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Abstract

Vertebrate nervous systems can generate a remarkable diversity of behaviors. However,
our understanding of how behaviors may have evolved in the chordate lineage is limited by
the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we
combine high-throughput video acquisition with pharmacological perturbations of bioamine
signaling to systematically reveal the global structure of the motor behavioral repertoire in
the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic
shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numer-
ous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employ-
ing computational modeling of swimming dynamics and spatiotemporal embedding of
postural features revealed that behavioral differences are generated at the levels of motor
modules and the transitions between, which may in part be modulated by bioamines. Finally,
we show that flexible motor module usage gives rise to diverse behaviors in response to dif-
ferent light stimuli.

Introduction

A primary function of animal nervous system is to transform sensory input into a sequence of
actions known as behavioral output. Thus, the overarching motive of neurobiology research is
to delineate the functional makeup and mechanistic basis of these behavioral outputs. Major
progress has relied on the development of experimental tools and analysis methods that permit
real time measurements and quantitative characterization of behavior (reviewed in [1-5]).
Among the various natural animal behaviors, locomotion forms an integral part of nervous
system function. Researchers in the field have been able to employ the aforementioned mod-
ern technologies to define motor actions as a function of their natural stereotyped elements,
known as behavioral “modules,” “motifs,” “syllables,” or “primitives” [1,6-10], where these
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basic building blocks of motor behavior operate under organizational and hierarchical rules
that bear similarities to phonological and syntactical rules that govern language. Modern sys-
tems neuroscience approaches have greatly facilitated the investigation of vertebrate motor
modules [11-13], which in invertebrates are even more likely to be interrogated with high sen-
sitivity and precision, largely due to the latter’s smaller nervous systems [14-16]. In addition,
the next generation of neuroscience discovery capitalizes on developing and studying new
nontraditional model species to reveal not only common principles, but also differences in
behavioral organization across the tree of life as well as within important clades [17-19]. Con-
sequently, there is an urgent requirement for expanding neuroethological studies to additional
organisms occupying key phylogenetic positions.

Invertebrate chordates belonging to the phylum Chordata are obvious candidates for neu-
roethological analysis since they are close relatives of vertebrates and may provide important
insight into the evolution of chordate nervous systems. While the importance of studying
invertebrate chordates has been recognized in the field of evo-devo, as evident from an explo-
sion of evolutionary, genomic, and developmental studies primarily in 3 organisms: the cepha-
lochordate amphioxus and the tunicates Ciona intestinalis and Oikopleura dioica, these
organisms have yet to be leveraged in the context of neuroscience. Understanding their ner-
vous system functions and behavioral repertoire will provide insights into the conservation
and diversity of locomotory circuits and how these relate to the evolution of the diverse modes
of locomotor behavior [20].

Recent publication of the C. intestinalis larval connectome [21,22], single-cell transcrip-
tomes of the larval nervous system [23,24] and establishment of in vivo functional imaging
[25,26] have made Ciona a promising target for functionally dissecting a small invertebrate
nervous system at a systems level.

However, a major hindrance to employing Ciona larvae for systems neuroscience is the
absence of a behavioral platform that can measure phenotypes in an extensive and intensive
manner [27], which is especially crucial for the analysis of locomotion due to its sensitivity to
both neurogenetic [28,29] and neuropharmacological perturbations [30-34].

In this work, we address this knowledge gap by using machine vision to track, skeletonize,
and extract postural features from thousands of larvae swimming both spontaneously and
under light stimulation. We additionally combine wild-type swimming behavioral analysis
with a small-scale pharmacobehavioral screen that targets bioamine signaling, a key regulator
of the biophysical properties of neurons, synapses [30,35,36], and behavior [30,37]. Using
dimensionality reduction, we derive lower dimensional representations of body postures,
which we term “eigencionas.” With these, we can explain the majority of postural variance in
the Ciona larvae. We also combine 3 state-of-the-art approaches: motif identification, hidden
Markov model (HMM), and spatiotemporal embedding to quantitatively define Ciona larval
behavioral dynamics and thereby uncover the perturbation-sensitive modulation effects
exerted on them by bioamine neuromodulators.

Results

Parametrization of Ciona using interpretable features

Using 5 inexpensive USB microscope-based tracking setups (Figs 1A and SIA-S1P), we
recorded high-resolution videos of 1,463 individually and freely swimming C. intestinalis lar-
vae of which 694 were wild-type larvae swimming in artificial seawater (ASW) and 769 were
incubated with drugs that target different neuromodulators (S1 and S2 Tables).

We then utilized the Tierpsy software [38,39] to extract, in a high-throughput manner, 49
two-dimensional positional coordinates of each of the contours and midlines of each Ciona
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Fig 1. Characterization of C. intestinalis swimming using core features and eigencionas. (A) Schematic of the Ciona Tracker
2.0 video acquisition setup. Each setup was composed of a monochrome camera (C), connected to an extension tube (ExT) and a
magnification lens (L). A holder piece housed an IR filter (IR-F), a set of LEDs and a white light source (WL). The arena was
nested in a PLA ring that housed the infrared lights used for dark field illumination (IR). A plastic underlayer secures the PLA
ring and a thermometer that reports temperature for each acquisition setup. A telescopic plastic cover shields the arena from
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external light sources. (B) An image of the raw data (before processing with Tierpsy) showing a larva swimming in the arena.
The average length of a Ciona was 1,330.61 pm or equivalently 115.10 pixels. (C) Ciona skeletons generated using Tierpsy are
defined by 49 equally spaced points on their midlines. (D) Skeletons were divided into 7 body segments along the length of the
animal. (E) Definition of angles: 01 refers to the tangent angle of a particular segment, Oref refers to the tangent angle for the
head segment (with respect to the horizontal axis). The difference 61-Oref is defined as the relative tangent angle for each
segment. (F) Curvature definition visualization. Curvature is defined as inversely proportional to the radius of the osculating
circle at a given point on the skeleton. Green shows lower curvature and blue shows the centroid of a segment with a higher
curvature. (G-I) Distribution of curvature, relative tangent angle, and speed values for each body segment in wild-type larvae
(n = 694 larvae). (J) Quirkiness is defined as the ratio of the major and minor axes of the body as illustrated. (K) Distribution of
the quirkiness for wild-type larvae (n = 694 larvae). (L) A skeleton with the contour and 49 points are shown as an example.
Curvature values along the 49 points for a set of randomly sampled skeletons show variation in the skeleton postures. (M)
Covariance matrix calculated from curvature values of a subset of wild-type skeletons. The smooth structure of the covariance
matrix indicates that postures can be represented using a small number of eigencionas (n = 231 larvae). (N) Six eigencionas are
sufficient to explain 97% of the variance in the curvature. (O) Visualization of the top 6 eigencionas obtained by an eigen
decomposition of the covariance matrix, shown in descending order of the fraction of the variance explained. X-axis refers to
points along the skeleton. (P) Distribution of eigencoefficient values for wild-type larvae (n = 694 larvae). For statistical analysis,
we first tested for data normality using Shapiro-Wilk test (o = 0.05). To compare between different body segments, we used the
Wilcoxon signed-rank test (o = 0.05) (see S3-S6 Tables for the underlying data).

https://doi.org/10.1371/journal.pbio.3001744.g001

larva, from our videos. This allowed us to approximate all the larvae via the 49 positional coor-
dinates of their midlines (skeletons) during our downstream analysis (Fig 1B and 1C).

Next, we grouped the 49 points identified by Tierpsy into 7 distinct segments ranging from
head to tail (Fig 1D and see Methods). We are more interested in the 6 segments from neck
(N) to tail tip (TT), given that we found that the head segment is rigid (S2A-S2C Fig). We then
defined relative tangent angles for each of these 6 segments relative to the head segment (Fig
1E). The relative tangent angles provide a measure of the orientation of each of the segments
with respect to the head segment. Curvature values, on the other hand, give a quantitative mea-
sure of the local bend at the middle of each of the segments, which is independent of the overall
shape of the larva (Fig 1F). This difference can be seen in the violin plots of Fig 1, where the
wild-type larvae curvature in each of the segments have a similar range of values (Fig 1G),
whereas for the relative tangent angles, the range (variance or spread) of values become wider
as we move away from the neck segment (Fig 1H). The highest mean segment speeds are seen
in the neck region (sN), while the lowest mean speeds are observed at the tail post middle
(sTpoM) and tail tip (sTT) segments (Fig 1I).

We also calculated quirkiness values that give a related measure of eccentricity. A quirkiness
value of 1 would mean that the skeleton has a perfect straight-line shape and quirkiness values
closer to zero would indicate a skeleton where the bounding box (Fig 1]) is nearly a square that
encloses a highly curved animal. The quirkiness distribution of the wild-type dataset is in line
with our empirical observation that the Ciona larvae, while stationary or swimming, primarily
maintain a relatively straight body posture where exaggerated tail bends are rare. These are
reflected in the lower tail of the violin plot (Fig 1K).

While features like curvature and relative tangent angles could describe postures very accu-
rately, the richness in these descriptions comes at a cost of very high dimensionality. Our aim
was to obtain a simpler representation that describes the wide range of postures that Ciona can
obtain as represented by a randomly sampled set of curvature values (Fig 1L) without losing
significant information [40,41]. We initially examined if there are any dependencies or rela-
tionships between the 49 points on the skeleton by looking at the covariance matrix of curva-
ture values from 231 experiments, amounting to over 2 x 10° images or skeletons (Fig 1M). As
expected, this matrix indicates a strong correlation between adjacent points, indicating that
the 49 points do not move independently of each other. We confirmed this by performing
principal component analysis (PCA) in the form of an eigenvalue decomposition of the covari-
ance matrix [41] and found that 97% of the variance observed in the curvature data can be
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explained by 6 eigenvectors (here after termed eigencionas) (Fig 1N). For any given frame in
the video, the curvatures of the skeleton can be approximated as a linear combination of these
6 eigencionas: EC1 to EC6 (Fig 10). Hence, the coefficients (here after termed eigencoeffi-
cients) of these 6 eigencionas were used for further analysis as a simpler but nearly accurate
description of skeleton postures (Fig 1P).

Following the calculation of the biophysical features as described above, we looked at the
statistical differences in each of them across the wild type and drug-treated experimental
groups. We employed different metrics and visualizations for this purpose. First, we used a
summary statistic called standardized median difference (SMD) [42] to compare the distribu-
tions of features obtained from the different drug datasets with our wild-type dataset (Fig 2A).
The SMD values demonstrate that for the segments’ speeds the largest increase is observed
upon treatment with phentolamine, which is an a-adrenergic antagonist and raclopride, a D,
dopamine receptor antagonist, while the largest decrease is observed in animals treated with
imipramine, a potent serotonin reuptake inhibitor (Fig 2A and S7 Table). Our findings using
raclopride are consistent with pervious observations we made in Rudolf and colleagues, where
the dopamine transporter inhibitor modafinil decreased larval swimming speed [43]. For
quirkiness, chlorpromazine, an antipsychotic drug, has the lowest SMD value, while quinpir-
ole, a selective D,/Dj3 receptor antagonist, exhibits the highest SMD value. Multiple drugs
showed an overall increase in body curvature and relative tangent angles across most body seg-
ments. Paroxetine, a serotonin reuptake inhibitor (SSRI) and phentolamine showed the biggest
increase relative to wild type. In contrast, both raclopride and quinpirole showed substantially
decreased values for these features (Fig 2A and S7 Table). These trends are also observed in the
visualizations using split violin plots of the distributions (53-S5 and S6A Figs).

