs. control. Moreover, IL-10 level was elevated in CRC
patients staged I, II, and III vs. control. In advanced CRC (stage IV patients) a shift into Th2
profile was demonstrated, with the increased level of IL-4 and IL-10. Taking into account
tumor organization, we hypothesize that increased levels of IL-4 and IL-5 in earlier CRC
stages (I-III) could be a result of production by Th2 cells rather than ILC2 cells. We presume,
that IL-10 at early CRC stages is produced by Th2 cells rather than M2 macrophages, which
secrete high amounts of IL-10 but are not numerous in early disease [39].

IL-4

A shift into Th2 cells in tumors was associated with a worse prognosis in CRC, which
was contributed to IL-4 release [40]. This cytokine promotes epithelial to mesenchymal
transition (EMT) [41], tumor cell proliferation, invasion, and metastasis in CRC [42,43].
Upregulation of IL-4 was found to be a mechanism protecting the tumorigenic CD133+
cells from apoptosis in an animal model [44]. Moreover, it was demonstrated that IL-
4 increased production of reactive oxygen species (ROS) in CRC, contributed to tumor
mediated inflammation and tumor progression [38]. Some authors proposed a mechanism
of immune escape for tumor-initiating cells related to IL-4 [45]. During tumor development
increased expression of interleukin-4 receptor (IL-4R) and elevated IL-4 levels were found
in CRC [46]. Experimental data are translated into the clinical picture, as higher serum
levels of IL-4 were found in CRC patients with metastases (M1) compared with patients
without metastases (M0) [2].

On the contrary, IL-4 has also been shown to inhibit tumor growth and progression in
other tissues, such as kidney cancer [47], which was dependent on tumor-specific CD8+ T
cells. Moreover, Th2 immune responses induced IL-4 and eosinophil-dependent anti-tumor
activity [48]. So IL-4 may have distinct functions, pro- and antitumor, depending on the
tumor environment. However, based on the published evidence, IL-4 appears to support
CRC development.

Th2 lymphocytes are not the only source of IL-4 in CRC patients. It was demonstrated
that also ILC2, double-positive CD4+ CD8+ T cells, and cancer-initiating cells secrete this
cytokine [45,49]. Due to the relatively low number of tumor cells in early CRC stages as
well as ILC2 cells, the Th2 cells seem to be the main source of IL-4 in the II and III stages.

IL-13

IL-13 is closely related to IL-4 and is secreted also by ILC2. Both IL-4 and IL-13 act
via interleukin-4 receptor alpha (IL-4R alpha). Sharing a common receptor limits a clear
differentiation of IL-4 and IL-13 action in CRC. Although the level of IL-13 was not different
from controls in analyzed studies (Table 1), experimental data suggest that IL-13 signaling
could be involved early in intestinal stem cell self-renewal and homeostasis [50]. IL-13
cells could promote intestinal stem cell renewal via activation of signal transducer and
activator of transcription 6 (STAT6) and Foxp1-dependent pathways in crypt intestinal
stem cells. Moreover, IL-13 can activate MDSC cells this way promoting a tumorigenic
microenvironment [51]. On the other hand, through the secretion of IL-13, ILC2 has been
shown to promote migration of dendritic cells and activation of cytotoxic T cells, which
might support antitumor immunity [52]. IL-13 role in CRC TME needs further research
and explanation.
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IL-5

IL-5 seems to show mainly antitumor properties in CRC. IL-5 was found elevated in
early CRC stages (Table 1). It was demonstrated that IL-5 may stimulate eosinophils in
TME [53]. Some authors reported a high eosinophils infiltration score in the tumor to be
negatively correlated with patient age and tumor stage [54]. Others showed that increased
peri- and intratumoral eosinophil counts were associated with T and N classification, tumor
differentiation, and vascular invasion [55]. It appears that in CRC patients, the presence of
eosinophils in the tumor center may influence the activation of the immune system and
predict a better prognosis [56]. IL-5 can be secreted by Th2 and ILC2 cells in TME. However,
due to the low number of ILC2 cells in early CRC stages [57], Th2 cells could be considered
as the main source of IL-5 in non-metastatic CRC.

IL-9

Another Th2 cell cytokine, IL-9, was elevated in patients staged 0-IV vs. control
(Table 1), however, other reports showed decreased level of IL-9 in group staged I-IV
CRC compared to controls [28]. Moreover, IL-9 level was decreased in patients in stages
III-IV vs. I-II, suggesting a more pronounced role in the early CRC stages. Several studies
suggest a dual role of IL-9 in CRC pathogenesis. This regulatory cytokine is secreted by
Th2 cells, lymphocytes T helper 9 (Th9), Th17, and Treg cells. IL-9 enhances the expansion
of cytotoxic T cells inhibiting CRC development by binding to interleukin 9 receptor (IL-9R)
expressed on CD8+ T cells [58]. A recent study also confirmed the antitumor effect of IL-9,
demonstrating that overexpression of IL-9 inhibited tumor growth in vivo [59]. IL-9 is
known for promoting the proliferation and growth of mast cells, present in the mucous
membrane of the colon, which might protect against cancer development in the early
stages [60]. In CRC, it was demonstrated that the main source of IL-9 was mainly Th9
cells [61]. However, the role of IL-9 has to be assessed more precisely in future studies.

IL-10

In TME IL-10 is mainly produced by M2 macrophages and Th2 cells but also mono-
cytes, mast cells, Treg cells, and by subsets of activated T and B cells [62]. This cy-
tokine plays a primarily immune suppressive role in TME. IL-10 inhibits the synthesis of
the pro-inflammatory cytokines interleukin 1 (IL-1), interleukin 12 (IL-12), tumor necro-
sis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) by stimulated mono-
cytes/macrophages [63]. IL-10 can control T cell responses including IFN-gamma secretion
and blocking proliferation of T cells [64,65]. Moreover, IL-10 downregulates the secretion
of antitumor Th1 cytokines, the expression MHC class II antigens, and co-stimulatory
molecules on macrophages [66]. IL-10 promotes the differentiation of B cells into plasma
cells this way supporting immune suppression [67]. IL-10 acts by initiating the signaling
via signal transducer and activator of transcription protein 3 (STAT3) pathway [68]. High
preoperative serum levels of IL-10 correlated with poor prognosis in CRC patients [69]
and patients with cancer recurrence after surgery had a significantly higher level of IL-10,
indicating that IL-10 could be considered as the prognostic biomarker in CRC [30].

Immune suppressive and tumor-promoting action of IL-10 was supported by finding
that IL-10 deficiency enhanced the efficacy of DC-based immunotherapy, reduced MDSC
and Treg levels in the TME, and promoted Th1-type antitumor responses in mice [70]. In
contrast, in vitro studies have shown, that low levels of IL-10 could exert the antitumor
effect via activation of NK cells, T lymphocytes, and macrophages [62]. These data show
that the role of IL-10 still has to be fully explained.

Cytokine levels from clinical studies indicate, that in CRC patients serum IL-10 levels
increase over time during cancer progression [71,72]. IL-10 level was found to increase in I,
II, III, but also in stage IV compared to controls, suggesting a crucial role of this cytokine
across all stages of the disease (Table 1). Taking into account tumor structure, we asume that
an increased level of IL-10 in non-metastatic disease (stages I, II, III) could be predominantly
a result of Th2 cells secretion. IL-10 level is also increasing across CRC stages (stages III/IV
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vs. I/II and stage IV vs. stages I, II, III) (Table 2). It might reflect increasing tumor mass
(including metastases) and enhancement of immune-suppressive processes. Apart from
Th2 cells, IL-10 is secreted also by M2 macrophages, ILC2 cells, Th9 cells, and Tregs [73].
With known M2 predominance in the advanced CRC stage, increased levels of IL-10 in
stage IV could be a result of M2 macrophages secretion [74,75] but also MDSC and Treg
cells production, as the number of these cells increases with the tumor stage. This concept
would be supported by an increased level of other M2 cytokines–VEGF, VEGF-A, IL-6, and
IL-8, which all were found increased in stage IV CRC patients compared to controls.

