
Review Article
A Review on the Effect of Plant Extract on Mesenchymal Stem Cell
Proliferation and Differentiation

Bhuvan Saud ,1,2 Rajani Malla,1 and Kanti Shrestha 2

1Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
2Faculty of Science, Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal

Correspondence should be addressed to Kanti Shrestha; kantishrestha2006@gmail.com

Received 6 May 2019; Accepted 29 June 2019; Published 24 July 2019

Academic Editor: Andrea Ballini

Copyright © 2019 Bhuvan Saud et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Stem cell has immense potential in regenerative cellular therapy. Mesenchymal stem cells (MSCs) can become a potential attractive
candidate for therapy due to its remarkable ability of self-renewal and differentiation into three lineages, i.e., ectoderm, mesoderm,
and endoderm. Stem cell holds tremendous promises in the field of tissue regeneration and transplantation for disease treatments.
Globally, medicinal plants are being used for the treatment and prevention of a variety of diseases. Phytochemicals like naringin,
icariin, genistein, and resveratrol obtained from plants have been extensively used in traditional medicine for centuries. Certain
bioactive compounds from plants increase the rate of tissue regeneration, differentiation, and immunomodulation. Several
studies show that bioactive compounds from plants have a specific role (bioactive mediator) in regulating the rate of cell
division and differentiation through complex signal pathways like BMP2, Runx2, and Wnt. The use of plant bioactive
phytochemicals may also become promising in treating diseases like osteoporosis, neurodegenerative disorders, and other tissue
degenerative disorders. Thus, the present review article is aimed at highlighting the roles and consequences of plant extracts on
MSCs proliferation and desired lineage differentiations.

1. Background

Stem cells are precursor biological cells that have the ability
to self-renew and differentiate into multiple mature cells
[1]. Stem cells divide into two major categories, i.e., embry-
onic stem cells and adult stem cells. Depending upon the dif-
ferentiation capacity, they can be classified into unipotent,
multipotent, pluripotent, or totipotent stem cells. These cells
provide the platform to investigate cellular development,
maintenance, and differentiation [2]. In 1976, Friedenstein
and his coworkers discovered MSCs from mouse bone
marrow [3]. MSCs are multipotent stem cells which are non-
hematopoietic and possess the ability to differentiate into
multilineage cells. The International Society for Cellular
Therapy (ISCT) proposes minimal criteria to define human
MSC: they are plastic adherent; express CD105, CD73, and
CD90; lack expression of CD45, CD34, CD14 or CD11b,
CD79a or CD19, and HLA-DR surface molecules; and are
capable of differentiating into multilineage cells, i.e., osteo-
blasts, adipocytes, and chondroblasts in vitro [4]. Human

MSCs show morphological subpopulation like rapidly self-
renewing cells, spindle-shaped cells, and flattened cells
(FC) [5]. Several studies have shown that under standard
environmental condition, MSCs can be isolated from differ-
ent sites including the bone marrow [6, 7], adipose tissue
[8, 9], cord and peripheral blood [10, 11], placenta [12],
umbilical cord [13, 14], fetal liver [15], fetal lungs [16],
dental pulp [17, 18], periodontal ligament [19], trabecular
bone [20], compact bone [21], synovial membrane [22],
cruciate ligaments [23], amniotic fluid [24, 25], and endo-
metrium [26]. MSCs have been used for several clinical tri-
als for tissue repairing and treating immune-mediated
disease including cardiac ischemia, limb ischemia, amyotro-
phic lateral sclerosis, diabetes, ischemic stroke, osteoarthri-
tis, liver cirrhosis, liver failure, graft versus host disease,
Crohn’s disease, multiple sclerosis, respiratory distress syn-
drome, amyloidosis, and rheumatoid arthritis [27–29]. At
the National Institute of Health (NIH), USA, several clini-
cal trials are running in different aspects of MSCs used
for treatment and regenerative therapy. A total of 945
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studies have been found that involve the use of MSCs for
different clinical phages among which 264 studies have
been completed. Among them, some studies have used
dietary supplements including herbal compounds for the
trial [30].