Then, to examine the differences in the eigencoefficient features, we present a bubble grid
chart (Fig 2B) where the hue and radius of the circles respectively represents the mean and the
standard deviation of the distribution. Drug treatments that resulted in statistically significant
changes in EC values are summarized in S13-S15 and S53 Tables. For EC1, phentolamine and
paroxetine have a significantly larger positive mean for EC1, suggesting that the EC1 compo-
nent largely represents the shapes observed in larvae treated with these drugs (S6B Fig and
S13-S15 and S53 Tables). Conversely, for EC2, fluoxetine has a significantly larger negative
mean with high standard deviation (S6B Fig and S13-S15 and S53 Tables). Like EC1 and in
contrast to EC2, EC3 exhibits a very strong positive trend across most drug treatments (S6B
Fig and S13-S15 and S53 Tables) except for a-methyl serotonin and mianserin. Notably, the
largest effects on the EC3 component contribution to skeleton postures were observed in lar-
vae treated with imipramine and raclopride (S6B Fig and S13-S15 and S53 Tables). The
remaining eigencoefficients, EC4 to EC6, show comparatively modest changes in mean values
compared to wild type, except for EC5 in larvae treated with the SSRIs fluoxetine and paroxe-
tine that exhibit a strong reduction in the mean value of the distribution. These trends were
also noted in the visualizations using split violin plots of the distributions (S6B Fig). Overall,
eigencoefficients are good descriptors of skeleton posture, and at least EC1 to EC3 are shown
to be strongly up-regulated and down-regulated in our pharmacobehavioral screen.

Ciona locomotion is rich in behavioral motifs across timescales

To measure the stereotypy and reveal the modular structure in the motor repertoire of Ciona,
we used a multitude of state-of-the-art analytical methods including motif discovery, HMM,
and spatiotemporal embedding into a lower dimensional space. The first approach we took
was that of recurring motif discovery [9,44]. Recurring motifs indicate that some information
is conserved for a system to produce the same output at least twice, in our case, a repeated
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Fig 2. Behavioral barcoding reveals the diverse effects of bioamines in locomotion features. (A) Heatmap showing
SMD of 25 features, calculated for drug-treated larvae relative to wild-type larvae. Working concentrations for all drugs
are shown in Table 1. Note that SMD values for dopamine are calculated relative to an ascorbic acid solution that was
used as a solvent for dopamine (SMD values shown in S7 Table). (B) Bubble grid chart showing effects of drug
treatments in the use of eigencionas by swimming larvae, as quantified by the eigencoefficients. Color of circles
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indicates the mean value of the eigencoefficient features as indicated by the colorbar, while their radius indicates the
variance (please see S8 and S9 Tables and https://doi.org/10.5281/zenodo.6761771 for the underlying data). The
number of animals and video frames contributing to this figure are indicated in S1 and S2 Tables. cN, curvature Neck;
cTB, curvature Tail Base; cTM, curvature Tail Middle; cTpoM, curvature Tail post Middle; cTprM, curvature Tail pre
Middle; ¢TT, curvature Tail Tip; EC1, Eigenciona 1; EC2, Eigenciona 2; EC3, Eigenciona 3; EC4, Eigenciona 4; EC5,
Eigenciona 5; EC6, Eigenciona 6; rtaN, relative tan angle Neck; rtaTB, relative tan angle Tail Base; rtaTM, relative tan
angle Tail Middle; rtaTpoM, relative tan angle Tail post Middle; rtaTprM, relative tan angle Tail pre Middle; rtaTT,
relative tan angle Tail Tip; SMD; standardized median difference; sN, speed Neck; sTB, speed Tail Base; sTM, speed
Tail Middle; sTpoM, speed Tail post Middle; sTprM, speed Tail pre Middle; sTT, speed Tail Tip.

https://doi.org/10.1371/journal.pbio.3001744.9002

behavioral action or state. To perform automated behavioral motif detection, we decided to
use matrix profile, a computational tool that makes it possible to solve the dual problem of
motif discovery and anomaly detection in a time series dataset [45-47]. The main advantages
of matrix profiling are that it is robust, scalable, computationally efficient, and largely parame-
ter free. For our analysis, we have employed the curvatures of the 7 body segment midpoints of
the Ciona larvae. This results in 7-dimensional time series that we used to calculate matrix pro-
files and search for recurring motifs over 2 time windows: 1 second (30 frames) and 5 seconds
(150 frames) to capture both short (spontaneous) and long (sustained) behaviors that repeat
over time (Fig 3A). We identified the motifs over the 2 time windows that resulted in 2 datasets
consisting of a set of 87,569 motifs over 1 second and a set of 18,776 motifs over 5 seconds. In
the 1-second time window, we find repeating motifs that correspond to larvae performing dif-
ferent swimming maneuvers including clockwise (CW) or counter-clockwise (CCW) turns,
straight runs, twitching, rapid accelerations, decelerations, and beat-and-glide, as well as star-
tle-like escape actions (Fig 3B). In the 5-second time window, we found a lot of CW and CCW
spiral swimming, circle swimming, straight runs that conclude in different ways: rapid halt,
swim in a small circle, or perform a spiral swim. Other motifs include drifting, persistent uni-
directional tail flicking, and again startle-like escape actions that take place over a longer time
window (Fig 3C and S1 and S2 Movies).

We then asked whether there are differences between these motifs. Given that our 2 motif
datasets are practically speaking large sets of short 7-dimensional time series, we performed
time series clustering using k-means clustering (TimeseriesKMeans) to identify major groups
to classify our motifs into. We determined the optimal number of clusters to be 15 for each of

Table 1. Working concentrations of drugs used in this study.

Drug

Chlorpromazine hydrochloride
S(—)-Raclopride (+)-tartrate salt
Methiothepin mesylate salt
Mianserin hydrochloride
Fluoxetine hydrochloride
Clompiramine hydrochloride
Imipramine hydrochloride
Phentolamine hydrochloride
Quinpirole hydrochloride
Serotonin creatine sulfate
o-Methylserotonin maleate salt
Paroxetine hydrochloride
Dopamine hydrochloride
L(+)-Ascorbic acid

https://doi.org/10.1371/journal.pbio.3001744.t001

Concentration [pm]

0.1 C8138-5G (Sigma-Aldrich)
0.025 R121-25MG (Sigma-Aldrich)

1 M149-100MG (Sigma-Aldrich)
0.05 M2525-100MG (Sigma-Aldrich)
1 F132-10MG (Sigma-Aldrich)
10 C7291-5G (Sigma-Aldrich)

10 17379-5G (Sigma-Aldrich)

50 P7547-100MG (Sigma-Aldrich)
0.03 Q102-10MG (Sigma-Aldrich)
100 H7752-5G (Sigma-Aldrich)

5 M110-10MG (Sigma-Aldrich)

1 P9623-10MG (Sigma-Aldrich)
0.1 H8502-5G (Sigma-Aldrich)

28 20150.184-100G (VWR)
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Fig 3. Matrix profiling reveals a wealth of stereotyped behavioral motifs. (A) Four representative cases of larval swimming analyzed
using matrix profiling. Curvatures of 7 body segments were used as the input. The matrix profile for each animal is shown as an
additional row at the bottom of each plot (labeled as MP). Each dip marked with a red dot indicates the onset of a motif that recurs in the
dataset. Each motif is color coded according to the cluster it belongs to. (B) Representative examples of motifs that are enriched in the
1-second time window. Color-coded skeletons of the animals plotted in sequence to show time progression (0230 frames, i.e.,
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blue=dred). Enclosed in the blue boxes are example beat-and-glide motifs and in red boxes startle response motifs. (C) Representative
examples of motifs that are enriched in the 5-second time window. Color-coded skeletons of the animals plotted in sequence to show
temporal progression (02150 frames, i.e., blue=>red). Enclosed in a blue box is beat-and-glide motif. (D) Time series clustering of motifs
for 1-second time window and (E) for 5-second time window. In the graphs, each column corresponds to 1 motif cluster, while each row
corresponds to 1 of the 7 body segment curvatures. Each cluster was assigned a color and a letter. Red line in all clusters indicates cluster
center, and the variance is shown as shaded lines. Use of capital letters in (D) and small letters in (E) is done to indicate that these are not
the same clusters. (F) Heatmap visualization of the 1-second time window motif clusters representation (values in % can be found in S16
Table). (G) Heatmap visualization of the percentage fold changes relative to wild type for the data shown in panel F(values in % can be
found in S17 Table). (H) Heatmap visualization of the 5-second time window motif clusters for different drugs (values in % can be found
in S18 Table). (I) Heatmap visualization of the percentage fold changes relative to wild type for the data shown in panel H (values in %
can be found in S19 Table). Drugs that resulted in a statistically significant up-regulation or down-regulation of the usage of 1- and
5-second motif clusters are listed in S54 and S55 Tables, respectively (please see S41-546 Tables for the underlying statistical data).
Dopamine values are compared relative to ascorbic acid and not with wild type. The underlying data, including all individual
observations are available to download from: https://doi.org/10.5281/zenodo.6761771.

https://doi.org/10.1371/journal.pbio.3001744.g003

the time windows (Fig 3C and 3D) using the Elbow method, where we find the maximum of
the second derivative of the curve showing variance explained over cluster numbers. From
these clusters, the following involved actively swimming larvae (1sec: “H1,” “L1,” “M1,” N1;”
5sec: “c5,” “d5,” “j5,” “157), while other clusters (1sec: “Al,” “D1,” “E1,” “G1;” 5sec: “f5,” “g5,”
“h5,” “k5,” “n5”) represent moderately active and (1sec: “B1,” “C1,” “F1,” “I1,” “J1,” “K1,”
“O1;” 5sec: “a5,” “b5,” “e5,” “I5,” “m5,” “05”) represent dwelling larvae. Random sampling of
single-frame skeletons as well as 1- and 5-second long sequences of skeletons revealed behav-
iors that set apart the different clusters (Figs 3D, 3E and S7A-S7D). For example, in the active
clusters, “M1,” we find motifs corresponding to larvae performing sharp CW or CCW turns
with high curvature tail beats, while clusters “L1” and “N1” are enriched in larvae showing
startle-like behaviors and unidirectional tail flicking characterized by asymmetric tail beats.
We were also able to identify biologically interesting clusters within the 5-second time win-
dow, such as active cluster “c5,” which is enriched in CW and CCW circular and spiral swim-
ming motifs as well as straight runs concluding with a circular or spiral maneuver (S7D Fig).
Cluster “d5” is enriched in short range swimming and late onset escape maneuvers (S7D Fig).
Interestingly, while cluster “15” was enriched in motifs where most of the swimming activity
occurred in the first 3 seconds (S7D Fig), clusters “k5” and “n5” were enriched in motifs where
most of the swimming activity occurred within the 2 last seconds of the 5-second time window
(S7D Fig).