2.1.2. Lymphocytes Th17 and Their Cytokine Panel

Th17 cells are considered a separate subset of CD4+ effector lymphocytes and are char-
acterized by secretion of interleukin 17F (IL-17F), interleukin 17A (IL-17A), IL-6, interleukin
21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23) [73,76]. The importance of Th17 cells
in CRC development was confirmed in a meta-analysis of randomized trials [77]. Com-
pared with control subjects, CRC patients showed elevated levels of serum IL-17A, IL-6,
IL-22, and IL-23 [77,78]. Other findings indicated that Th17 cells inhibit the recruitment of
CD8+ T cells via IL-17A/STAT3 signaling [79]. Current evidence suggests a dual role of
Th17 cells in CRC development and underlines the necessity of further works and analyses
of this cells population [80].

IL-17A

The main source of IL-17A and IL-17F in TME are Th17 cells, but both cytokines are
also produced by Tgamma delta lymphocytes, NKT cells, neutrophils, and eosinophils [81].
Pro-tumor action of IL-17A was confirmed by numerous studies. IL-17A has been shown
to recruit MDSCs cells and decrease antitumor immunity [82]. Increased level of IL-17A
was associated with increased production of VEGF and poor prognosis in CRC [83]. IL-17A
enhanced tumor growth in vivo via induction of IL-6, activating oncogenic transcription
factor STAT3 and stimulating pro-survival and pro-angiogenic tumor genes [84].

Mixed clinical data were reported for IL-17A levels in CRC (Table 1). In the majority
of studies, IL-17A concentration was found elevated in all stages. Moreover, a higher level
was reported in stages III/IV than I/II. This finding is supported by a higher percentage
of Th17 cells in cancer tissues in patients with advanced stages than in those with early
stages [21,85]. Another study showed Th17 cells number was growing in tumor stroma
during the colorectal adenoma-carcinoma sequence [86]. It might suggest that IL-17A
plays a more pronounced tumor-promoting role in more advanced stages of CRC. This
hypothesis could be supported by a higher level of IL-17A associated with a more advanced
CRC stage and the occurrence of metastasis [32,87]. Immunofluorescence assays analysis
showed that IL-17A was predominately produced by CD4+ T cells rather than from CD8+
T cells. However, contradictory findings were also reported. Some authors described a
significantly reduced number of Th17 cells in CRC tumors [88]. To summarize, an increase
in IL-17A could be associated with an increasing number of Th17 cells in a more advanced
CRC stage, but further studies are required to assess the source of this cytokine and the
mechanisms of its action.

IL-17F

Contrary to IL-17A, IL-17F was supposed to possess antitumor activity in animal mod-
els [89]. IL-17F inhibited tumor angiogenesis by modulating VEGF levels [90]. However, it
was found that IL-17F could act as an oncogene in CRC [91,92]. IL-17F was found elevated
in stage IV CRC patients vs. stage I-III patients. Similar to IL-17A, an increase of IL-17F
level could be associated with the increase of Th17 cells number observed with higher CRC
stage, but further studies are required to assess precisely the source of this cytokine in
CRC patients.
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IL-23

Dual, pro-tumor, and antitumor action of IL-23 was reported so far. IL-23 demonstrated
several antitumor properties in experimental studies [93]. IL-23 induced activated memory
T cells to proliferate and produce antitumor IFN-gamma [94]. On the other hand, pro-
tumor action of IL-23 was also observed, including increased production of interleukin
17 (IL-17) by IL-23 activated Th-17 cells [95]. IL-23 was also involved in the expansion
and maintenance of pro-tumor memory Th17 cells [96]. IL-23 was known to promote the
pro-inflammatory and regenerative activities of Th17 cells and innate lymphoid cells [97].
Based on published evidence it seems that pro-tumor action of IL-23 prevails in CRC.

Increasing values of IL-23 with cancer stages were observed [98]. IL-23 level was
elevated in stages I, II, III, IV patients vs. control (Table 1). IL-23 was also increased when
comparing stage III/IV vs. I/II patients as well as in stage IV patients when comparing
to stages I, II, III (Table 2). Apart from Th17 cells, IL-23 can be also produced by activated
dendritic cells, macrophages, and monocytes. Based on published evidence it could be
presumed that in earlier stages of CRC the major source of IL-23 could be the Th17 cells,
similarly to other Th17 cytokines. In more advanced stages, the growing number of
macrophages M2 in the tumor could contribute to IL-23 secretion. However, based on
currently reported data it is not possible to establish sources of IL-23 in CRC patients.

2.1.3. M2 Macrophages and Their Cytokines Panel

Pro-tumor M2 macrophages are considered the most important cells contributing to
immunosuppression within TME. Tumor-associated macrophages (TAMs) dominate in
TME in primary operable CRC tumors [12–14,99]. M2 polarized macrophages promote
immunosuppression and decrease cancer-related inflammation [100]. They are the most
commonly found phenotype of macrophages within the tumor [39]. M2 macrophages
recruit granulocytes, Th2, and regulatory T cells through the production of CCL17, CCL18,
CCL22, and CCL24 chemokines [101,102]. Main cytokines secreted by M2 macrophages
include interleukin 1 beta (IL-1 beta), TNF-alpha, IL-10, transforming growth factor-beta
(TGF-beta), IL-6, IL-8, and VEGF.

IL-1 Beta

The role of IL-1 beta in CRC is not clear. Despite mainly pro-tumor properties, an-
titumor actions were also proved. Among pro-tumor actions, IL-1 beta promoted the
recruitment of immunosuppressive MDSC cells to tumors, which supported cancer pro-
gression [103,104]. IL-1 beta showed to stimulate intestinal epithelial cells and tumor cells
to induce their proliferation [105]. Blockade of IL-1 beta using recombinant IL-1RA sig-
nificantly decreased tumor development in the mouse model of colitis-associated cancer,
reinforcing the pro-tumorigenic role of IL-1 beta [106]. Moreover, IL-1 beta-induced the
activation of the Wnt signaling pathway by phosphorylation of GSK3beta [105]. These
signaling pathways are known to play a key role in intestinal tumorigenesis [105,107].
Moreover, IL-1 beta-induced expression of TNF-alpha, IL-6, IL-8, IL-17, COX-2, and PGE2,
pro-inflammatory mediators, and pro-tumor factors supporting tumor growth cells [108].
On the contrary, antitumor properties were also reported. IL-1 strengthened antigen re-
sponse in CD4 and CD8 T cells, inducing expansion and activation of Th1, Th2, and Th17
cells in mice [109]. IL-1 was necessary for naïve CD4+ T cells to overcome Treg-mediated
inhibition and for memory CD4+ T cells to acquire a functional memory phenotype in
mice [110]. Although IL-1 beta is an important component of Th17 cell differentiation, it
could also promote other T-cell responses, including CD8+ cells [111]. Of note, IL-1 beta in
combination with IL-23 enhanced plasticity of Th17 cells into Th1 phenotype [112]. IL-1
beta strengthened also Th9 cell function via the interferon regulatory factor 1-dependent
increase in the production of IL-21, which in turn stimulated IFN-gamma production and
antitumor activity of CD8+ and NK cells [113].

Increased IL-1 beta level was shown in each clinical stage (I, II, III, IV) than in controls.
IL-1 beta level was elevated in stages III/IV compared to I/II stages, in the majority of
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analyzed studies (Table 1). Activated myeloid cells, macrophages, and monocytes are
considered the main sources of IL-1 beta in TME [114]. In the early stages of carcinogenesis,
IL-1 beta exhibited pro-inflammatory, tumor-invasion-promoting, and immunosuppressive
activity [115,116]. We propose M2 macrophages to be a major source of IL-1 beta in CRC
patients, as they consist of up to half of the tumor mass in advanced stages [8,9]. This
could explain a clear increase in IL-1 beta level with tumor development. However further
studies are required to explain better IL-1 beta’s role in CRC.