From the initial development of human civilization,
plants have been used as a medicine for improving growth
and development. Medicinal plants are widely acceptable
for the treatment of a variety of diseases. The World Health
Organization (WHO) declared that the best sources of a
variety of drugs are plant derivatives [31]. Globally, around
75% of the population from the developing and developed
nations like Britain, Germany, and France use plants and
their extracts as a medicine [32]. Out of 150 thousand plants
being studied, med-clinically important components have
been observed in many of them [33]. Plant derivatives have
shown to promote stem cell proliferation and multilineage
differentiation. The bioactive compounds obtained from
plant extracts could become an alternative, cost effective
treatment for bone marrow transplantation and cancer
[34]. Most plants have been used both traditionally and ther-
apeutically, but the exact mechanism of action on MSCs of
only few plant extracts has been proved. Establishing the dif-
ferentiation of MSCs into desired lineage-committed progen-
itors in the presence of a certain plant extract can open a
new horizon for regenerative medicine and treatment.
Thus, the present review highlights the role of bioactive
compounds from plant extracts on MSCs proliferation
and differentiation and their use in regenerative therapy
and medicine.

2. MSCs Proliferation Potential

MSCs are divided by mitosis but are not capable of unlimited
cell division in vitro due to senescence, also called irreversible
growth arrest phenomenon first described by Hayflick in the
1960s [35]. Increased expression of senescence-associated
β-galactosidase (SA-β-Gal) is responsible for stoppage of
further division of MSCs [36]. With the increase in SA-
β-Gal gene expression and accumulation of excessive reac-
tive oxygen species (ROS) and progressive shortening of
the telomeres or modified telomeric structure [35, 37,
38], morphological and biological changes occur and cell
undergoes senescence. Morphologically, MSCs change into
enlarged and irregular-shaped cells. Different studies
reported that single cell-derived colonies of MSCs can
expanded up to 30-50 population doublings in about 10-18
weeks [39–41]. In passages 6 and 12, population doubling
time (PDT) is the shortest for umbilical cord-derived stem
cell (UC-MSC) compared to bone marrow-derived stem cell
(BM-MSC) and adipose tissue-derived stem cell (AT-MSC);
also, the proliferation rate is the highest from UC-MSCs
[42]. The proliferation and persistence rates of stem cells
have been influenced by tissue sources, donor’s age, and
culture conditions [43]. In addition, older donor’s cells
(>66 years) have lower proliferative ability than younger ones
(about <30 years of age) and pediatric donors have the high-
est proliferation rate in in vitro standard condition [41, 44].
Meanwhile, the absence of irreversible growth arrest could

mean neoplastic transformation of MSCs. Furthermore,
the culture system also influences homing and differentia-
tion abilities of stem cells. The three-dimensional culture
system has more expansion than the two-dimensional cul-
ture system [45]. The study has shown that UC-MSCs
exhibit a higher proliferation capacity than BM-MSCs
[46] and BM-MSCs have greater proliferation capability
compared to muscle-derived stem cells (MD-MSCs) and
AT-MSCs [47].

3. MSCs Multilineage Differentiation Potential

According to ISCT criteria, MSCs must be able to differen-
tiate into multilineage cells including osteoblasts, adipo-
cytes, and chondroblasts but it depends upon in vitro
conditions as well as the cell source [4]. Depending upon
the source, UC-MSCs have high potential to differentiate
into osteoblast, chondrocyte, adipocyte, skeletal muscle
cells, endothelial cells, cardiomyocyte-like cells, and neuronal
cells. BM-MSCs differentiate into osteoblast, chondrocyte,
adipocyte, tenocyte, and vascular smooth muscle cells. In
addition, periosteum MSCs (P-MSCs), synovial MSCs
(S-MSCs), adipose tissue MSCs (AT-MSCs), circulating
MSCs (C-MSCs), and tendon-derived MSCs (TD-MSCs)
also have potential of multilineage differentiation under
in vitro standard condition [47].