For the 1-second time window behavioral motifs belonging to clusters “A1” to “D1,” “F1”
and “K1” are the most frequently identified across the wild-type data (Figs 3F and S7E and S16
Table). This is consistent with our empirical observations that Ciona larvae spend a consider-
able time slowly swimming or staying idle. We then asked how the different drugs we applied
have affected the motif cluster distribution. Raclopride treatment results in a statistically signif-
icant reduction in the representation of cluster “A1” and quinpirole of cluster “D1” (Fig 3F
and 3G and S16, S17, S41-543, and S54 Tables) suggesting that dopamine signaling is impor-
tant for moderately active swimming and dwelling behaviors. Clusters “E1” and “H1” that rep-
resent moderately active and active larvae respectively, show a similar profile in response to
imipramine and methiothepin used in this study (Figs 3F, 3G, S7E, and S7F, and S16, S17,
$41-543, and S54 Tables). Our findings could be explained in multiple ways. The more likely
possibility is that the 2 clusters contain similar motifs or that they are parts of a larger motif
thus they often occur together. Another possibility is that they are generated by a common
underlying cellular and/or molecular mechanism. In sharp contrast, the remaining inactive
clusters “F1,” “I1,” “J1,” and “O1” have little in common in their response across the drug treat-
ments(Figs 3F, 3G, S7E, and S7F and S16, S17, S41-543 and S54 Tables). Among the active
clusters “L1,” “M1,” and “N1” are strongly modulated in the sense that several drugs show
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statistically significant changes in the usage of these clusters relative to wild type (S41-543 and
S54 Tables). Raclopride is the only drug that results in a statistically significant up-regulation
of cluster “M1” indicating that normally dopamine signaling serves to suppress sharp CW or
CCW turns (S41-543 and S54 Tables). Interestingly, fluoxetine shows very strong phenotypes
across most of the 1-second active clusters where it significantly up-regulates cluster “L1” (Figs
3F, 3G, S7E, and S7F and S41-543 and S54 Tables). This suggests that serotonin signaling
likely suppresses startle-like behaviors and unidirectional tail flicking.

In the 5-second time window, we observed a uniform representation of most clusters in
wild-type data, except for the active cluster “j5” (Figs 3H and S7F and S18 Table). What can be
readily appreciated is that most of the motif clusters in the 5-second time window are more
strongly regulated by the drug treatments in comparison to the 1-second time window. Raclo-
pride treatment significantly increased the usage of the moderate activity cluster “f5” (544-546
and S55 Tables). Mianserin, on the other hand, showed a significant redistribution of cluster
usage between the high activity cluster “j5” and the moderate activity “k5” that is enriched in
motifs that show a late onset of swimming maneuvers (544-S46 and S55 Tables).

Ciona motor behavior can be modeled in terms of states and transitions

Having demonstrated that motif identification using matrix profiling is a potent method for
identifying the basic behavioral building blocks of Ciona behavior, we next sought to expand
our work by performing a systematic analysis of the organization of the behaviors that can be
performed by the Ciona larvae. With an underlying assumption that behavior is modular and
can occur across multiple timescales, we modeled our behavioral data with a simple Gaussian
hidden Markov model (G-HMM), which is a state-based statistical model [48]. HMM provides
a dynamical framework to identify the distinct behavioral modules that repeat over time at dif-
ferent timescales [8,49-52]. We implemented a 10-state HMM to model larval swimming
across different experimental conditions (see Methods). We analyzed the means and standard
deviations of the features for each of the states (Fig 4A) to show that the states 8, y, 1, and x
have one or more input features with a distinctively higher standard deviation. This indicates
that the larvae, while in any of these states, take a range of eigencoefficient features [41] and/or
quirkiness, suggesting variation in postures that can be inferred as a result of active swimming.
We then produced animations of skeleton movements in the arena for each of the states (S8
Fig). The animations agreed with our inference that states B, vy, n, and k correspond to active
swimming in the arena.

We also assessed if our model can predict underlying states across experiments and data-
sets. For this purpose, we labeled time series of input features by the inferred state obtained
from the model prediction (Fig 4B). The model suggests that the larvae exhibit intermittent
locomotion with bursts of swimming and substantial periods of dwelling. Using the inferred
HMM states, we visualized the trajectories of the neck point along the arena for different
experiments (Figs 4C and S9S-S9V). Importantly, these visualizations highlight a new behav-
ior that resembles the beat-and-glide behavior observed in zebrafish larvae [53]. This is an
intermittent form of swimming defined by tail beating followed by gliding during which the
tail remains relatively motionless either straight or with a small amount of curvature. State “n,”
which is one of the actively swimming states, is the dominant “beating” state that is followed
by one of the multiple gliding states “a.,” “3,” “C,” “1.” This set of skeletons shows that the range
of postures within each of the states is highly consistent. For example, states “o.,” “3,” “e,” “C,”

« _»

“0,” and “” represent different idle phases each with unique skeleton shapes. For states “o

and “e,” the sampled skeletons are close to a straight line, which reaffirms the observation in
Fig 4A, where they have the highest quirkiness values with negligible variance suggesting that
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Fig 4. HMM analysis reveals that behavioral transitions in Ciona are modulated by bioamines. (A) Plots summarizing the
observation probability distributions defined by the HMM model. For each of the states (horizontal axes), the mean of Gaussian
distributions of each of the 7 input features is plotted along the vertical axes. The variance of the distributions is indicated by the
error bars (underlying data can be found in $20-522 Tables and https://doi.org/10.5281/zenodo.6761771). (B) HMM segments
and clusters a time series into modules by identifying the underlying state for each time point in the series. On the top,
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eigencoefficient EC1 (a time series) of a larva swimming is annotated with the different HMM states (uniquely color coded)
identified in our analysis. (C) Two example tracks of the neck point of larvae in the arena colored according to the behavioral
state identified by HMM. (D) Postures/skeletons were randomly sampled 90 skeletons from the dataset for each of the 10
different HMM states, aligned such that the neck points coincide and are collinear with tail-ends on a vertical line. (E) Heatmap
visualization of the effects of drug treatments on the HMM-derived behavioral states (values in % can be found in 523 Table).
(F) Heatmap visualization of percentage fold changes relative to wild type for the data shown in panel E (values in % can be
found in $24 Table). Dopamine values are compared relative to ascorbic acid and not wild type. Drugs that resulted in a
statistically significant up-regulation or down-regulation of the usage of HMM states are listed in S56 Table. (G-R) Chord
diagrams showing HMM-derived behavioral state transitions for wild type and drug-treated larvae. Chord diagrams are
presented in such a way that transition to all other states with probabilities greater than 0.001 are shown. Underlying data can
be obtained from https://doi.org/10.5281/zenodo.6761771. EC1, Eigenciona 1; EC2, Eigenciona 2; EC3, Eigenciona 3; EC4,
Eigenciona 4; EC5, Eigenciona 5; EC6, Eigenciona 6; HMM, hidden Markov model.

https://doi.org/10.1371/journal.pbio.3001744.g004

these states do not correspond to active swimming. Similarly, another trend revealed by our
analysis is that skeletons belonging to states “B,” “C,” and “t” are curved toward the left side of
the vertical axis in Fig 4D and have higher values of EC1 feature. The wide range of skeleton
shapes in state “n” (Fig 4D) agrees with the fact that active swimming and exploration of the
arena would require the larva to take different postures at various stages within a single cycle
of swimming motion. This is also confirmed by lower mean values of quirkiness for state
(Fig 4A).

Using the results from HMM, we examined how the distribution of distinct behavioral
modules varies across the different drug treatments by calculating the percentage of represen-
tation of each of the states for different drug datasets. For example, we found that in fluoxe-
tine-treated animals, states “o” and “x” are significantly overrepresented in comparison to the
wild type (Fig 4E and 4F and S23, S24, S47-549, and S56 Tables). The active state “y” was sig-
nificantly up-regulated in several pharmacological treatments that block serotonin signaling
including the SSRIs paroxetine and imipramine. This suggests that serotonin is an important
signaling molecule for regulating active behavioral states. Compared to wild type, raclopride
had a significantly decreased the representation of state “o.” indicating that dopamine exerts an
opposite effect to serotonin in the regulation of this state (Fig 4E and 4F and 523, 524, S47-
$49, and S56 Tables).

Similarly, the transition probabilities obtained from an HMM allows us to look at how dif-
ferent drugs affect the transitions from one behavioral state to another. This is visualized using
chord diagrams (Figs 4G-4R and S9A-S9C) and Markov transition graphs (S9D-S9R Figs).

” and “n” were the most

« »

prevalent, forming a core transition module. Beyond this core module, active state “k” acts as a

We found that in wild-type animals, transitions between states “B,” “y,

“transit hub” for most behavioral state sequences that occur at a lower frequency. Importantly,
state transitions do not occur in an all-to-all fashion (Figs 4G and S9D). For example, state “5”
interacts exclusively with state “y” (S9D Fig). Our wild-type data suggest that certain states can
interface with multiple other states, while other states may be more exclusive in their interac-
tions. We found that the number of state transitions and the plausible pairwise combinations
are sensitive to pharmacological treatment. Our chord diagrams and transition graphs reveal
that clomipramine and imipramine reduce the transitions between behavioral states (Figs 4K,
4N, S9K and S9L). Conversely, fluoxetine and phentolamine result in an increase of transitions
among behavioral states (Figs 4H, 41, SOE and S9]). The “B” «—— “y” “n” «—— module is pre-
served across all pharmacological treatments, and the same holds true for a number of state
transitions (e.g., “a”-“k,” “€”-“k,” “n”-“0”); however, other transitions show drug-dependent
“plasticity” (e.g., “y”-“3,” “B”-“1,” “o”-“€”). For example, state “5” is solely interacting with the

active state “y” in the wild-type dataset (S9E Fig). Some drug treatments such as imipramine
strengthen the transition between these 2 states (Figs 4F and S9L). However, in o-
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methylserotonin-treated animals, “3” interacts with state “6” in (S9I Fig) or “n” in the case of
clomipramine treatment (S5N Fig). Notably, we found that “5” is not limited to interacting
with 1 state but it can interact with multiple transition partners as observed in a subset of drug
treatments (S9F, S9G, S9J, S9K, SON-S9P, S9R and S9S Figs). Additionally, inferences can be
made by combining the information from the percentage representations of states and the

« _»

chord diagrams. For example, state “o” does occur at a very high percentage in larvae treated
with fluoxetine; however, it can be seen from the chord diagram that the transition from “o”
state occurs very rarely in these larvae, which indicates that they tend to stay idle and locked

« »

into state “o” for a long time.