IL-8

IL-8 is one of the major players contributing to tumor growth. In addition to promoting
angiogenesis, proliferation, invasion, migration, and survival of CRC cells, IL-8 and was
shown to induce the epithelial-mesenchymal transition of colorectal cancer cells helping
them to escape from host immune defense [117]. IL-8 was found to support resistance
to anoikis in tumor cells, which promoted the formation of circulating tumor cells and
metastasis formation [118]. High IL-8 levels were associated with increased neutrophil
infiltration into tumors and poor responses to the immune-checkpoint blockade [119,120].
Moreover, an elevated level of IL-8 before treatment was correlated with the progressive
disease [27,35].

IL-8 is mainly secreted by M2 macrophages and monocytes, but it could be also
produced by endothelial cells under exposure to IL-1 or TNF-alpha. Additionally, fibrob-
lasts and malignant tumor cells could also secrete IL-8 as a result of environmental stress
including hypoxia, and chemotherapy agents [121], however, it was not confirmed for
CRC cells.

When analyzing clinical data, IL-8 level was increased in stages I-III or I-IV vs. controls
and in stage IV vs. stages I-III (Tables 1 and 2). These data support a central role of IL-
8 in the development and progression of CRC. This may suggest a pronounced role of
IL-8 in angiogenesis and attracting immune suppressive cells in more advanced CRC
stages. We hypothesize the main source of IL-8 in early and advanced tumors could be
M2 macrophages, due to their high prevalence in tumor tissue from the beginning of
tumor growth.

IL-6

Another M2 cytokine, IL-6, is considered one of the major players in CRC TME,
showing mainly immunosuppressive properties. IL-6 is involved in the differentiation of
monocytes to macrophages, increase apoptosis of cytotoxic T cells, and the production of
Th2 cytokines [122]. IL-6 is considered a growth factor for colon cancer cells; inhibition
of IL-6 signaling slowed down the tumor cell’s growth [123]. Through the production
of IL-6, M2 macrophages could influence the EMT process, intensifying the migration
of CRC cells [124]. It was demonstrated, that IL-6 contributed to the acceleration of
tumor progression and increased migration of CRC cells [125]. Moreover, the presence
of sIL-6R and IL-6 stimulated Th17 cells and was responsible for the balance between
Th17 and Tregs [123]. IL-6 promoted durable and long-lived Th17-mediated antitumor
immunity [126]. It was also shown, that the IL-6/STAT3 pathway blocked the maturation
of dendritic cells, inhibited T cell activation [127], and maintained immunosuppression
through MDSC and M2 macrophages attraction. A high level of IL-6 was associated with
poor prognosis in CRC patients [128]. Apart from M2 macrophages, IL-6 could be also
produced by endothelial cells, B cells, T cells, fibroblasts. Moreover, it was demonstrated
that IL-6 can be secreted by human colorectal cancer cells, together with IL-1 beta, IL-6
receptors (IL-1R1 and IL-6R), and VEGF [129].

In analyzed studies, serum IL-6 level was increased in all stages of CRC compared to
controls (Table 1). When comparing IL-6 levels between stages, the difference was signifi-
cant when compared to stage I, only (Table 2). This observation may suggest an important
role of IL-6 since the early stages of tumor development, maintained during further tumor
growth and invasion. The number of M2 macrophages is relatively low at the early stages of
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CRC, so IL-6 could be produced by tumor cells and M2 macrophages, creating propel wheel
for further tumor growth. At later stages, M2 macrophages might contribute to the greater
extent to IL-6 secretion. However, this hypothesis requires verification in future studies.

VEGF

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor. There are
different isoforms of this protein: VEGF-A, VEGF-B, VEGF-C, and VEGF-D [130] and
others [131]. It was shown, that VEGF-A, VEGF-B, VEGF-C, and VEGF-D expression is
modulated during the adenoma-carcinoma sequence in CRC. VEGF-A is upregulated in
adenomas and carcinomas and VEGF-D was found more abundant in normal tissues [130].
High preoperative VEGF plasma levels were associated with worse survival in CRC pa-
tients [132].

VEGF-A is involved in inducing endothelial cell proliferation, migration, proteolytic
activity, stimulating microvascular leakage, and promoting angiogenesis. VEGF-A me-
diates its function through vascular endothelial growth factor receptor 1 (VEGFR-1) and
vascular endothelial growth factor receptor 2 (VEGFR-2) receptors. VEGF-A can promote
lymphangiogenesis indirectly via the recruitment of bone marrow-derived macrophages,
which release lymphangiogenic growth factors VEGF-C and VEGF-D. This shows the
importance of VEGF-A, not only for pathological hemangiogenesis but also for lymphan-
giogenesis [133]. Moreover, VEGF-A actions include increased migration and mitosis of
endothelial cells, increased matrix metalloproteinase activity, and chemotactic action for
macrophages and granulocytes [134].

VEGF-C and VEGF-D are both involved in lymphangiogenesis [135]. In tumors, VEGF-
C and VEGF-D are overproduced and activate vascular endothelial growth factor receptor
3 (VEGFR-3), supporting lymphatic vessels growth within the tumor [136]. Lymphatic
vessels created through tumor angiogenesis are larger than normal, promoting the transfer
of tumor cells to lymph nodes and supporting the formation of metastasis [137]. VEGF-
B does not promote angiogenesis [138], however, its indirect role in angiogenesis was
proposed [139,140].

Hypoxia induces the production of VEGF in tumor cells through hypoxia-inducible
factor-1 alpha (HIF-1 alpha) [141]. This transcriptional factor regulates several genes
including VEGF promoting angiogenesis and metastasis. VEGF proteins released by tumor
cells into the extracellular space bind to VEGF receptors on endothelial cells and promote
local angiogenesis with the formation of tumor-associated microvessels [142].

Apart from M2 macrophages, also tumor cells, cancer associated fibroblasts (CAFs),
platelets, and mast cells can produce VEGFs, although they are not primary sources of
VEGF proteins [143].

Increased VEGF levels in stage I CRC patients support the crucial role of this factor in
tumor growth in the early stages [144,145]. Based on tumor structure, we propose that in
the early stages the main source of VEGF proteins could be M2 macrophages. Moreover,
we hypothesize that increased levels of VEGF A, B, C, D levels in CRC patients staged
III and IV could be a result of increased production by MDCS cells and M2 macrophages
supporting increased angio- and lymphangiogenesis in the late CRC stage. Tumor cells
could contribute to an elevated level of VEGF-A in more advanced CRC stages. Increased
levels of VEGF-B in stage III and VEGF-D in stages III and IV [34] could indicate the
importance of angio- and lymphangiogenesis processes in advanced disease, contributing
to immune escape and formation of metastasis, as supported by recent literature reports.

TGF-Beta

TGF-beta can be secreted by macrophages, immune cells, and tumor cells [146,147]
as well as CAFs [148] in TME. TGF-beta and its receptors: transforming growth factor
beta receptor 1 (TGFBR1) and transforming growth factor beta receptor 2 (TGFBR2), are
commonly expressed on epithelial cells [149]. The role of TGF-beta in cancer is determined
by mutations in its signaling [150,151]. TGF-beta exerts a dual function during intestinal



Int. J. Mol. Sci. 2022, 23, 124 12 of 33

tumorigenesis. In early tumors, TGF-beta was shown to act as a potent tumor suppressor
as demonstrated in human [152] and animal models [150,153]. However, in later stages,
its pro-tumor action was observed. Although the mechanisms underlying the dual role of
TGF-beta for CRC remain to be explained, it was demonstrated that activation of TGF-beta
signaling in epithelial cells induced the expression of cell-cycle checkpoint genes leading
to growth arrest [154]. On the other hand, inhibition of TGF-beta signaling prevented
metastasis or further development in advanced tumors CRC [155]. TGF-beta was shown to
impair immune cell responsiveness [156] and promote angiogenesis [157]. High TGF-beta
levels in the primary tumor and serum correlated with poor survival of advanced CRC
patients [158]. Calon et al. showed that activation of TGF-beta signaling in fibroblasts
promoted the metastatic capabilities of intestinal tumor cells [159]. According to Mager
et al. [46], TGF-beta could indirectly exert a pro-tumorigenic effect on CRC cells, via the
stroma, as TGF-beta may promote interleukin 11 secretion by CAFs [159], activating STAT3
and this way stimulating the proliferation of tumor cells [160].