3.1. Adipogenic Differentiation. Adipocyte-specific gene
expression, which brings the appearance of intracellular
lipids, characterizes phenotypic adipocyte. Sequential action
of transcription factors C/EBPβ (CCAAT/enhancer binding
protein β), C/EBPα (CCAAT/enhancer binding protein α),
and PPARγ (peroxisome proliferator-activated receptor γ)
is necessary for 3T3-L1 preadipocyte differentiation [48].
Mitochondrial metabolism is important for adipocytic dif-
ferentiation by increased expression of UCP-1, UCP-2,
and UCP-3 mRNA. The increased level of UCP1 is associ-
ated with the brown fat phenotype in newly differentiated
adipocytes [49]. In addition, fibroblast growth factor-2
(FGF2) and 17-beta estradiol have induced adipocyte char-
acteristics in cell [50, 51]. Studies show that BM-MSCs
[52], S-MSCs [53], and UC-MSCs [54] differentiate into
adipocytes. In the presence of dexamethasone and insulin
supplement in the medium, UC-MSCs differentiate into
adipocytes [54].

3.2. Chondrogenic Differentiation. Transforming growth
factor-beta (TGF-β) and bone morphogenetic proteins
(BMPs) are the most important inducers for chondrogenic
differentiation of MSCs [55]. The activation of the Wnt
signaling pathway is also involved in chondrogenesis and
development of cartilage, and this pathway is activated by
glycogen synthase kinase 3 (GSK-3) [56, 57]. Several studies
showed that MSCs from different sources differentiated
into chondrocytes including BM-MSCs [11, 58], S-MSCs
[59], AD-MSCs [60], peripheral blood MSCs (PB-MSCs)
[11], and TD-MSCs [61]. Under controlled in vitro condi-
tion, supplements such as transforming growth factor-β1,
ascorbate-2-phosphate, dexamethasone, and growth and
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differentiation factor-5 (GDF5) [54, 62, 63] promote chon-
drogenic differentiation. Formation of shiny cell spheres
which express type II collagen in cultures is the evidence for
chondrogenic differentiation of MSCs which can be demon-
strated by molecular technique and immunohistochemistry.

3.3. Osteogenic Differentiation. The two important transcrip-
tion factors that promote osteoblastic differentiation are
runt-related transcription factor 2 (Runx2) and osterix
(Osx) [64]. Osterix (Osx) also called Sp7 belonging to the
Sp transcription factor family is regulated by Runx2 that
specifically binds with the Osx promoter region that regulates
osteoblast differentiation in vitro and in vivo [65]. The role of
Runx2 in osteogenic regulation is by the formation of hetero-
dimer with cotranscription factor core-binding factor beta
(Cbf β) and binding to DNA [66, 67]. In addition, the MSC
to osteogenic differentiation increases the expression of
early-marker alkaline phosphatase gene and late-marker
osteopontin gene [24]. Of the different sources of MSCs dif-
ferentiating into osteoblast-like BM-MSCs [52], S-MSCs, P-
MSCs [59], or AT-MSCs [53], in vitro supplements including
dexamethasone, β-glycerophosphate, ascorbic acid, and
1,25-dihydroxy-vitamin D3 help in osteogenic differentiation
fromMSCs [68–71]. The differentiation can be demonstrated
by detection of the Runx2 gene by a molecular method and
also von Kossa or alizarin red staining methods.

3.4. Tendocytic Differentiation. Tendons are tissues of
mesodermal origin. MSCs are also considered promising
for tendon repair in cell-based therapy. Expression of the
transcription factor Scleraxis (Scx) regulates the tendon
formation [72]. Mohawk activation is essential for tendon
development and to modulate the expression of Scx and
tendon-specific extracellular matrix molecules both in vitro
and in vivo [73]. Another cytokine called bone morphoge-
netic protein-12 (BMP-12) [74] also known as growth factor
and differentiation factor [75] is superiorly capable of pro-
moting repair of tendon as well as tendon-like tissue forma-
tion from MSCs. Studies showed that BM-MSCs [76] and
TD-MSCs [77] can differentiate into tendocyte.

3.5. Neurogenic Differentiation. In a normal state, MSCs
express low levels of neural gene markers, such as nestin,
Nurr1, enolase 2, glial fibrillary acidic protein (GFAP),
and beta-tubulin III [78]. MSCs also differentiate into
NSC-like cells under specific culture conditions that are
morphologically and phenotypically similar [79]. This
indicates that MSCs have the capability to differentiate
into nonmesenchymal-origin cells in the presence of stimuli.
In the presence of growth factors, NSCs differentiated into
the neural phenotypes: astroglia, oligodendroglia, and neu-
rons [80]. Along with this, increased expression of neuronal
markers—neuron-specific enolase (NSE), β-tubulin III,
neurofilament-M (NF-M), and microtubule-associated pro-
tein 2 (MAP2)—has been observed in vitro [81]. Neuronal
cells can be derived from BM-MSCs [78, 79], amniotic fluid
MSCs (AF-MSCs) [25], and UC-MSCs [80]. Neurons cells
can be detected by using histochemical staining for neuronal
Nissl bodies.