Low-dimensional spatiotemporal embedding identifies stereotyped actions
in swimming larvae

While we have made assumptions that behavior is organized with units of repeated motifs
(matrix profiling) or modules with Markov transitions (HMM), we wanted to additionally
adopt a complementary approach aiming to uncover new structures in our behavioral data.
For this purpose, we employed an approach similar to Berman and colleagues [7] to reveal ste-
reotyped behaviors exhibited by the Ciona larvae.

For this approach, we used as the input the 6 eigencoefficient features [41] from a subset of
the wild-type data where it was sampled based on speed (Fig 5A). The sampling was performed
to ensure that the actively swimming epoch is well represented. First, to encode the temporal
information such that clustering is applicable, we created a 180 dimensional feature set by
computing the wavelet transformation of 6 eigencoefficient features at 30 different frequencies
or scales (Fig 5B). Wavelet transformation allows us to create for each time point a feature that
has information about its surrounding time points built into it, thereby creating a feature set
where temporal information is preserved.

Next, to obtain a lower dimensional behavioral space from this feature set, we used t-dis-
tributed stochastic embedding (tSNE), which provides an embedding in which local structure
is retained unlike many other dimensionality reduction techniques (Fig 5C). This embedding,
which we can think of as the larval behavioral space, was then clustered using the DBSCAN
algorithm (Fig 5D). We identified 6 distinct clusters corresponding to different stereotyped
behaviors (Fig 5D). The DBSCAN, our algorithm also learned an additional outlier class that
corresponded to less than 0.001% of the data points where cluster assignment was ambiguous
(shown in blue in Fig 5D).

Our results show that the clusters identified by this method are coherent across datasets.
For example, cluster 1 represents video frames where the larva is actively swimming and
exploring the arena. This can be seen in the trajectories of the neck point across 2 different
experiments where cluster 1 (orange) dominates the phases when there is movement across
the arena (Fig 5E). On the contrary, cluster 2 (green) represents phases where the larvae were
gliding in the arena (Fig 5E). By inspecting a number of animal trajectories, we were able to
identify instances of beat-and-glide behavior like those observed using the HMM method. We
provide further confirmation that the clusters we identified are coherent by randomly sam-
pling skeletons across experiments for different clusters and plotting them such that the neck
point and the end point are aligned on a vertical axis (Fig 5F). Here, cluster 2 has the least vari-
ations in the skeleton postures it represents. In addition, examining the trajectories and snip-
pets of animations of skeleton movements uncovered that cluster 3 (red) represents sharp
turns associated with transitions from a gliding phase (for example, cluster 2) to an actively
swimming behavior (for example, cluster 1) (S10 Fig). In addition, from a detailed inspection
of trajectories of the skeleton in the arena, we have identified that clusters 5 (brown) and 6
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Fig 5. Spatiotemporal embedding uncovers the influence of neuromodulators on stereotyped behaviors. (A) We used the 6
eigencoefficients we previously obtained to define a 6-dimensional input feature space. (B) We computed wavelet transforms of
these features over 30 frequencies for the wild-type dataset. Wavelet transform of the 6D eigencoefficient time series of panel A
shown. (C) Dimensionality reduction was applied using tSNE to embed the 180-dimensional wavelet features into a 2D space of
behavior. (D) We then used the DBSCAN algorithm to cluster into regions based on their density. (E) Examples of neck point
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tracks for larval swimming labeled according to cluster identity. (F) Examples of skeletons aligned to the neck for each of the
clusters. (G) Heatmap visualization of the effects of drug treatments on cluster usage (values in % can be found in S25 Table). (H)
Heatmap representation of the percentage fold change relative to wild type for the data shown in panel (G) (values in % can be
found in S26 Table). In panels G and H, dopamine values are compared relative to ascorbic acid. (I-P) 2D tSNE embedding of
wild type and different drugs. The color is showing the density with which the different clusters are occupied (blue being lower
and red higher). Underlying data can be obtained from https://doi.org/10.5281/zenodo.6761771.

https://doi.org/10.1371/journal.pbio.3001744.9005

(magenta) represent swimming with lower speeds compared to the higher speeds exhibited by
clusters 1 (orange) and 4 (purple). A similar trend can be seen in Fig 5F where the former clus-
ters have a narrower range of postures in comparison to a wider range of skeleton postures
exhibited by the clusters 1 and 4.

Subsequently, we trained a kNN classifier on the clustering results and used this classifier to
assign cluster membership to datapoints from the drug-treated dataset. This approach lets us
compare how larvae across different experimental groups utilized the behavioral space (Fig 5G
and S25 Table). In comparison to wild type, o-methyl serotonin-treated larvae utilized active
swimming cluster 4 (purple) to a significantly lower extent (Figs 5G, 5H, 61-6P, S10G, and
S10H and S25, S50-S52, and S57 Tables). Cluster 1 usage was significantly up-regulated by
raclopride and a-methyl serotonin (Figs 5G, 5H, 6], 6P, S10], and S6M and S20, S45-547, and
S52 Tables). In contrast, the antidepressant methiothepin showed a substantial reduction of
cluster 1 (Figs 5G, 5H, 6K, 6L, 6N and 60 and 525, S50-S52, and S57 Tables). Sharp turns that
occur when larvae transition from idle to swimming that correspond to cluster 3 are signifi-
cantly up-regulated by imipramine and o-methyl serotonin (Figs 5G, 5H, and S10] and S20,
S50-S52, and S57 Tables).

Finally, we mapped the transition probabilities between the behavioral clusters that allowed
us to get insight into the organization of larval behavior. For example, we could infer that
wild-type larvae executing the beat-and-glide behavior have multiple intermediate cluster
options to transition from a “beating” phase (dominated by cluster1) to a “gliding” phase (clus-
ter 2). However, exit from the gliding phase to the beating phase (in this case, primarily clusters
1 and 4) preferentially occurs through cluster 3, which is characterized by an asymmetrical
swimming movement (S11A Fig and S3 Movie). The 2-?3 and 3-?4 transitions are “resistant”
to almost all pharmacological perturbations, except for 3=>4 in chlorpromazine animals. How-
ever, the 3-21 transition statistics are subject to modulation but several drugs affecting seroto-
nin, noradrenaline, and dopamine signaling (S11F, SIIH-S11K and S11N Fig). Additionally,
pharmacological treatments can establish new interactions between clusters (e.g., 5-4) (S11F
and S11K Fig). These illustrate that Ciona locomotion has a certain degree of hierarchy and
organization and that some of the transitions could be at least in part controlled by bioamine
signaling.

Light stimuli modulate postural dynamics and behavioral space occupancy

In addition to pharmacologically inhibiting bioamine neurotransmission, we sought to address
how the presentation and removal of sensory cues such as light affect larval swimming
behaviors.

Previous work has shown that ascidian larvae exhibit a shadow (i.e., looming-object escape)
behavior as well as positive and negative phototaxis to white light [54-57]. Furthermore, it has
been demonstrated that Ciona larvae can sense and respond to different wavelengths of light
[58,59]. Interestingly, Nakagawa and colleagues have shown that the strength of the step-down
(light off) response is dependent on the wavelength of light that was used [59]. Motivated by
these studies, we examined how motor behavior changes when the larvae enter and exit a
shadow stimulus period using white light as well as blue, green, and red light stimuli. Our
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Fig 6. Postural dynamics and behavioral space occupancy are modulated by different light stimuli. (A) Design of
the light stimulus: A 60-second long window of stimuli is presented at the 30th second of the experiment. Different
types of light stimuli are used, namely red, green, blue, and white. We observe the changes at light ON event by
comparing a 10-second window before the event (before light ON) and a 2.5-second long window after 0.5 seconds of
the onset of light ON (after light ON). Similarly, we define 2 windows before and after the light OFF event to study the
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changes in behavior when the animal exits the stimulus period. (Number of animals and frames used to generate this
figure are indicated in S1 and S2 Tables.) The properties of the LEDs we used are shown in Table 2. (B) Effect of light
ON event in the different biophysical features for each of the 4 stimulus types. The effect is measured in terms of the
SMD in the feature values between the “before light ON” and “after light ON” intervals. (SMD values are shown in S27
Table.) (C) Effect of switching OFF the different light stimuli in terms of SMD is presented, similar to B (SMD values
are shown in $28 Table). (D-G) 2D density plots showing the change in the pattern of occupancy of the 2D behavioral
space across different stimuli before and after the light ON and OFF events. Boundaries of the 6 DBSCAN clusters are
also shown on the plots (2D density plots for each stimulus individually are provided in S14 Fig). Underlying data can
be obtained from https://doi.org/10.5281/zenodo.6761771. cN, curvature Neck; cTB, curvature Tail Base; cTM,
curvature Tail Middle; cTpoM, curvature Tail post Middle; cTprM, curvature Tail pre Middle; ¢TT, curvature Tail Tip;
ECI, Eigenciona 1; EC2, Eigenciona 2; EC3, Eigenciona 3; EC4, Eigenciona 4; EC5, Eigenciona 5; EC6, Eigenciona 6;
rtaN, relative tan angle Neck; rtaTB, relative tan angle Tail Base; rtaTM, relative tan angle Tail Middle; rtaTpoM,
relative tan angle Tail post Middle; rtaTprM, relative tan angle Tail pre Middle; rtaTT, relative tan angle Tail Tip; SMD;
standardized median difference; sN, speed Neck; sTB, speed Tail Base; sTM, speed Tail Middle; sTpoM, speed Tail post
Middle; sTprM, speed Tail pre Middle; sTT, speed Tail Tip.

https://doi.org/10.1371/journal.pbio.3001744.9006

SMD feature values reveal that once the larva enters the stimulus period, for a 2.5-second time
window, the swimming speed decreases significantly when compared to a 10-second window
defined before the stimulus period (Fig 6A and 6B and S27 Table). Removal of the stimulus
gives rise to an opposite effect. A significant increase in speed is shown via the SMD speed val-
ues, in a 2.5-second window after the larva exits the stimulus period, when compared to a
10-second window during the presentation of stimulus period (Fig 6A and 6C and S28 Table).
We show a similar trend for SMD relative tangent angle values (Fig 6B and 6C).

We additionally demonstrate a difference in responses across different light stimuli types:
red, green, blue, and white. The differences in SMD speed values are significant for white light
in both switching ON and switching OFF the stimulus (Figs 6B, 6C, S12, and S13 and 529-536
Tables). Blue light has a significant effect while switching ON the light (Figs 6B and S12) but a
smaller effect when switching OFF the stimulus (Figs 6C and S13). On the contrary, the effect
of red light while switching OFF the stimulus is larger than during switching ON (Figs 6B, 6C,
S12 and S13).