Increased level of TGF-beta was reported in patients stage II and III compared to con-
trols, confirming pro-tumorigenic action of this protein secreted mainly by M2 macrophages,
MDSC cells, and tumor cells.

2.1.4. MDSC Cells and Their Cytokines Panel

Myeloid-derived suppressor cells are a heterogeneous population of immature myeloid
cells in differentiation phases originating from the myeloid progenitor stage. MDSC cells
exhibit a range of tumor-promoting functions [161], emerging as a potential therapeutic
target [162]. In lung, breast, and colorectal cancer the abundance of MDSCs in the tumor
has been correlated with advanced stage and decreased overall survival [163]. MDSC are
derived from myeloblasts, which are precursors to neutrophils and myeloid-dendritic cell
progenitors. These cells could differentiate into monocytes, but due to stimulation with
tumor secreted factors do not mature and form MDSCs. MDSCs could be divided into
monocytic MDSCs (M-MDSCs) (LY6G−/LY6Chigh), morphologically similar to monocytes,
and polymorphonuclear (PMN) MDSCs (Ly6G+/LY6Clow) [164]. Hypoxia in the TME
facilitates the expression of HIF-1alpha inducing the expression of CCL26 by tumor cells,
leading to MDSC recruitment and accumulation [165]. PMN-MDSCs inhibit T cell func-
tions via the production of reactive oxygen and nitrogen species, inducing T cell apoptosis
or depletion. M-MDSCs are considered to show even more suppressive functions via
high expression of Arg1, driving T cell anergy by depleting arginine pools. In addition,
MDSCs can secrete high levels of IL-10 and TGF-beta, IFN-gamma [166] and produce
reactive nitrogen species, negatively affecting T cell recruitment and activation [167]. They
also exhibit tumor-promoting functions independent of immune suppression, such as the
promotion of metastasis and angiogenesis via the production of VEGF, basic fibroblast
growth factor (bFGF), and matrix metalloproteinase 9 (MMP9) [168,169]. Some studies
linked MDSC accumulation with an increase in TME VEGF concentration during disease
progression [170]. Moreover, MDSCs promote metastasis by participating in the creation
of the premetastatic niche to enhance engraftment by circulating tumor cells [171]. MDSC
cells escort also tumor cells into the circulation and promote their extravasation into the
tissues [172]. Studies in CRC patients also show that human MDSCs enhance CRC cell
stemness [171], which accelerates faster cancer cells proliferation. Toor et al. showed that
levels of tumor-infiltrating MDSC were increased in patients with high tumor budding and
advanced stage of CRC suggesting their potential roles in metastasis [173].

GM-CSF

In tumor microenvironment granulocyte-macrophage colony-stimulating factor (GM-
CSF) is produced by MDSC cells, M2 macrophages, type 3 innate lymphoid cells (ILC3)
cells, neoplastic colonic epithelial cells, T cells, mast cells, NK cells, endothelial cells,
and fibroblasts [174], together with a wide variety of cancer cell types [175]. GM-CSF
promotes the growth and migration of tumor cells by enhancing the expression of matrix



Int. J. Mol. Sci. 2022, 23, 124 13 of 33

metalloproteinases (MMPs) [176]. An increased level of GM-CSF in serum is considered a
potential diagnostic and prognostic marker indicating poor prognosis in colorectal cancer
patients [177,178]. Moreover, GM-CSF can decrease the apoptosis of colon cancer cells [179].

A large body of evidence supports the thesis that GM-CSF can act as a tumor-derived
factor and may promote tumor growth and progression. GM-CSF induces autocrine and
paracrine VEGF release by intestinal epithelial cells, promoting angiogenesis [180]. GM-CSF
promotes the growth and migration of tumor cells by stimulation of MMPs expression [176].
Increased level of GM-CSF in serum is considered a potential diagnostic and prognostic
marker associated with poor prognosis in CRC patients [177]. These results might suggest
that GM-CSF in addition to immune-stimulatory functions may have direct effects on
tumor progression and invasion [181]. Although the prevalent number of reports showed
pro-tumor effects of GM-CSF [46], some studies suggested that GM-CSF has inhibitory
effects on tumor growth and metastasis. It was shown, that GM-CSF can act on dendritic
cells to promote their antitumor response [182] and on monocytes/macrophages to inhibit
CRC cell proliferation [183]. GM-CSF also stimulated dendritic cell maturation and could
augment adenomatous polyposis coli (APC) gene function [46].

In analyzed studies, GM-CSF was neither increased in patients staged I-IV nor I-III
than in controls (Table 1). Notwithstanding, other studies (Table 1) show increased GM-CSF
levels in each clinical-stage vs. controls, without differences across the subsequent stages.
Therefore the role of GM-CSF in the development of CRC remains uncertain.

2.1.5. Neutrophils N2 and Their Cytokines Panel

Tumor-associated neutrophils (TANs) play a key role at each stage of CRC, in tumor
initiation, progression, and metastasis [184]. After stimulation neutrophils acquire the
ability to polarize to antitumor (N1) or pro-tumor (N2) phenotype in TME. N1 neutrophils
have features of classical neutrophils, whereas N2 phenotype neutrophils show typical
features of PMN-MDSCs [164]. Pro-tumor N2 neutrophils induce progression of the disease
and release of CXCL1, MMP9, VEGF, and TNF-alpha [185]. CRC tumor microenvironment
stimulates neutrophil plasticity via cytokines and growth factors [186]. It was shown, that
neutrophil plasticity and localization at the tumor site depends on the type and the stage of
the tumor [187].

N2 neutrophils act via producing and releasing ROS and nitric oxide (NO), which
increase DNA instability. Pro-tumor N2 TANs can inhibit T cell proliferation via expression
of arginase 1 and induce T cell apoptosis via NO production [188]. N2 TANs could
contribute to tumor invasion and angiogenesis through the production of MMP9 and VEGF
in the primary and metastatic sites [12].

It was found that TANs from early tumors showed more cytotoxic properties toward
cancer cells and produced higher levels of TNF-alpha, NO, and H2O2 showing antitumor
N1 features. In established tumors, these functions were down-regulated and TAN acquired
pro-tumorigenic phenotype [189]. It might suggest that neutrophils phenotype is more
dependent on TME than of other cells. The high number of intratumoral neutrophils was
reported to be associated with unfavorable recurrence-free, cancer-specific, and overall
survival [190]. On the contrary, it was documented that neutrophil infiltration was a
favorable prognostic factor for the early stages (I-II) of CRC [191], and patients with high
tumor infiltration with CD177+ neutrophils had better overall survival (OS) and disease
free survival (DFS) [192]. It could be assumed, that N2 neutrophils present in the tumor in
later stages could contribute to increased levels of VEGF, IL-8, and TNF-alpha in advanced
stages CRC patients. Early stages CRC tumors neutrophils seem to exhibit N1 phenotype.

TNF-Alpha

Most studies suggest that TNF plays mainly the pro-tumor role in CRC development.
It was found, that TNF expression is increased in CRC tissues and TNF serum levels
correlate with CRC progression and reduced patient survival [193]. Moreover, TNF-alpha
signaling drives the accumulation of MDSCs by promoting their survival [194]. Activation
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of the signaling cascade of the TNF receptors can result in the nuclear translocation of
NF-kappa beta and activator protein 1 (AP-1), which promotes cell survival, proliferation,
angiogenesis, tumor promotion, and metastasis [195,196]. The binding of TNF to tumor
necrosis factor receptor 2 (TNFR2) triggered the proliferation of CRC cell lines in a STAT3-
dependent manner [197], similarly to the IL-6 activation.