3.6. Smooth Muscle Differentiation.MSCs differentiation into
functional smooth muscle cells (SMCs) requires potential
regulators miR-503 and miR-222-5p. Stimulation of trans-
forming growth factor-β1 (TGFβ1) is required for genotypic
and phenotypic expression and acts as a strong inducer of
myogenic differentiation of MSCs [82]. TGF-β3 also induces
MSCs differentiation into SMCs by activating myocardin and
myocardin-related transcription factor-A (MRTF-A) [83].
In addition, involvement of sphingosylphosphorylcholine
induces contractile SMCs differentiation from human adi-
pose tissue-derived MSCs [84].

4. Effect of Medicinal Plant Extracts on MSCs

Globally, plants and their products are used for improving
health. Plants have been providing endless sources of
medicine throughout history. Their method of production,
purpose, and method of use vary. The USA has categorized
plants into dietary supplements (intended to supplement
the diet and usually consist of vitamins and minerals), drugs
(over-the-counter drugs), and botanical drugs (complex
extracts used for treatment) [85]. Extracts from different
parts of a plant (root, bark, flower, leaf, and seed) may
be used for different therapeutic purposes. Ayurveda,
South-East and Middle-East Asian, and Chinese traditional
medicines are the roots for use of natural products in
treating diseases. Plant extracts contain bioactive com-
pounds like polyphenols, flavonoids, and many other
compounds and chemical substances which play impor-
tant roles to treat both communicable and noncommu-
nicable diseases [86]. Due to health benefits,
phytochemicals from plants generate a lot of interest,
demanding further scientific evaluation [87]. According
to the National Institutes of Health, USA database, of
the 680 clinical trials on MSCs, 27 have used dietary sup-
plements including herbal compounds [86]. Natural com-
pounds isolated from blueberry, green tea, catechin,
carnosine, and vitamin D3 have shown to promote the
proliferation of stem cell of bone marrow. Dietary fatty
acids (oleic acid and linoleic acid) promote the prolifera-
tion of haemopoietic stem cells [34]. Under standard
in vitro condition, supplementing plant extract may
induce increased rates of MSCs proliferation and multili-
neage differentiation, as shown in Figure 1. Moreover,
studies have shown that extracts also increase pluripotent
stem cell proliferation and anticancer potency.

5. Proliferation and Differentiation Stimulants

Medicinal plants and herbs have always been valuable in
disease treatment. Recently, researchers have investigated
and identified those pharmacologically active substances
which are responsible for disease prevention and treat-
ment. Recently, medicinal plants have received consider-
able attention as stimulants for stem cell proliferation
in vivo and in vitro [34, 91, 92]. In vitro studies of natural
bioactive compounds have suggested that plant-derived
substances enhance the adult stem cell proliferation and
on the other hand inhibit the proliferation of cancer cells
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[86]. Several studies have suggested that the proliferation
ability of MSCs is influenced by the dose of the stimulant
compound, where higher doses of cellular toxicity appear.
Using 1-100 μg/ml extract from a citrus increased the
human BM-MSCs proliferation and osteogenic differentia-
tion, while using 200 μg/ml concentration decreases BM-
MSCs growth [93]. In rat BM-MSCs, naringin 50μg/ml
concentration increased growth of MSCs and a higher
concentration at 100μg/ml suppressed the rate of prolifer-
ation [94]. In addition, extracts from brown algae Lami-

naria japonica (fucoidan) enhance the proliferation of
human-derived MSCs when using 0.1–10μg/ml concentra-
tion [95]. Studies have shown MSCs differentiation into
osteogenic, neurogenic, and endothelial/vascular progenitor
cells in the presence of plant extract supplements. Certain
phytochemicals may increase the cellular proliferation and
at the same time reduce the time required, as shown in
Table 1. The effects of plant extracts on MSCs differentia-
tion and their possible mechanism have been shown in
Table 2.