We then asked whether the presentation and removal of different color light stimuli influ-
ence the behavioral space explored by the larvae. As expected, the presentation of a light stimu-
lus (ON) reduces the use of the active clusters in favor of the lower activity clusters 2 and 6 for
white light stimulus (Figs 6D, 6E, S14D, and S14H and S32 Table). However, there seems to be
light color-specific use of clusters. For example, in contrast to the white light ON period, dur-
ing the red light ON period slow swimming behaviors under cluster 6 are not used. Our data
suggests that the larvae gradually adapt to the continuous presence of the light stimulus espe-
cially in response to green and blue light as is evident from comparing the tSNE plots immedi-
ately after the onset (Figs 6E, S14E, and S14F) and prior to the end of the light stimuli (Figs 6F,
S14I, and S14J). Subsequent removal of the light stimulus causes the larvae to increase their
swimming activities and thus reuse the higher activity clusters of the behavioral space (Figs 6G
and S14M-S14P).

Discussion

Motion tracking and comprehensive feature extraction at high-throughput,
resolution, and reliability

In this work, we have characterized the feature-rich swimming behaviors of the protochordate
C. intestinalis at an unprecedented level of detail. Previous behavioral studies from ours and
other groups that investigated locomotion in Ciona [43,55,59-67], Oikopleura and amphioxus
(reviewed in [20]), have been challenged by the lack of advanced tracking and analysis
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methods, resulting in a limited quantitative characterization of the structural organization of
the invertebrate chordate’s motor behavior. For example, in our previous study (Rudolf and
colleagues [43]) where we quantified larval behavior by estimating the position of its centroid
(i.e., the center of mass), we were just able to obtain the centroid trajectory and speed of each
larva in the arena. Such coarse tracking was sufficient to make meaningful comparisons of the
swimming paths of the larvae and it allowed us to study how different rearing conditions (e.g.,
temperature) affect the basal behavioral repertoire of the animal. However, a major limitation
of our previous study was that centroid tracking does not capture the larval body posture. Pos-
ture information, which includes the body midline, can be used to detect behaviors that might
not be discernible from mere centroid data. In addition, postural features such as curvature
can be used to reveal subtle phenotypes in biological relevant senses such as proprioception
that would be impossible to quantify relying exclusively on centroid information. Thus, a
major technological advancement of this work is the utilization of the lengthwise midline of
the larvae obtained using the Tierpsy software [39], at high-throughput and reliability over the
entire duration of the larval swimming videos. Through this approach, we measured biophysi-
cal features such as segment speeds, curvatures, and tangent angles, classically important
parameters for describing motor behavior that were not available to us when we used centroid
tracking [43]. In addition, we have derived a dimensionality reduced representation of Ciona
body postures that we term “eigencionas.” We show that just 6 basic shapes (eigencionas) can
be combined in different proportions to reconstruct almost the entirety (approximately 97%)
of Ciona postures during swimming. The use of eigenvectors as lower dimensional representa-
tions of posture has been well established in C. elegans [9,41,68,69], Drosophila [70,71], and
zebrafish [72,73]. We believe that analogous to what has been done in these mainstream model
organisms, eigencionas will be widely employed in future behavioral analyses in Ciona and
other ascidians.

Behavior is a highly dynamic phenomenon that entails changes to an animal’s posture over
time. The realization that a major fraction of animal locomotion is low dimensional and ste-
reotyped has sparked the development of multiple approaches to quantify stereotyped behav-
ioral dynamics across several model organisms (reviewed in [3-5]). Our study is one of the
few to the best of our knowledge to use multiple complementary approaches that impose a
modular structure on the behavioral dynamics of Ciona.

Motif analysis enables generation of a multiscale dynamic behavioral
representation

Our first method searched for and extracted motifs from tracking data to generate a dynamic
multiscale representation of Ciona motor behavior. Comprehensive inspection of the plethora
of identified motifs has highlighted that existing manual approaches would most likely over-
look motifs that represent subtle or apparently irregular yet repetitive behaviors. For example,
in comparison to our findings in Rudolf and colleagues [43], our present study identifies some
common behaviors (e.g. “twitching”); however, the current work has exposed the previously
underappreciated wealth of CW and CCW exploratory swimming maneuvers, which may
reflect the asymmetry of motor pathways in the Ciona larval connectome [21]. In addition,
here we discover a novel startle-like maneuver, which may be associated with a pair of
descending decussating neurons (ddNs) found in the motor ganglion. ddNs’ ultrastructure,
network connectivity, and synaptic connections have been elucidated in a recent study that
has postulated that this neuron pair show network homology to vertebrate reticulospinal neu-
rons and that their synaptic connectivity resembles that of the Mauthner cells [22], which
underlie fish startle responses [74,75]. Indeed, we demonstrate in this work that serotonin
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suppresses startle-like behavioral maneuvers. In line with this result, serotonin has been shown
to regulate startle responses in zebrafish [76]. Our findings thus suggest that motor behavior as
well as the underlying molecular and cellular players is conserved across invertebrate chor-
dates and vertebrates.

Model fitting preserves temporal component to expose motor modules and
transitions

To further examine the modularity and transition structure in Ciona behavioral dynamics
across diverse spatiotemporal scales, we have built an HMM. Using HMM, we have shown
that Ciona larval locomotion can be decomposed into multiple distinct stereotyped locomotor
states that can occur over a wide range of spatiotemporal scales. This framework provides the
first probabilistic model (in terms of Gaussian distributions) for each of the distinct motor
behavioral states of the Ciona larvae.

Despite a relatively simple nervous system equipped with a minimal number of neurons
that make up the motor circuit [21,22], Ciona larvae exhibit multiple locomotor modes. In
Rudolf and colleagues, we made a first attempt to generate a simple ontology of behavioral
modes of swimming using agglomerative clustering of a minimal feature set based on centroid
velocity vectors [43]. However, a confounding factor of the study was the lack of postural
information, which would have enriched our dataset significantly. In addition, in contrast to
our current study in Rudolf and colleagues, we were not able to explore the transition dynam-
ics between different behavioral modes. The work presented here has identified different low
activity states that are distinguishable by different resting postures adopted by the larvae and
high activity states with distinctive swimming speeds and bending asymmetries. Interestingly,
we found that most of the low activity states exhibit unilateral (either left- or right-handed) tail
bending/flicking, while 1 active state shows unilateral tail bending. Sided flicking and swim-
ming are likely generated by asymmetries in sensory input to the motor ganglion of the larva
as suggested by the Ciona larval wiring diagram [21]. In addition, we have identified a new
behavior that shows strong similarity with the beat-and-glide behavior that zebrafish larvae
perform [53]. In zebrafish, there are suggestions that this behavior is at least in part by dopa-
mine [77,78]. Our findings indicate that both serotonin and dopamine are important for exe-
cuting this behavior. From an evolutionary perspective, it would be interesting to determine
whether other invertebrate chordates such as amphioxus and Oikopleura doica are able to per-
form a beat-and-glide-like behavior and to which extent this behavior may be under the con-
trol of the same or different neuromodulators across chordates.

Another key feature of HMM is the ability to describe the organization of behavior across
time in terms of transition probabilities. The transition structure in wild-type behavioral
sequences revealed a core module composed of 2 asymmetric slow swimming states and an
active symmetric swimming state that is dominant during exploratory behaviors. It also identi-
fied an active state (“k”) that acts as a hub for the less frequent transitions that occur between
states outside this core module. Importantly, the time spent by a larva in each behavioral state
and the transitions between states appear to be modulated by bioamines.

Construction of a Ciona larval locomotor behavioral space

In parallel to employing the above methodologies, we have implemented a spatiotemporal
mapping approach similarly to what has been used in mapping complex behavioral responses
in Drosophila and mice [7,79,80]. Here, we present 6 annotated clusters of different behaviors
that segregated to the different regions of the map.
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Interestingly, as with the HMM method, the beat-and-glide behavior is also identifiable
using the spatiotemporal mapping approach. Due to the smaller number of clusters generated
by the latter method, it has been more straightforward to visually infer the cluster usage and
the key transitions between clusters that are required to generate this behavioral maneuver.

In addition, using behavioral mapping, we could visualize behavior as a trajectory across a
manifold and examination of the dynamics of the same. In this behavioral space, spontane-
ously swimming Ciona larvae can “navigate” between the 6 behavioral islands of stereotyped
behaviors in defined manners. This approach has been particularly informative in the light sti-
muli experiments, where we demonstrate that the behavioral responses and adaptation
observed in response to different light color stimuli do not result in global changes in the
underlying spatiotemporal structure, but rather they arise from the selective use of modules
and changes in the transition statistics. This suggests that the larval brain can alter the use of
individual modules and the transition statistics to generate responses to novel situations (e.g.,
sudden presentation of a sensory stimulus). This is likely a conserved strategy among inverte-
brates and vertebrates used to produce complex behavioral actions in response to sensory cues
[8,81].

The proto-hypothalamic territory of Ciona may influence transitions
between different behaviors using bioamines

As a result of the multiple analytical methods we have employed in our study, we have broken
down relatively complex larval behaviors to simpler modules that can be assembled in different
sequences to generate diverse behavioral output that is likely modulated by internal state
changes during spontaneous swimming or in response to sensory cues, in our case different
light stimuli. This strategy has been observed across vertebrates and invertebrates [6,82]. We
demonstrate here that bioamines contribute to the modulation of the transition statistics and
overall time spent in different forms of active exploratory swimming and locomotor periods
defined by distinct forms of dwelling, gliding, and slow swimming. This is likely an evolution-
arily conserved function [37,83]. Dopamine promotes dwelling, gliding, and slow swimming
states, a phenomenon that has been observed in a number of organisms including zebrafish
and xenopus [78,84]. On the other hand, serotonin and noradrenaline promote active explor-
atory swimming rich in CW and CCW turns. Notably, in mammals arousal and waking states
are stimulated by serotonin and noradrenaline [85].

An obvious question that arises from our study is which cells and anatomical structures in
the tadpole brain use bioamines to modulate the composition and organization of the larval
behavioral repertoire? The dopaminergic cells are composed of a single-cell cluster called the
coronet cells, which have been characterized molecularly and homologized to the vertebrate
hypothalamus [60,86-89]. The same cells express the serotonin transporter (CiSERT) [60],
though the rate limiting enzyme in serotonin synthesis tryptophan hydroxylase (TPH) is
expressed in the vicinity of the motor ganglion and tail muscles [90]. Given that the vertebrate
hypothalamus is also capable of modulating behavioral states by the secretion of neuromodula-
tors [91,92], it is likely that Ciona’s proto-hypothalamic structure shares not only molecular
but also functional similarities with its vertebrate counterpart.