TNF-alpha activates NF- kappa beta signaling, thereby contributing to inflammation,
cell survival, proliferation, The transcription factor NF- kappa beta links inflammatory
signaling and cancer. NF- kappa beta promotes tumor metastasis by regulating epithelial-
mesenchymal transition in CRC [198]. Few reports indicated that TNF-alpha could also
have an antitumor effect in CRC. The net contribution of TNF to CRC may be determined
by the timing of its secretion during tumorigenesis or the type of immune cells secreting
it [46]. Activated M2 macrophages, but also MDSC cells are considered to be the main
producers of TNF-alpha in CRC [199,200].

TNF-alpha was found elevated in early-stage I patients compared to controls. In
the later stages II, III, and IV, TNF-alpha continued to be increased (Table 1). However,
TNF-alpha levels were not increased in stage IV patients compared to earlier stages (I-III)
(Table 2). This finding may suggest a more pronounced role of TNF-alpha in earlier stages
of CRC, with the contribution of MDSC and M2 macrophages to its increase.

2.1.6. Tregs Lymphocytes and Their Cytokines Panel

Treg lymphocytes are considered to play a major role in creating immunosuppression
within TME, contributing to cancer immune escape mechanisms and tumor growth [201].
Tregs can suppress the function of cytotoxic T cells and antigen-presenting cells by cell-cell
interactions as well as suppress cytokines release including IL-10, TGF-beta, and interleukin
35 (IL-35) in CRC TME [202].

A decreasing number of Tregs with tumor stage in CRC was shown by Reimers et al.,
who demonstrated Foxp3+ cells above-median were more prevalent in stage I tumors [203].
Knowing that early stages CRC tumors contain a higher number of Tregs cells [7], we could
hypothesize that Tregs are the source of TGF-beta and IL-10 in less advanced stages. Several
studies confirmed, that M2 macrophages and MDSC cells infiltration level increases with
the tumor growth and tumor stage [203,204]. Therefore, M2 TAMs and MDSC cells could
contribute to the elevated levels of IL-10 and TGF-beta in the advanced CRC stage.

2.1.7. Tumor Cells and Their Cytokines Panel

CRC cells express highly variable amounts of different cytokines, chemokines, and
growth factors in vitro [205]. These include IL-6, interleukin 8 (IL-8), CCL2, macrophage
colony-stimulating factor (M-CSF), GM-CSF, CXCL10, CXCL12, VEGF-A but also gran-
ulocyte colony-stimulating factor (G-CSF) [206,207]. These molecules contribute to a va-
riety of functions related to systemic inflammation and cancer progression. IL-8 is an
important proinflammatory chemokine, recruiting granulocytes and also promoting angio-
genesis [208]. Both M-CSF and GM-CSF stimulate the proliferation, differentiation, and
survival of monocytes and macrophages. M-CSF plays a role in M2-like anti-inflammatory
macrophage polarization and GM-CSF contributes to M1-like proinflammatory macrophage
polarization [209].

G-CSF

G-CSF can be produced by colon tumor cells. G-CSF was also found to be highly
produced by stromal myofibroblasts and carcinoma cells [210]. G-CSF has a direct effect
on tumor cells promoting tumor stem cell longevity, their proliferation, and migration.
In addition, G-CSF may promote pro-tumorigenic immune cell phenotypes such as M2
macrophages, myeloid-derived suppressor cells, and regulatory T cells [211].

Of note, the G-CSF receptor (G-CSFR) is highly expressed in 90% of human gastric and
colon carcinomas [210]. Moreover, exposure of carcinoma cells to G-CSF led to increased
proliferation, migration, and expansion of a sub-population of carcinoma cells expressing
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stem-like markers. These processes are dependent on extracellular signal-regulated protein
kinase 1/2 (ERK1/2) and ribosomal S6 kinase 1 (RSK1) phosphorylation. These data
suggest that the G-CSF/G-CSFR axis promotes colorectal cancer development and suggest
that they are potential tumor targets [210]. The highest expression of ligand/receptor
was demonstrated in T3 stage tumors, suggesting that G-CSF might contribute to cancer
development via stimulation of tumor cell migration. High levels of G-CSF could accelerate
proliferation enhancing tumor heterogeneity whereas intensified migration could result in
initiating tumor cell mobilization needed for metastasis [210].

Increased G-CSF level was shown in the joined group of CRC patients staged I-IV or
I-III than in controls. When patients’ stages were assessed separately vs. control, G-CSF
level was not elevated in stage I patients, but was increased in separately assessed stages
II, III, and IV patients (Table 1). When comparing G-CSF levels among clinical stages, the
difference was significant for stage IV compared to stage I, only (Table 2).

The dynamics of G-CSF increase suggests this factor may play a particularly important
role in the later stage of CRC development. Thanks to its multifactorial action, G-CSF could
contribute to tumor cell longevity and immune-suppressive TME in CRC. In early tumors,
G-CSF could be produced mainly by M2 macrophages and MDSC. At later stages, due to
the increasing tumor size, cancer cells could contribute to the increased level of G-CSF.

2.2. Antitumor Cells and Their Cytokines Panel
2.2.1. Lymphocytes Th1

Th1 lymphocytes support the cytotoxic action of CD8 T lymphocytes, which serve as
the main cell defense against tumor cells. Th1 helper cells enhance cell-mediated response,
mediated by macrophages and cytotoxic T cells [212]. The primary effector cells of Th1
immunity are macrophages, CD8 T cells, IgG B cells, and IFN-gamma CD4 T cells. Th1 cells
secrete IL-2, IL-12, TNF-alpha, IFN-gamma. The majority of them including IFN-gamma,
interleukin 2 (IL-2) and interleukin 12 (IL-12) were shown to exert an antitumor effect [213].

IL-2

IL-2 is considered an important antitumor cytokine. IL-2 activates NK cells and T
cells. The major challenge in the development of IL-2 as a therapeutic antitumor agent
is that IL-2 can act on both T cells and Tregs [214]. IL-2 also stimulates effector T cells
and differentiation of naive CD8+ T cells into memory T cells [215]. Together with other
cytokines, IL-2 supports naive CD4+ T cell differentiation into Th1 and Th2 lymphocytes
but it inhibits differentiation into Th17 and follicular Th lymphocytes [216,217]. IL-2 plays
a key role in enduring cell-mediated immunity [218].

The major sources of IL-2 are activated CD4+ T cells, activated CD8+ T cells, and DC
cells [219]. Disease progression and negative prognosis in cancer are associated with re-
duced IL-2 concentrations or an increase in soluble IL-2 receptor concentrations [220]. Lack
of IL-2 increase in the majority of presented studies (Table 1) both in early and metastatic
stages may indicate the prevalence of pro-tumor processes in analyzed CRC groups.

IL-12

IL-12 plays a central role both in the induction and the expansion of Th1 responses as
well as the activation of cytotoxic cells, like NK and CD8+T cells [221]. IL-12 activates and
induces IFN-gamma production in these cells, which limits tumor growth and formation of
metastasis [222].

IL-12 is constituted of two subunits, IL-12p35 and IL-12p40; these subunits may form
an agonistic IL-12p70 heterodimer or an antagonistic IL-12p80 homodimer [223]. The
IL-12p35 subunit is shared to generate IL-35 [224], whereas IL-12p40 is shared to form
IL-23 [225]. Therefore, it is difficult to assess the effect of IL-12 without interfering at the
same time with IL-23 or IL-35 signaling. In CRC patients high preoperative IL-12p40 serum
levels predicted a longer survival [226].
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In the intestine, dendritic cells, macrophages, and B cells have been reported to
produce IL-12p35 and IL-12p40. Their stimulation by lipopolysaccharides and IL-10 is
necessary for IL-12 production [227].