MSC`s ISCT criteria 
CD +ve: CD90, CD75, CD105
CD –ve: CD 34, CD45, CD14, 
CD11b, CD79a, CD19, HLA-DR

Sources
Adult tissue derived

Fetal/neonate derived 

Culture in vitro 
standard condition

Plant extract
(bioactive compound)

as stimulant

(Muscles)(MSC`s)
(Adipocyte)

Polyphenols, saponins,
floridoside,

amentoflavone,
quercetin, psoralen,
poncirin, harmine,

silibinin, catechins and
naringin

Levodopa
(L-DOPA),

ferulic acid and
Salvia

miltiorrhiza

extract

Isoflavones:
genistein

Curcumin
and

olive leaf
extract

Flavonoids
(phloridzin, naringin),

polysaccharides
(fucoidan),

polyketides, Soy
peptides and
curcumin      

Gene expression regulation 

Bioactive
compounds

(Osteocyte)

Multilineage differentiation

(Chondrocytes)
(Neurons)

Proliferation

Flavonoid
glycoside:

icariin

Figure 1: MSCs isolated from different sources derived from adult and fetal tissues. MSCs must be positive for cluster of differentiation CD90,
CD75, and CD105 and negative for CD34, CD45, CD14, CD11b, CD79a, CD19, and HLA-DR according to ISCT criteria [4]. Bioactive
compound derived from plants regulates MSC gene expression, which may be responsible for the cellular proliferation and multilineage
differentiation into osteocyte, muscle cells, nerve cells [86, 88], adipocyte [89], and chondrocyte [90].
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5.1. Phytochemical Compounds

5.1.1. Naringin. Naringin (naringenin 7-O-neohesperidose)
belongs to the flavonoid group, has an antioxidant effect,
is anticancerous, and is used for reducing the cholesterol
level. It is also used for the treatment of bone disorders
like osteoporosis and osteoarthritis. Naringin has a poten-
tial to induce proosteogenic effects which could promote
the proliferation of stem cell [116]. In in vitro condition,
it has shown to enhance the osteogenic differentiation by
increasing the expression of Runx2, OXS, OCN, and
Col1 and increase the proliferation by activating the ERK
signaling pathway on human BM-MSCs [117]. In rat
BMSCs, naringin increases the mRNA levels of osteogenic
genes and Notch1 expression [94]. In human amniotic
fluid-derived stem cells (hAFSCs), naringin promotes oste-
ogenesis via BMP and Wnt-β-catenin signaling pathways.
In addition, it increases the expression of bone morphoge-
netic protein 4 (BMP4), runt-related transcription factor 2
(Runx2), β-catenin, and cyclin D1 in a dose-dependent
manner by 1-100 μg/ml [118]. At 1μM concentration, it
promotes the proliferation and differentiation of human
periodontal ligament stem cells (hPDLSCs) both in vitro
and in vivo [119]. The proliferation and differentiation are
dependent on the dose of naringin in dog-originated BM-
MSCs [120]. Rhizoma drynariae is used commonly in the
treatment of osteoporosis and bone nonunion in traditional
Chinese medicine [93]. The flavanone may become a poten-
tial therapeutic candidate to promote the osteogenesis.

5.1.2. Icariin. Icariin (ICA) is the main extract of Herba epi-
medii which is widely used in traditional Chinese medicine

(TCM). Icariin, a natural flavonoid glycoside, possesses
anti-inflammatory (through inflammatory cytokines and
phosphorylation of p38 and JNK) [121], antiatherosclerosis
[122], and anticancer [123] activities and treats type 2
diabetes mellitus [124]. ICA promotes bone formation by
stimulating osteogenic differentiation of BMSCs. ICA can
promote chondrogenic differentiation by activating the
Wnt/β-catenin signaling pathway [90]. In rat BMSCs, prolif-
eration is achieved by activating ERK and p38 MAPK signal-
ing [125]. In Sprague-Dawley (SD) rats, ICA has shown to
increase the phosphorylation level of GSK-3β and cyclin
D1 protein in BM-MSCs [126]. Icariside II (ICA II) is a kind
of metabolite of ICA (loss of the glycosyl moiety at the
C-7 position of ICA) [127]. Icariside II (ICS II) is a pre-
nylated active flavonol and has antiosteoporosis, antihy-
poxia, and anticancer activities. ICS II increases ALP
activity and calcium deposition which enhance the osteo-
genic differentiation of BMSCs at optimal concentration
[128] also via enhanced expression of osteogenesis pro-
teins/genes and increases the PI3K/AKT/mTOR/S6K1 sig-
naling pathways [129, 130]. It promotes osteogenesis by
upregulating Runx2, ALP, and collagen I and inhibits adi-
pogenesis by downregulating PPARγ, Fabp4, and adipsin
gene expression [131].