Comparison of complementary computational ethology methods used to
quantify the behavioral repertoire of Ciona
Our first approach to this problem was to search in the data for highly repetitive fixed-length

subsequences that the larvae employ to explore the arena. To this end, we searched for highly
repeated fixed-length subsequences (motifs) in the dataset using matrix-profiling. Matrix-
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profiling enables us to capture such motifs at predefined timescales in a computationally scal-
able and efficient manner. We employed it to find highly recurring behavioral motifs in 1-sec-
ond and 5-second intervals across individuals and experimental conditions. Thus, the method
allowed us to screen our large dataset for existence of motifs.

In our second approach, we used HMM so that we can find motifs across timescales, with-
out being limited to pre-set intervals, which is an advantage over our matrix-profiling
approach. Also, unlike matrix-profiling, which provides limited information about the non-
motif regions, HMM allows to model and infer the underlying state of the animal at any point
of time.

In our third approach, we examined if behavior could be modeled as a trajectory in a low-
dimensional space, as suggested by Berman and colleagues [7]. This approach using wavelet
transforms and t-SNE provided us the flexibility to sample the original input space such that
different activity levels (defined by speed) are given uniform representation so that the low-
dimensional space is not skewed by the low activity (dwelling) phase. Also, determination of
the number of clusters (DBSCAN) is more verifiable since the behavioral space and the clusters
can be visualized.

From an ethological point of view, all 3 approaches revealed the presence of a beat-and-
glide-like behavior; however, only motif analysis uncovered that Ciona larvae exhibit a startle-
like behavior. Gliding, active exploratory swimming, low speed swimming characterized by
different extent of tail bending, and asymmetric active swimming are detected across all 3
methods; however, it is through motif analysis that we can best visualize the diversity of asym-
metric maneuvers that can be performed by the larvae.

Drug treatments targeting bioamine signaling resulted in statistically significant changes in
the representation of the clusters or states across all 3 approaches. The 1-second motif clusters
and the HMM states were significantly up-regulated or down-regulated by a larger number of
drug treatments compared to 5-second motif clusters and spatiotemporal embedding-derived
clusters.

In sharp contrast to motif analysis, HMM and spatiotemporal embedding are suitable for
revealing the stereotypy of the transitions that occur between different motor modules. While
there is a discrepancy in the number of states (HMM = 10) and clusters (spatiotemporal
embedding = 6), we still find some similar transition modules such as the “B” «—— “y” «——
“n” (HMM) and the “2” «—— “3” «—— “1” (spatiotemporal embedding). Drug treatments
altered the transition probabilities between different behavioral states or clusters, though a
clear limitation in our approach is the fact that it is challenging to directly compare the effects
of the drugs on transition probabilities across the 2 different methods (HMM and spatiotem-
poral embedding).

Summary and outlook

This study shows that Ciona locomotor behavior is complex and flexibly structured, especially
when we consider that the larval nervous system is equipped with less than 250 neurons. This
complexity in behavioral output is likely conserved across tunicate larvae as indicated by ear-
lier findings from 2 different tunicate clades the Aplousobranchia [56,93] and Appendicularia
[20].

Our findings on the role of dopamine signaling in locomotion corroborate our earlier
observations from Rudolf and colleagues where we showed that dopamine signaling is respon-
sible for promoting low behavioral activity and reducing swimming speed [43]. Due to the
higher-throughput and resolution of this study, we were able to provide additional insight on
the role dopamine in regulating larval behaviors and to extend our study to serotonin and
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noradrenaline signaling. We have discovered that these bioamines play a major role in the
observed complexity and flexibility of the locomotor repertoire by modulating postural fea-
tures, behavioral modules, and their transitions, during spontaneous swimming and in
response to sensory stimulation. This is in line with studies across invertebrate and vertebrate
species, suggesting that bioamines have an evolutionarily conserved functional role in modu-
lating locomotor behaviors [30,35-37,52,83,94-96]. Future studies, combining our behavioral
analysis pipeline, functional imaging, and genetic mutants for key genes involve in bioamine
signaling will enable us to obtain a systems level understanding for the role of bioamines in
modulating neural activity and behavior in Ciona.

While modern neuroscience has strongly benefited from the classic model systems, recent
technological developments have encouraged the expansion of functional studies to nontradi-
tional models [18,97].

We have now established a framework for a higher-throughput yet higher-resolution dis-
section of the behavioral repertoire of Ciona. Our experiments reveal that the analytical
approaches we have taken are capable of systematically capturing known and new behaviors
that were unidentified previously. The high sensitivity of our approach can be leveraged for
extracting subtle phenotypes and mapping the contribution of individual neurons and mole-
cules to behavioral structure through chemogenetics and genome editing. Ultimately, Ciona
may serve as a key organism to identify evolutionary constraints and flexibility at multiple lev-
els of behavioral organization and reveal fundamental principles of how molecules, neurons,
and circuits generate the chordate behavioral repertoire.

Methods
Animal collection and rearing conditions

Gravid adult C. intestinalis were collected from the following site in Bergen: Dgsjevika, Bildoy
Marina AS, postcode 5353, Norway. The GPS coordinates of the site are as follows: 60.344330,
5.110812. Animals were kept in a purpose-built facility at 10°C with a pH of 8.2 under constant
illumination. Fertilization and embryonic development conditions were as previously
described [43]. Age distribution of the larvae we assayed in terms of hours post hatching is
indicated in S15 Fig.

Egg fertilization, embryo, and larval rearing conditions

Egg collection, fertilization, and rearing were done following standard methods [98] with the
exception of the rearing temperature that was set to 14°C. Briefly, at least 2 healthy and gravid
animals were used to extract sperm and chorionated eggs. Activated sperm was mixed with eggs,
and these were kept together for 10 to 15 minutes. Once fertilized, the eggs were washed multiple
times and split into three 9-cm petri dishes (SARSTEDT 82.1473) coated with agarose (Invitro-
gen, Ultra-Pure Agarose 16500-500). These plates were placed in a 14°C incubator, and develop-
ment of the embryos was monitored regularly until the onset of hatching, which occurred
approximately 36 hours post fertilization. Throughout the experimental day, hatched larvae were
kept at 14°C. The average size (length) of the larvae used in our experiments was 115.10 pixels or
equivalently 1,330.61 pm. We obtained larval length measurements from randomly selected skel-
etons across multiple videos, and we confirmed the measurements using Image].

Experimental setup

Each Ciona Tracker 2.0 is built using a DMK 33UP1300 (Imaging Source) coupled to an
MVL75M1 lens and 2 C-mount extensions CML10 and CML25 (Thorlabs). To print the
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custom-made parts of the behavioral setups, we used a Weistek WT280A 3D printer. Using
multiple 3D-printed PLA moulds, we made agarose arenas. In brief, we filled a 35-mm petri
dish (SARSTEDT 82.1135.500) with 9 ml of 0.8% agarose in ASW. While the agarose was still
warm, we placed the 3D-printed moulds into the agarose-filled petri dishes and waited until
the agarose had settled. At that point, we removed the mould and cleaned any spill overs of
agarose. The agarose arenas were then hydrated with ASW. The resulting circular arenas had a
diameter of 10 mm and a depth of 3 mm. The approximate volume of the arena was 240 mm”.
Note that while the animals are not constrained in 2D, the depth of the well (3 mm) is limiting
the third dimension (depth) available to the animal. New arenas were prepared every day. The
arena was nested inside a PLA ring with infrared LEDs (IR, peak emission 850 nm). These
LEDs provided dark-field illumination of the animals while preventing stimulation of their
photoreceptors. The illumination ring and the arena were rested on an underlayer that also
hosted a waterproof thermometer model DS18B20 (Maxim Integrated). Videos were recorded
using the IR sensitive monochrome DMK33UP1300 camera. An Arduino-based circuit, inter-
facing with a GUTI written in Python provided light stimuli, PID-temperature control, and cap-
tured video stream. The software controlling all functionalities of the setup is available on
GitHub: https://github.com/ChatzigeorgiouGroup/immobilize. Further information including
STL-files for 3D-printed components and schematics for the electronics can be found in our
Github: https://github.com/ChatzigeorgiouGroup/imMobilize/tree/master/Hardware. Indi-
vidual Ciona larvae were filmed using an array of 5 modular Ciona Tracker 2.0 systems. These
5 trackers were housed in a temperature-controlled incubator (SANYO, Medicool) that main-
tained a constant temperature of 14°C.

Experimental procedure

The experimental procedure in this study is largely based on the methodology employed by
Rudolf and colleagues [43]. Agarose arenas were prepared fresh every evening for the next
day’s experiments. This was primarily done so that once the agarose had solidified, and the
mould was carefully removed the arenas could be firstly inspected for structural defects (these
typically could be air bubbles trapped in the agarose, broken/collapsed arena edges), and then
they were hydrated overnight at 14°C with ASW to minimize the chances of dried out arenas
that would affect the quality of the recordings.

Wild-type control videos (i.e., animals in ASW) were collected every day. Each drug was
assayed at least on 3 different experimental days. All drugs besides dopamine were dissolved in
ASW so the equivalent control was larvae in ASW (defined as wild type in the text and figures).
Dopamine rapidly oxidized in ASW. We found that the only way to prevent this process was
to include ascorbic acid at a final concentration 28 um (Table 1) in the ASW and dopamine
solution. Thus, when we assayed dopamine, the control animals were incubated in ASW plus
ascorbic acid. Animals that were assayed in ASW plus ascorbic acid are not included in the
wild-type dataset and they were exclusively used in the comparisons with dopamine-treated
larvae. Therefore, wild type refers to control animals that were assayed in ASW only
exclusively.

Hatched, swimming larvae were initially transferred from the original 9-cm plates to a fresh
6-cm plate containing either ASW or the drug that was going to be tested on the day and then
immediately transferred individually to their arena that also contained ASW or one of the
drugs. To transfer larvae, we used disposable 15-cm glass pasteur pipettes (91704012, Duran
Wheaton Kimble). Once the larvae were mounted on the tracking setups, the telescopic covers
were extended to shield the animals from the ambient light of the room. Video recordings
were started at this point. Every round of tracking lasted for 30 minutes, and it involved the
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Table 2. Properties of LEDs used in this study.

Emitting color Model Wavelength (nm) Luminous intensity (med) Voltage (V)
Red 13CBAUP 620-630 550-700 1.8-2.2
Green 13CGAUP 515-530 1,100-1,400 3.0-3.2
Blue 10RIMUX 465-475 200-400 3.0-34

White light stimuli were delivered using a HALOSTAR 10 W 12 V G4 halogen lamp with a nominal luminous flux of 130 Im. Its spectral power distribution can be
found here: https://docs.rs-online.com/7d94/0900766b8128288b.pdf.

https://doi.org/10.1371/journal.pbio.3001744.t002

simultaneous acquisition of videos from 1 control larva and 4 larvae incubated with a drug.
Each animal was assayed over a period of 30 minutes, and this period was split into 4 record-
ings similarly to our previous study [43]. We recorded an initial 15-minute acclimatization
period movie followed by three 5-minute movies. The same larva was never used to record
across different ages; thus, we recorded each larva for a maximum period of 30 minutes.