In analyzed studies, IL-12p40 was increased in all CRC patients with the highest
level in stage I in comparison to more advanced stages (Table 2). This might be a sign of
predominance of antitumor activity in the early stages of CRC TME. This hypothesis is in
accordance with high NK/Th1 infiltration data in the early CRC stages.

In other studies, IL-12 was not increased in CRC patients staged I-III, I-IV, or stage
IV than in controls, which could be explained by shifting the immune response into
tumor-promoting Th2 cells. However further studies would be necessary to explain
this observation.

IFN-Gamma

IFN-gamma stimulates antitumor immunity [228]. IFN-gamma signaling is a key
factor for the polarization of Th1 immune responses. It enhances MHC class I antigen
representation and promotes cytotoxicity of CD8+ T cells, NK cells, and macrophages.
Polarization of Th1 response enhanced by IFN-gamma correlates with prolonged survival
of CRC patients [229]. There is an association between high serum IFN-gamma and the
absence of nodal metastases in CRC patients [2]. The data suggest that IFN-gamma induces
a protective, antitumor response in CRC patients. However, it was also demonstrated
that IFN-gamma could increase intestinal permeability which might increase intestinal
inflammation and stimulate CRC formation [230]. Moreover, IFN-gamma can activate
inducible nitric oxide synthase (eNOS) to produce nitric oxide free radicals.

IFN-gamma is known to be produced predominantly by NK and NKT cells, also by
CD4 Th1 cells and CD8 cytotoxic T lymphocyte (CTL) after their activation [231]. Moreover,
also non-cytotoxic ILC3 cells, M1 macrophages, and mucosal epithelial cells IFN-gamma
produce this cytokine [232].

In analyzed clinical studies, IFN-gamma was elevated in patients staged I-III and
I-IV in relation to controls, and in stage IV patients compared to less advanced stages (I,
II, III), confirming the importance of this cytokine in CRC development (Tables 1 and 2).
The source of IFN-gamma in early tumors could be Th1 lymphocytes and cytotoxic CD8
cells together with NK cells, while in the advanced stage the source of IFN-gamma could
probably be M1 macrophages stimulated by IL-12 or IL-18 [233].

2.2.2. M1 Macrophages and Their Cytokine Panel

M1 macrophages phenotype support antitumor immunity and secrete IL-12, IL-6,
TNF-alpha, IL-23, interferon-alpha (IFN-alpha), interferon-beta (IFN-beta), INF-gamma,
interleukin 36 (IL-36), and interleukin 15 (IL-15). Several factors contribute to the M1 polar-
ization including IFN-gamma, TNF-alpha, also pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), heat shock proteins. M1
polarized macrophages produce large quantities of pro-inflammatory cytokines including
TNF-alpha, IL-1 beta, IL-6. M1 macrophages promote immune responses by up-regulation
of MHC-II, in conjunction with co-stimulatory molecules, Th1- cells, Th17-derived cy-
tokines, and chemokines [234].

Ong et al. reported that M1 TAMs were pro-inflammatory and inhibited the prolif-
eration of tumor cells. M1 TAMs produced cytokines (e.g., IL-6 and IFN-gamma) and
chemokines (e.g., IL-8 and CCL2) that attract T cells, promoting type-1 T cell responses.
Using CRC tissues, the authors confirmed that pro-inflammatory TAMs in vivo correlated
with the number of tumor-infiltrating T cells. TAMs induced antitumor effects with the
help of T cells [235]. Another study conducted on close to 500 CRC specimens showed a
parallel infiltration of M1 and M2 cells at the tumor front, with an inverse correlation of
both phenotypes with tumor stage. No difference was detected in cancer-specific survival
(CSS) in CRC groups with different M1/M2 macrophage ratios. However, the studies could
suggest that the presence of numerous M1 macrophages could be favorable in patients
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with CRC, despite the presence of M2 macrophages [11]. The presence of M1 macrophages
in CRC tumors and positive correlation with the presence of T cells contributes to a picture
of “inflamed TME” and may be correlated with a better prognosis.

IL-23

Dendritic cells, macrophages, and neutrophils were shown to produce IL-23 during
intestinal inflammation [236,237]. The evidence suggests that IL-23 may indirectly promote
tumor cell survival. Namely, IL-23 has been reported to drive intestinal inflammation by
inducing other pro-inflammatory cytokines secretion, such as IL-6, IL-17, and IL-22 [238].
These cytokines might activate tumor cell proliferation through STAT3 and NF-kappa beta
pathways. A variety of hematopoietic cells in the intestine may react to IL-23, including
ILCs, Treg, and Th17 cells. The biological effect of IL-23 signaling may be heterogeneous
in different cell populations. IL-23 signaling promotes IL-22 secretion by ILCs and IL-17
production by Th17 cells, while Treg cell activation is inhibited [239].

In the serum of CRC patients, IL-23 levels were reported to be increased [240]. IL-23
was increased in patients staged I-IV vs. control, and also in patients staged I, II, III, and
stage IV compared to controls (Table 1). IL-23 was elevated in CRC patients III/IV vs. I/II
and stage IV patients vs. I-III (Table 2), suggesting a more prominent role in advanced CRC
stages. Other authors reported stable levels of IL-23 with no significant differences between
disease stages [31]. The role of IL-23 seems to be uncertain at this stage of the investigation.

IL-15

IL-15 is produced by a range of cells, including stromal cells, epithelial cells, and
myeloid cells such as monocytes, macrophages, and dendritic cells. Dendritic cells, cyto-
toxic CD8+ T cells, and NK cells all express the IL-15 receptor that consists of three distinct
receptor chains [241,242]. Cytotoxic T and NK cells represent the most important immune
effectors to integrate the antitumorigenic function of IL-15 by activating the APO-1/FAS-
or granule-mediated cytotoxic pathway [243]. Thus, IL-15 regulates antitumor cytotoxicity
and modulates the inflammatory tumor microenvironment. Moreover, IL-15 is expressed
in human CRC cells [244]. IL-15 maintained homeostasis and induced activation of NK
cells and CD8+ memory T cells [245]. IL-15 is negatively involved in CRC progression
via inhibiting the proliferation and promoting apoptosis of CRC cells. Moreover, it was
demonstrated that IL-15 exhibited an antitumor effect via inhibiting the proliferation and
promoting apoptosis of CRC cells. Of note, overexpression of IL-15 caused by gene vector
was shown to reduce angiogenesis in CRC, which further suggested the positive effect of
IL-15 against the invasion and metastatic spreading of CRC cells [246].

Serum IL-15 level was neither increased in early nor advanced CRC stages. This
fact could be a reflection of pro-tumor TME processes in analyzed populations, however,
requires further work.

2.2.3. Innate Lymphoid Cells (ILCs) and Their Cytokine Panel

Innate lymphoid cells are divided into five subpopulations: NK cells, innate lymphoid
cells type 1 (ILC1), innate lymphoid cells type 2 (ILC2), ILC3, and lymphoid tissue-inducer
(LTi) cells based on their differentiation, transcription factors, and cytokine expression [247].
The role of ILC cells seems to be heterogeneous in CRC, with NK and IL2C cells required for
antitumor immunity [57], and ILC1, ILC3 cells supporting the development of CRC [248].

NK Cells

It is acknowledged that NK cells are key antitumor primary effectors to eliminate
CRC cells without prior immunization, and their altered phenotype or dysfunction in
CRC patients can result in the limitation of the immune response, associated with the
lower survival rate [46]. NK cells can effectively induce cancer cell death, including CRC
stem cells and cancer-initiating cells [249]. NK cells apart from their cytotoxic activity can
produce IFN-gamma, TNF-alpha, GM-CSF, and IL-8 [250]. De Vries et al. showed that NK
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cells (identified as CD127−CD56+CD45RO+) were prevalent among the CRC ILC cells
population [57].