5.1.3. Genistein. Genistein has structural similarity to human
estrogen, so it is also called phytoestrogen. It is one of the
most abundant isoflavones in soy. Isoflavones belong to the
group of flavonoids, and they act as phytoestrogens, antioxi-
dants, and anticancer agents. Genistein when added to
medium (10-7M and 10-8M) promotes bone formation and
also increases the level of alkaline phosphatase activity and

Table 1: Effect of plant extract on MSC proliferation.

Plant MSC source Mechanism of action References

Epimedium pubescens (TCM) hBMSCs 20 μg/ml increases significant proliferation [96]

Glycine max var.
(vegetable soy peptides)

hAD-MSCs and CB-MSCs
25% and 20% increase cell proliferation rate, and TGF-β1

plays a crucial role to induce proliferation
[97]

Ocimum basilicum hDP-MSCs and BM-MSC
Induces MSC proliferation and reduces doubling time

(DT) at 10 μg/ml concentration
[98]

Paullinia cupana (guaraná) hAD-MSCs
5 and 10mg/ml concentrations stimulate proliferation.

Increases the catalase (CAT) activity and SOD2,
CAT, and GPx gene expression

[99]

Glycyrrhiza glabra (licorice root) hBM-MSC
Increases significant level of proliferation at

concentration 10-50 μg/ml
[100]

Thymbra spicata var. intricata
h-Dental pulp (DP) and

BM-MSCs
Reduces the doubling time (DT) at 10 μg/ml for
MSCs and acts as a good proliferation inducer

[101]

ZD-I: TCM Telomerized hMSCs 0.78–25 μg/ml stimulates the proliferation [102]

Rhizoma drynariae hBM-MSC
0–200 μg/ml concentration of the naringin solution

enhances the proliferation
[93]

Foeniculum vulgare hBM-MSC Proliferation activity is seen with a dose of 5 μg/ml [103]

Cissus quadrangularis (Linn.) Wistar rat BM-MSCs
300 μg/ml concentration increases the

proliferation rate by 2-fold
[91]

Apple h-AD MSCS and CB-MSCs
Proliferation promotes by ERK-dependent

cytokine production
[104]

Ferula gummosa hBM-MSCs 0.5 to 5 μg/ml increases significant cell proliferation [105]

Ginkgo biloba hBM-MSCs 25mg/l increases the cell proliferation by 30% [106]
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DNA content [132]. Genistein promotes the h-BMSCs
(human-BMSCs) to osteogenic differentiation through an
ER-dependent mechanism. Also, BMP-dependent SMADs
and Runx2 signaling play important roles in the process
[133]. In addition, it could stimulate differentiation through
the p38 MAPK-Cbfa1 pathway [134]. However, studies have
shown that it also induces adipogenic differentiation, pro-
motes triglycerides activity in hBMSC, and suppresses osteo-
genic potential by upregulating the expression of PPAYγ
[89]. An in vitro study shows that genistein stimulates
hMSC-induced cellular proliferation and survival of cells
and enhances antiapoptotic capacity [135].

5.1.4. Hyaluronic Acid. Hyaluronic acid (HA) as a potential
agent for medical use is already documented. HA in combi-
nation with BMSCs enhances cartilage regeneration for
chondral defects in canines [136]. In addition, an in vivo
study done in pigs found that HA with MSCs improves the
cartilage healing both histologically and morphologically at
6 and 12 weeks after injection [137]. In humans, HA
increases the proliferation which is dose and time dependent.
In HA-treated amniotic MSCs, upregulation of the expres-
sion of the Wnt/β-catenin pathway has been seen which
enhances mRNA expression and protein level of wnt3a,
β-catenin, and cyclin D1 [138].