Basic acquisition parameters were setup prior to the start of the experimental day using the
acquisition software. These included the frame rate (30 fps), the camera exposure time
(0.00390625 second), Gamma (value = 1), and IR light intensity (level 40). Subsequently, we
completed relevant metadata fields on the software including the drug treatment if any, the
hatching time of the larvae, the crowd size (in this case set to 1), the number and lengths of vid-
eos we would like to acquire.

Light experiments

Light stimuli (white, red, green, or blue) were given for 1 minute starting at the 30th second
and ending at the 90th second of the first 5-minute movie. Table 2 details the properties of the
LEDs used to deliver the stimuli.

Tierpsy analysis

Videos of larvae recorded using our behavioral setup was then analyzed with the help of
Tierpsy software package to extract positional data [38]. The software segments the larval pix-
els from the background of the arena and identifies the 2 contours of the larvae. The software
then calculates 49 equally spaced coordinates on the 2 contours such that the first pair of coor-
dinates represents the tip of the head and the 49th pair represents the tip of the larval tail. The
software also calculates the width of the larvae as the distance between the corresponding
points on the 2 contours and uses this to calculate the midline (henceforth referred to as a skel-
eton) described by 49 coordinates.

Feature extraction

Following the Tierpsy analysis, we calculate a set of biophysical features with an aim to quanti-
tatively describe the movement of the larvae in the arena. In order to quantify the amount by
which parts of the larval body deviates from a straight line while swimming, we calculated the
curvature at each of the 49 points on the skeleton. Assuming the skeleton to be a differentiable
curve, the curvature was measured as the rate of change of the curve’s tangent angle with
respect to its arc length (as defined in [39]). To calculate the numerical derivatives, we used a
Savitzky-Golay filter of window length 15 and polynomial order 2 using the implementation
in the scipy, so that the skeleton is approximated by a smooth curve.

To visualize the correlation of curvature values along the length of the larval body, we calcu-
lated the covariance matrix. Curvature from a subset of 231 experiments or larvae (where
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Tierpsy software successfully identified the larvae from all of the frames in the videos) with a
total of 2,290,901 frames were used to obtain the 49 x 49 matrix (Fig 1). The smooth structure
of the correlation matrix was indicative of a strong correlation, and hence, an existence of a
lower dimensional feature space. We performed an eigen decomposition of the covariance
matrix (PCA) to obtain the eigenvectors (principal components) and eigenvalues (explained of
each of the components). The 6 eigenvectors are referred to as eigencionas in the paper. The
eigencionas were sorted by the eigenvalues and the 6 top eigencionas that explained 97% of the
variance were selected to provide a lower dimensional description of the curvature of the lar-
vae. Having defined the 6 eigencionas as features, we can calculate eigencoefficients ECI,
EC2,.. ., EC6 (principal components scores) at each time point (or for each frame) that
describes the posture of the skeleton.

We also calculate quirkiness as a scalar valued feature in the range of 0 to 1 indicating the
eccentricity of the larval body, as explained in Tierpsy [39]. Speed at each of the 49 points of
the skeleton is also calculated across time as the distance by which the skeletal point moves in
the arena between 2 adjacent frames in the video.

We defined 7 distinct body parts or segments on the larvae by grouping the 49 skeleton
points. Initially, we identified a point in the range of 4 to 22 along the skeleton where the con-
tour width decreases sharply (local minima of the derivative of contour width along the skele-
ton) and defined it as the neck point. The change in contour width is characteristic of the
neck, where the wide head region ends and the narrower tail of the larvae starts. The neck seg-
ment is defined such that it comprises 3 skeleton points with the neck point as the center. The
points on the skeleton that lie anterior to this segment are hence grouped into a head segment,
and the coordinates that lie after are grouped into a tail segment. The skeleton points tail seg-
ment is further divided into 5 segments, namely tail_base (TB), tail_pre_mid (TprM), tail_mid
(TM), tail_post_mid (TpoM), and tail_tip (T'T), such that a summary of movement of the tail
can be obtained without limiting the degrees of freedom.

Following the definition of the 7 body segments, we calculated another postural feature,
namely relative tangent angles. Initially, tangent angles were defined for each of the segments
as the angle made by the line segments joining the end points of the segments (on the skeleton)
with the x-axis of the video frame. We used the arctan2 function in the numpy package to
compute the tangent angles (in radians) from the xy coordinates of the 2 end points of each of
the segments. To obtain a measurement in the larvae’s coordinate system rather than the
global coordinate system of the arena, we computed the difference of these tangent angles with
respect to the tangent angle of the head segment. These differences were then defined as the 6
relative tangent angles describing the posture of the skeleton, one for each of the segments
from neck to tail_tip.

Head rigidity determination

The larval swimming as seen from the collected videos suggested that the head segment exhib-
ited some rigidity. We verified this observation by measuring the deviations of the skeleton
points in the head segment from a straight line and comparing it with the tail region. For this,
we measured the perpendicular distances of each of the skeleton points in the head region
from a straight line joining the head tip and the neck point. For the comparison, we measured
the perpendicular distances of each of the skeleton points in the tail region from a straight line
joining the neck point with the tail tip point. The distribution of these distances measured
across the videos in our wild-type dataset was then plotted for each of the skeleton points. We
also verified from the curvatures at each of the 49 skeleton points across multiple videos has a
smaller range in the head segment when compared to the tail region.
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Statistics

For each of the parameters/features and each of the experimental conditions, we tested the
data for normality using the Shapiro-Wilk test with an alpha value of 0.05 (S12 and S33
Tables). Since the p-values were less than the alpha value, the null hypothesis that data is from
anormal distribution was rejected. Hence, for comparison between different groups in the fur-
ther analysis, we used nonparametric tests. In the case of comparison of features like curvature,
speed, and relative tangent angles across the 6 body segments for the wild-type dataset, we
used Wilcoxon signed-rank test with an alpha value of 0.05. We used this test under the
assumption that feature values across segments (along the body) are dependent due to the
anatomy of the larvae. Similarly, we used Wilcoxon for comparing the 6 eigencoefficient val-
ues. The p-values from the 2-tailed alternative were used to reject the null hypothesis that the
median of the differences between 2 distributions is 0. In addition to the 2-tailed test, we also
computed the p-values for 1-tailed (greater and less) tests for determining which group in a
pair was significantly greater or lesser than the other (S3-S6 Tables).

For the comparison of features between each of the drugs against the wild-type group, we
used Mann-Whitney U tests with a Bonferroni correction. The alpha value was set at 0.05/

25 =0.002 after Bonferroni correction. While the 2-tailed test is used to test the alternative
hypothesis that 2 distributions are not equal, we used 1-tailed tests (greater and less) to test if 1
of the distributions is stochastically greater or less than the other. For Mann-Whitney U tests,
we calculated the effect size by dividing the test statistic by the product of the number of sam-
ples in each of the 2 groups being compared. All the statistical tests were implemented in
Python using the scipy package. The N, p-values, and test statistics values for each of the tests
are provided in S2 and S13-S15 Tables. The calculated effect sizes for Mann-Whitney U tests
have also been provided in S38-S40 Tables. Note that all drugs except dopamine were com-
pared to wild type. Dopamine was compared to ascorbic acid, which was used as a solvent for
dopamine to stabilize it and prevent oxidation.

For each of the methods, namely matrix profile with 1-second window, matrix profile with
5-second window, HMM and spatiotemporal mapping, we used Mann-Whitney U test to com-
pare the difference in percentage use of a cluster or state for a drug with respect to control (wild
type for all drugs except dopamine, ascorbic acid for dopamine). For each of the videos when a
given drug is administrated, the percentage of frames where the larvae is identified to be in a par-
ticular state or cluster is calculated. This distribution of percentage usages is then compared to
the corresponding distribution for its control group. A p-value of 0.05 is used to test significance.
The results of the test for each of the 4 methods are provided in S41-S52 Tables.

Matrix profile methods

Motifs were identified by calculating the matrix profile of the multidimensional time series of 7 cur-
vature values along the skeleton of each animal, using the mstump algorithm implementation in
the stumpy Python library. A rolling mean filter over 10 frames was applied to the time series prior
to matrix profiling. Recurring motifs were defined as stretches of either 30 or 150 frames with the
starting point at locations where peaks in the matrix profile are under a set threshold value of 8.
This resulted in a set of 87,569 motifs over 30 frames and a set of 18,776 motifs over 150 frames.

The sets of motifs were subsequently clustered into 15 groups using the TimeSeriesKMeans
clustering algorithm in the tslearn Python library. The cluster number was decided by adding
clusters until the decrease in final model inertia started leveling out.

Clusters were annotated by generating gifs of the skeletons over the duration of the motifs
for each cluster and manually confirm if there is an enrichment for a certain behavior within a
cluster.
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HMM methods

We used a simple G-HMM to model our data. A Python-based open-source library hmmlearn
was used to implement the model and the related algorithms. We used a feature set derived
from 1,613 recording across multiple experimental conditions for training the model to cap-
ture a wide range of behaviors. The recordings were chosen such that Tierpsy software had
successfully segmented the larvae for at least 80% of the frames. For the training the model, we
chose to use the 6 eigencionas and the quirkiness features from the selected experiments.
Thus, our training set consisted of a set of 1,613 sequences, each one of them being a 7-dimen-
sional time series of varying lengths (durations).

The model was trained using the “fit” function of the hmmlearn library. The function essen-
tially performs an expectation maximization (EM) algorithm to estimate the parameters of the
HMM model from the time series data. The learned parameters include the state transition
probabilities of the fitted model and the Gaussian distributions corresponding to each of the
HMM states. Based on the learned model, the most probable state sequence for each of the
1,613 time series were obtained using the Viterbi algorithm implemented as the “predict” func-
tion in the hmmlearn library. This enabled us to visualize the underlying state at each time
point (frame) for any given time series.

Different models were trained with the number of hidden states chosen as 6, 8, 10, 12, and
15. Also, 2 types of covariance matrices: “full” (or unrestricted) and “diagonal” were tested. On
a qualitative inspection, it was observed that when the number of states was chosen as 6 or 8,
the active swimming behaviors were not well distinguished. On the other hand, a choice of 12
or 15 states gave rise to learning of states that appear to occur in the dataset with a frequency
of less than 1% of the frames. A 10-state model with full covariance was observed to model dis-
tinct active states without over segmenting the data and enabled us to model any dependencies
between eigencoefficient features and quirkiness.

The means and variances from the Gaussian distributions of each of the 10 states of the fit-
ted model were analyzed to characterize and distinguish each of the states. Following the infer-
ence of states for each of the frames in the dataset, the percentage of occurrence of each of the
10 HMM states (behavioral states) were calculated for each of the different experimental con-
ditions (wild type, drugs, light stimuli, etc). We also recalculated the probability of state transi-
tions for each of these experimental conditions separately.