ILC1

ILC1 and NK cells are mainly engaged in the protection against viruses, bacteria,
and cancer [251] through the secretion of IFN-gamma and GM-CSF [250]. ILC1s are
characterized by the secretion of proinflammatory cytokines like IFN-gamma and TNF-
alpha [252].

ILC2

It is known that ILC2 cells secrete type-2 cytokines including IL-4, IL-5, IL-13, and GM-
CSF [253]. IL-13 signaling in CRC has been associated with a poor prognosis [254], ILC2-
derived IL-13 activates MDSCs, which promote pro-tumor TME response [51]. High levels
of the ILC2-derived IL-33 and IL-4 were associated with poor prognosis [52]. However, IL-5
secreted by ILC2 is important for the development, recruitment, activation, and survival
of eosinophils [255] associated with antitumor response and good CRC prognosis [256]. It
was also shown that the ILC2 cytokines, IL-5, and GM-CSF could control tumor growth-
as genetic ablation of IL-5 and GM-CSF increased the tumor burden in the murine CRC
model [257]. Eosinophils were shown to protect against tumor development via IL-5
and GM-CSF driving their migration to the tumor and promoting antitumor Th1 cell
responses [257]. Moreover, ILC2 cells have been shown to promote DC migration and
cytotoxic T cell activation, which support antitumor immunity through the secretion of
IL-13 [38,52]. The antitumor role of ICL2 is supported by the finding ILC2 signature was
associated with increased overall survival in CRC [258]. However, the frequency of ILCs
within the tumor microenvironment is low compared to other adaptive immune cells,
which could diminish their role in cytokine production.

ILC3

ILC3 produces mainly IL-17 and IL-22, important for mucosal immune responses and
tumor progression [259]. Moreover, the activity and function of ILC3s are regulated by
IL-23 produced by activated intestinal dendritic cells and macrophages [225], shown to
promote CRC development [260].

In the normal colon mucosa, ILC3s represented the most abundant subset, followed by
ILC1s and ILC2s. In resected CRC tumor samples of stages II and III, there was a marked
reduction in the number of ILCs. Moreover, ILC2 frequency was low in tumor tissues,
while the number of ILC3s was decreased and the number of ILC1s was increased [57].

Immunohistochemical analysis of epithelial crypts confirmed decreased numbers of
infiltrating ILC3s in the tumor tissues as compared with normal tissues. ILC3s are thought
to play a protective role against cancer as suggested by some studies [261,262]. Thus, their
reduction, together with the increase of ILC1s, could play a role in malignant transformation
and tumor progression. Moreover, altered ILC1/ILC3 balance might be dependent on the
plasticity of ILC3s driven by the CRC microenvironment, where cytokines including IL-1
beta, IL-15, and IL-12 could convert ILC3s into IFN-gamma producing ILC1-like cells [263].

Altogether, ILC cells including NK cells could contribute to the increased level of
TNF-alpha, GM-CSF, IFN-gamma, IL-4, IL-5, IL-13, IL-17, and IL-22, modulating TME and
contributing to tumor progression or antitumor activities. However, due to the low numbers
of these cells in TME, the impact of these cells on cytokines levels is probably limited.

2.2.4. Dendritic Cells

Dendritic cells are much less frequent in tumor TME, however, they play a key role
in antitumor response. A simplified classification of DC types based on origin, gene
expression, phenotype, functions, and localization was proposed [264]. The following
types of DCs can be found: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1),
myeloid/conventional DC2 (cDC2), and monocyte-derived dendritic cells (MoDCs).
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Myeloid cDC1 has been characterized as a subset of DC with a high intrinsic capacity
to cross-present antigens via MHC class I to activate CD8+ T cells and to promote Th1
and NK cells responses through IL-12 [265–267]. In vitro, human cDC2 were shown to be
potent activators of Th1, Th2, Th17, and CD8+ T cells [268] suggesting that possibly they
would be able to promote immune responses in vivo.

Mo-DCs studied ex vivo secrete IL-1, TNF-alpha, IL-12, IL-23, stimulate CD4 and
CD8 T cells and express CCR7 [269]. MoDCs do not migrate efficiently to lymph nodes
and are particularly prone to develop immunosuppressive functions, whereas cDC1 excel
in the activation of CTLs [270]. Plasmacytoid dendritic cells can secrete INF-alpha, IL-6,
granzyme B; cDC1 cells produce IL-12, CXCL9, CXCL10, TNF-alpha, IFN-gamma, and
cDC2—IL-1, IL-8, IL-10, IL-12, IL-23, and TNF-alpha [271].

Several studies reported a decreased number of DC in advanced CRC stages in compar-
ison to early stages. They showed that patients with locally advanced tumors (T3–T4) had
significantly lower infiltration with CD83+-matured DCs in the tumor stroma and invasive
margin. The number and localization of tumor-infiltrating DCs and tumor-infiltrating
lymphocytes (TILs) were decreasing with tumor progression [272,273].

It was demonstrated, that between colon adenomas and CRC, the density of mature
DCs decreased, but the density of immature DCs was gradually increased [274]. Accumu-
lation of immature dendritic cells could contribute to the suppression of dendritic cells
and T cells by activation of indoleamine 2,3-dioxygenase and arginase 1 by tumor-derived
growth factors. This could lead to the induction of polarized CD4+Th 2 cells promoting the
expansion of cancer cells at the expense of CD8+T cells [275].

In several studies, higher cDC1 infiltration in tumors was correlated with higher infiltra-
tions of CTLs or NK cells, suggesting their cooperation in the antitumor response [276,277].
Based on analyzed studies, we suggest that dendritic cells could contribute to increased
levels of cytokines, especially in the early stages of CRC.

2.2.5. Neutrophils N1

N1 TANs exert antitumor activity. N1 phenotype of TANs, activated by type I interfer-
ons, inhibits angiogenesis and effectively eliminates tumor cells via antibody-dependent
cellular cytotoxicity (ADCC) and phagocytosis. Neutrophils recruit and activate immune
cells by producing cytokines, chemokines, and proteases and can stimulate T cells prolif-
eration as well as NK and DC cells maturation [278]. N1 TANs show increased NADPH
oxidase activity which leads to the production of reactive oxygen species, cytotoxic to
cancer cells [279].

The immune profile of N1 TANs is characterized by secreting high levels of TNF-alpha,
CCL3, intercellular adhesion molecule 1 (ICAM-1), and low levels of arginase. The N1
neutrophils are short-living, highly cytotoxic cells and show a mature phenotype with
high immune-stimulating activity. Contrary, N2 neutrophils, are long-living, have low
cytotoxic properties, show an immature phenotype, and have a highly pro-angiogenic, pro-
metastatic, and immunosuppressive activity. The heterogeneity of TANs, their plasticity,
and their dual function in tumors are regulated by several TME factors and signals, mainly
TGF-beta and IFN-beta signaling [280]. The infiltration of the tumor by neutrophils showed
a relatively low abundance, compared to macrophages M2 and Tregs in CRC [184].

It was demonstrated that a decreased number of intratumoral neutrophils correlates
with metastasis/tumor size (pM/pT) status, clinical stage, and shorter survival in CRC
patients, being an independent poor prognostic factor [281]. On the contrary, CRC tissues
from patients with well-to moderate tumor differentiation, fewer metastases, TNM stage I
or II diseases, or rectum cancer showed higher TAN abundances and lower Treg or TAM
abundances [282], suggesting their crucial role in shaping the response against the tumor.
High infiltration of tumors with N1 TANs could contribute to increased levels of TNF-alpha
in the circulation.
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2.2.6. B Cells

B cells can regulate immune responses via humoral mechanisms, including inhibition
of T cell responses [283]. B cells are divided into cytokine-producing ‘regulatory’ and
‘effector’ B subsets. Regulatory B cells secrete IL-10 and TGF beta-1, while effector B cell
populations produce IL-2, IL-4, TNF-alpha, IL-6 (Be-2 cells), or IFN-gamma, IL-12, and
TNF-alpha (Be-1 cells) [284].