5.1.5. Resveratrol. Resveratrol (RSVL) is a natural type of
polyphenolic phytoestrogen. RSVL is mainly found in red
grapes, blueberries, peanuts, and other plants [139]. The
effect of RSVL on stem cell is well documented. It enhances
the hBMSC proliferation and potential to differentiate into
osteocyte by activation of extracellular signal-regulated
kinase 1/2 (ERK1/2) and p38 mitogen-activated protein
kinase (MAPK) signaling through an ER-dependent mecha-
nism [140]. RSVL showed the effect on HMSCs in dose-
and time-dependent manners for the self-proliferation and
differentiation. 0.1 μM RSVL promotes cell proliferation,
but 5μM or above inhibits cell self-renewal by increasing
the senescence rate and cell cycle arrest in S phage. It also
helps MSC differentiation into osteogenic cells and sup-
presses differentiation into the adipogenic lineage [141]. Res-
veratrol enhances osteogenic differentiation by upregulating
HMSC mediated through the SIRT1/FOXO3A. It activates
and enhances the proteins SIRT1 and FOXO3A, respectively,
in an independent manner. Resveratrol also promotes osteo-
genesis by upregulating Runx2 gene expression [142].

6. Future Prospective

Recent advancement in science and technology and
advanced research on plant extracts is bringing into light
their importance in regenerative and therapeutic medicine.
As we know very less about the exact site and mechanism
of action and side effect of the use of plant extracts, extensive
research on humans will help to replace synthetic pharma-
ceutical drugs to treat diseases. If protocols for proliferation
and differentiation of stem cells into desired lineage cells
by use of plant extracts can be established, it will help to
treat many untreatable diseases like aplastic anemia, leuke-

mia, bone diseases, and cardiovascular diseases. MSCs
have promising roles in regenerative therapy due to their
broader differentiation potential [4]. From the last few
decades, scientist have been aiming to use MSCs for tissue
regeneration in bone injury [143], cartilage injury [144],
spinal cord injury [145], graft-versus-host disease [146],
Crohn’s disease [147], and hematopoietic cell recruitment
[148]. Though very less side effects of plant extracts on
humans have been noted, they may still show adverse drug
effects for certain medical condition which are not well
known. With better knowledge of the effects of plant
extracts, we may also be able to restrict their undesirable
use under certain circumstances. The therapeutic doses
can also be well established to have desired effects as well
as control toxic effects.

Medicinal plants are being widely accepted and increas-
ingly used by the general public for treatment. They are also
used as complementary supplements to reduce the side
effects produced by Western medicine [149]. The bioactive
compounds derived from plants have shown to be potential
candidates to activate stem cells for proliferation and differ-
entiation. Currently, recombinant and synthetic cytokines,
growth factors, and other proteins are being produced by
using bacterial cell, plants cells, and mammalian cells for
stem cell growth supplement. These compounds have signif-
icant side effects [150–152] and lead to neoplastic cell trans-
formations [153] with high cost, less stability, and limited
application and requiring continuous use making them unaf-
fordable for low-income countries. Certain medicinal plants
have always been grown and used as cultural values for pri-
mary health benefits. With more knowledge on values of
commonly available plants in the community, it will help
people to preserve and use them for healthy living and pre-
ventive and curative medicine and also restrict undesirable
use. This will decrease the health care economic burden for
primary health care problems. Thus, plant-derived com-
pounds will be proven as promising agents for stem cell ther-
apy for public health with easy availability and affordability
and least or no side effects.

7. Conclusion

MSCs along with medicinal plant extracts have a potential
hope in stem cell and regenerative therapy. Plant extracts as
stimulants significantly affect proliferation and differentia-
tion into multilineage cells. Bioactive compounds from
plants precisely regulate the MSCs through different protein
pathways. Medicinal plants/herbs produce less toxic effects,
are affordable, and can help to increase disease-treating capa-
bility using MSC cell therapy for both noninfectious and
infectious diseases.With continued research, by using medic-
inal plant extracts, improved proliferation and differentiation
potential of MSCs will be achieved in the near future and
development of cost-effective technology for cellular therapy
will be possible.
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