In patients with advanced CRC stages, significantly lower levels of tumor-infiltrating
B cells were described [285]. The B-cell infiltrates of CRC tumors were characterized by
the accumulation of differentiated memory B cells or plasma cells. Moreover, advanced
tumors and metastases were infiltrated by a considerable number of regulatory B cells. Also,
regulatory B cell subsets (CD24highCD38high) were significantly elevated in advanced CRC
tumors samples infiltrates [286]. These cells were identified as the major B cell population
secreting IL-10 in humans [287]. Therefore, Breg cells might contribute to the increased
level of IL-10 in colon cancer TME.

2.2.7. Cytotoxic T Cells

Secretion of perforins and granzymes is the main way of cytotoxic CD8 T cells activity.
Most cytotoxic CD8 T cells also release IFN-gamma, TNF-alpha, and tumor necrosis factor-
beta (TNF-beta). IFN-gamma induces expression of MHC class I. IFN-gamma activates
macrophages, recruiting them to sites of infection both as effector cells and as antigen-
presenting cells [288]. Contrary, CD8+ T cells were found at lower levels in CRC patients
with the advanced-stage disease [285]. Infiltration of invasive margin and tumor core by
CD3CD8 lymphocytes resulted in longer DFS in stages II and III and improved OS in stage
III. This confirms their positive prognostic value in CRC [289]. Despite the mainly cytotoxic
activity of CD8 cells, we presume they could contribute to some extent to increased levels
of IFN-gamma, TNF-alpha, and TNF-beta in CRC patients.

3. Inflammation in Colon Cancer Development

CRC develops in a sequence of histological, morphological, and genetic changes.
Sporadic and colitis-associated colon cancer (CAC) develop in different ways. Sporadic
CRC develops in an adenoma-carcinoma sequence, with inflammation following tumor
development [3,290], whereas in colitis-associated cancer CRC is induced by inflammation-
induced dysplasia.

Adenoma-carcinoma sequence is responsible for the majority of CRC cases. In this
case, tumor-initiating event (environmental mutagens, spontaneous mutations) leads to the
accumulation of mutations or epigenetic alterations in the intestinal epithelial cells. This can
cause uncontrolled proliferation of abnormal cells, promoted by cytokines and growth fac-
tors secreted by infiltrating cells, mainly macrophages and neutrophils [291]. The excessive
growth of clonal cells contributes to aberrant crypt foci formation, development of early
adenomas, late adenomas, and finally the CRC tumor [292]. Inflammatory cells actively
contribute to the mucosal immune response. It was shown that number of macrophages
and neutrophils was increasing from low to high-grade dysplasia polyps and was highest
in invasive adenocarcinoma samples [291]. A recent study showed Th2 and Th17 cells
immune pathways were activated in normal to adenoma transition, whereas Treg cells were
activated in adenoma to carcinoma transition [293]. Elevated levels of reactive oxygen and
nitrogen species secreted by neutrophils and macrophages may be associated with further
DNA injury [294]. Mutations in intestinal epithelial cells can affect the regulation of COX-2
(cyclooxygenase-2) expression. COX-2 was found to be overexpressed in colonic polyps
compared with paired adjacent normal mucosa [295], and in CRC tissues, suggesting a
positive role of COX-2 in early colorectal carcinogenesis. Pro-tumor action of COX-2 is
supposed to be exerted via generating prostaglandin E2 (PGE2), enhanced angiogenesis,
cell survival, and activation of the WNT pathway [296,297].

Cancer-associated colitis may be associated with inflammatory bowel disease (IBD),
infections, or abnormal immune reactions. IBD (ulcerative colitis and Crohn’s disease)
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is responsible for approximately 2% of CRC cases [298]. Active inflammation in IBD
patients results in increased numbers of inflammatory cells at the beginning of the process.
Neutrophils and macrophages produce free radicals and reactive nitrogen forms [299],
which can damage genes preventing carcinogenesis (including p53, DNA mismatch repair
proteins), transcription factors (nuclear factor-kappa beta), or signaling proteins such as
cyclooxygenases [300]. These changes together with chronic inflammation can lead to
excessive tissue regeneration, proliferation, and clonal expansion of initiated tumor cells
(tumor promotion) as well as acquiring stem-like properties by previously differentiated
cells [292]. This can result in uncontrolled growth and tumor formation.

Some authors underline the differences in the timing of genetic alterations between
sporadic and colitis-associated cancers. The development of sporadic cancer includes
among others loss of APC gene function, aneuploidy, methylation changes, microsatellite
instability, activation of KRAS gene, COX-2 enzyme, and loss of p53 gene function [299].
In IDB-associated cancer loss of APC is less frequent and happens later in the tumor
development, whereas loss of p53 function occurs earlier and is more frequent in IBD-
associated cancer, compared to patients with sporadic CRC [299–301].

4. Conclusions

This review is an attempt at cytokine kinetics analysis in CRC tumors. The analysis
recapitulates an existing hypothesis that cytokine profile depends on the TNM stage [2,302].
It was observed, that in CRC TME both the immunostimulation and immunosuppression
take place, with more pronounced immune suppression in advanced stages [57]. Inflamma-
tion co-exists and contributes to cancer development and progression [2,303]. Cytokines
profile may provide data of the immune status of TME at each stage: ’cold’/’frozen’ or
‘hot’, contributing to patients’ prognosis analysis. The cytokine profile reflects numerous
processes, including angiogenesis, lymphangiogenesis [304], increased systemic inflamma-
tory response, and acquisition of a stem-like phenotype by cancer cells [290,305], factors
facilitating metastasis. This way cytokines profile assessment could possibly contribute
to the choice of more personalized treatment. Larger studies are necessary to establish
the roles of cytokines for different CRC stages and the importance of their kinetics to
patients’ prognoses.

5. Limitations

We acknowledge several limitations of the presented review. First, sources of the cir-
culating cytokines are difficult to be established, which requires further studies. Moreover,
analyzed studies consisted of heterogeneous patient groups: before and after surgery, with
and without metastases. Reported cytokines levels were not consistent among studies,
which could reflect various methods of their assessment, small analyzed cohorts, and
patients’ heterogeneity. Only a few cytokines were discussed, and chemokines were not
included due to the space limitations. Th9 cells were not discussed in this review due to
limited and contradictory reports regarding the role of these cells in CRC in the literature.
Th22 cells were not included in the discussion due to limited clinical data of its main
cytokine IL-22 in respective CRC stages. In the presented review some important factors
were not taken into account, including microsatellite instability (MSI) status, chromosomal
instability (CIN) status–both may significantly impact tumor TIL infiltration [306]. Other
important factors include CpG island methylator phenotype status, BRAF and KRAS muta-
tional status, tumor differentiation (grade), location (right-sided vs. left-sided) [307], and
colon microbiota. These factors will be included in future reviews.
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17. Czajka-Francuz, P.; Francuz, T.; Cisoń-Jurek, S.; Czajka, A.; Fajkis, M.; Szymczak, B.; Kozaczka, M.; Malinowski, K.P.; Zasada, W.;
Wojnar, J.; et al. Serum cytokine profile as a potential prognostic tool in colorectal cancer patients—One center study. Rep. Pract.
Oncol. Radiother. 2020, 25, 867–875. [CrossRef]

18. Yamaguchi, M.; Okamura, S.; Yamaji, T.; Iwasaki, M.; Tsugane, S.; Shetty, V.; Koizumi, T. Plasma cytokine levels and the presence
of colorectal cancer. PLoS ONE 2019, 14, e0213602. [CrossRef]

19. Kaminska, J.; Nowacki, M.P.; Kowalska, M.; Rysinska, A.; Chwalinski, M.; Fuksiewicz, M.; Michalski, W.; Chechlinska, M. Clinical
significance of serum cytokine measurements in untreated colorectal cancer patients: Soluble tumor necrosis factor receptor type
I—An independent prognostic factor. Tumour Biol. 2005, 26, 186–194. [CrossRef]
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