In addition, we redid the HMM fitting twice by using the entire data as in our original
model to verify if similar structure is learned each time a 10-state model is used. The mean and
standard deviation of the Gaussian observation probabilities of the 3 models fit on the entire
dataset are provided in supplemental figure S16A-S16C Fig. The corresponding transition
probability matrices for the 3 models are visualized in the supplemental figure S16] Fig (origi-
nal model), S16K, and S16L Fig (additional models). Similarly, we fit 3 models with 3 mutually
exclusive datasets with 581 videos each, sampled agnostic to the treatment group. The results
are provided in supplemental figure SI6D-S16F and S16M-S160 Fig. We also fit 3 models
with 3 mutually exclusive subsets of 580 videos with uniform distribution of wild type, drug
treatment, and light stimuli cases, and the results are provided in supplemental figure S16G-
S16l and S16P-S16R Fig. The underlying numerical data for S16 Fig can be found in S58-S81
Tables as well as https://doi.org/10.5281/zenodo.6761771.

Spatiotemporal mapping methods

A total of 694 wild-type videos were selected for the analysis/finding a behavioral space such
that Tierpsy software identified the larvae in at least 80% of the frames. (This dataset is a subset
of the experiments selected for HMM.) We initially calculated Morlet wavelet transformations
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of the 6 eigencoefficient feature vectors of these experiments, at 30 uniformly spaced frequen-
cies in the range of 1 to 30 Hz, giving a set of 694 distinct time series each of 180 dimensions.

To prepare the input dataset, we sampled a total of 200,000 frames from 694 wild-type ani-
mals. The sampling was done such that the probability of being sampled is proportional to a
weighted sum of speeds in the neck and 5 tail segments. The speed of the neck segment was
assigned a 50% weightage, whereas the 5 tail segments had a 10% weightage. The sampling was
used to ensure that the active swimming behavior is well represented in the input dataset. The
180 wavelet feature values corresponding to the sampled frames were then used as the input
features to create a wavelet feature dataset of shape 200,000 x 180.

To obtain an interpretable visualization of the high-dimensional wavelet feature set, we ini-
tially calculated a 2D tSNE embedding (embedding1). TSNE embeddings and associated learn-
ing algorithms were implemented using the Python package openTSNE (https://opentsne.
readthedocs.io/en/latest/). Embedding1 was initialized using a PCA-based initialization and
cosine-based metric was used for distances. A 2-step optimization process was performed
(using the optimize function in openTSNE) to learn the embeddingl, where the first step was
run with a perplexity parameter of 500, exaggeration value of 12 (early exaggeration phase)
and was followed by a second phase with a reduced exaggeration value of 1.

To facilitate effective clustering and identify stereotyped behaviors from the dataset, we
crafted a 4-dimensional vector using 3 distinct embeddings obtained using different parameter
combinations with tSNE implementation in the Python-based openTSNE library. The 4-dimen-
sional t-SNE space was created by combining the x and y dimensions of the embeddingl, x
dimension of embedding? (perplexity = 250 and exaggeration = 3) and y dimension of embed-
ding3 (perplexity = 750 and exaggeration = 2). This 4D space was clustered based on the density
of datapoints (into 6 regions) using the Pythonic implementation of DBSCAN algorithm avail-
able in scikit-learn library. The algorithm also learned an outlier class and less than 0.001% of
the data points were clustered as outliers. To assign any new or unseen data into one of the
learned clusters in the behavior space, a KNN-based classifier was trained with the results of the
DBSCAN algorithm. We used the KNeighborsClassifier implementation in scikit learn library
with n_neighbours = 200 and distance-based weights. We then followed a similar pipeline of
methods to obtain clustering results for all the frames from 1,613 experiments across experi-
mental conditions using the precomputed embeddings. The clusters were then assigned to this
processed dataset so that we obtain the behavioral cluster for all the frames in our dataset.

We then randomly sampled 100 skeletons for each of the clusters, translated and rotated
them such that the coordinates of the neck point and the end (49th) point lie on a vertical axis
(Fig 5B). Also, we visualized the trajectories of the neck points in the arena for a randomly
selected set of experiments such that each point is labeled by the cluster into which it was clas-
sified. To analyze the differences in behavioral space occupied by the larvae under different
experimental conditions, we computed 2D histogram smoothed by a Gaussian filter from the
scatter plots of the behavioral spaces. These were plotted as 2D density graphs where the inten-
sity is set to saturate at 0.8% of the maximum intensity (Fig 5D).

Supporting information

S1 Fig. Components of the Ciona Tracker 2.0 and process of generating an agarose arena.
(A) Multiple 35-mm petri dishes were placed on a cold block. (B) After pouring 0.8% agarose
in ASW into the petri dishes, we clipped on the 3D printed PLA moulds and allowed the aga-
rose to solidify. (C) Carefully removing the mould revealed a circular arena marked with an
asterisk. (D) Multiple arenas were prepared daily and disposed of at the end of the experimen-
tal day. (E) View of a single Ciona Tracker 2.0 setup without a telescopic cover fitted. A cover

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001744  August 4, 2022 28/44


https://opentsne.readthedocs.io/en/latest/
https://opentsne.readthedocs.io/en/latest/
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001744.s001
https://doi.org/10.1371/journal.pbio.3001744

PLOS BIOLOGY

Animal behavior and neuromodulation

from a neighboring tracker is indicated by a white arrowhead. (F) Detailed view of the upper
part of the tracker, with the camera secured with a 3D-printed camera holder (denoted with a
C), the extension tubes CML10 and CML25 (indicated as ExT) (Thorlabs), the lens MVL75M1
(Thorlabs) (labeled as L). The white arrowhead points to the holder of the color LEDs and the
IR filter. The black arrowhead points to the telescopic tube cover. (G) Close-up view of PLA
ring with infrared LEDs (peak emission 850 nm). Black arrowhead indicates plastic arms that
secure the PLA ring to the underlayer. White arrowhead indicates a mat black plastic that
reduces unwanted reflections and provides a uniform black background. The gap in the PLA
ring indicated by the asterisk is aligned with the agarose arena. (H) Close view of the 3D-
printed box housing the electronics that control each tracker unit. (I) Close-up view of the
color LEDs (white arrowhead) and white light (black arrowhead) arrangement. (J) Close-up
view of an arena mounted on the PLA illumination ring. A water-soaked paper tissue in a plas-
tic cap (white arrowhead) provides additional humidity during the recording preventing the
arena from drying up. (K) 3D rendering of the PLA mould used to generate the agarose arenas.
(L) 3D rendering of the individual parts needed to generate 2 PLA illumination rings housing
the IR LEDs. (M) 3D rendering of the IR filter and the color LEDs. (N) 3D rendering of the
plastic underlayer that is used to secure the PLA illumination ring and the thermometer. (O,
P) 3D renderings of the electronics housing parts.

(EPS)

S2 Fig. Ciona larvae have a rigid head. (A) Schematic illustrating the measurement of devia-
tions of skeleton points in the head and tail regions from a straight line. (B) Quantification of
the perpendicular distance (measure of deviation) of skeleton points in the head and tail region
from the corresponding straight line. (C) Examples from 3 different larvae while swimming
indicating the range of curvature exhibited by each skeleton point across multiple frames.
Underlying data can be downloaded from https://doi.org/10.5281/zenodo.6761771.

(EPS)

$3 Fig. Comparison of curvature distributions across drug treatments. Violin plots compar-
ing the distribution of curvatures of 6 body segments for different drugs with wild type. Dopa-
mine was compared to ascorbic acid. In this case, the control violin plot is colored green.
Drugs with significant differences are shown. In all plots, drugs that showed significantly
higher values of the feature are grouped together within a red-colored border, whereas drugs
with significantly lower feature values with respect to wild type were grouped within a blue
border. The data used to generate these plots are available in https://doi.org/10.5281/zenodo.
6761771. We tested for normality using the Shapiro-Wilk test (0. = 0.05) (underlying values
can be found in S12 Table). Wild-type and drug data features were compared using Mann-
Whitney U tests with a Bonferroni correction (o = 0.002) (please see S13-S15 Tables for the
underlying numerical values). The relevant underlying data can be downloaded from https://
doi.org/10.5281/zenodo.6761771.

(EPS)

S4 Fig. Comparison of relative tangent angles distributions across drug treatments. Violin
plots comparing the distribution of relative tangent angles of 6 body segments for different
drugs with wild type. Dopamine was compared to ascorbic acid. In this case, the control violin
plot (i.e., left side) is colored green. Drugs with significant differences are shown. Note that in
all the plots, drugs that showed significantly higher values of the feature are grouped together
within a red-colored border, whereas drugs with significantly lower feature values with respect
to wild type were grouped within a blue border. All relevant underlying data used to generate
these plots can be accessed at https://doi.org/10.5281/zenodo.6761771. We tested for normality
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using the Shapiro-Wilk test (o = 0.05) (see S12 Table for numerical values). Wild-type and
drug data features were compared using Mann-Whitney U tests with a Bonferroni correction
(00 =0.002) (see S13-S15 Tables for numerical values).

(EPS)

S5 Fig. Comparison of speed distributions across drug treatments. (A) Violin plots compar-
ing the distribution of speed values exhibited in the presence of different drugs with the wild
type. Dopamine was compared to ascorbic acid. In this case, the control violin plot (i.e., left
side) is colored green. Note that in all the plots, drugs that showed significantly higher values
of the feature are grouped together within a red-colored border, whereas drugs with signifi-
cantly lower feature values with respect to wild type were grouped within a blue border. The
data used to generate these plots are available in https://doi.org/10.5281/zenodo.6761771. We
tested for normality using the Shapiro-Wilk test (a0 = 0.05) (S12 Table). Wild-type and drug
data features were compared using Mann-Whitney U tests with a Bonferroni correction (o =
0.002) (S13-S15 Tables).

(EPS)

S6 Fig. Comparison of eigencoefficients and quirkiness across drug treatments. (A) Com-
parison of distribution of quirkiness values exhibited in the presence of different drugs with
the wild type. (B) Violin plots showing the distribution of the 6 eigencoefficient features for
different drugs in comparison with wild type. Dopamine was compared to ascorbic acid. In
this case, the control violin plot (i.e., left side) is colored green. In all plots, drugs that showed
significantly higher values of the feature are grouped together within a red-colored border,
whereas drugs with significantly lower feature values with respect to wild type were grouped
within a blue border. The data used to generate these plots are available in https://doi.org/10.
5281/zenodo.6761771. We tested for normality using the Shapiro-Wilk test (o = 0.05) (S12
Table). Wild-type and drug data features were compared using Mann-Whitney U tests with a
Bonferroni correction (o = 0.002) (S13-S15 Tables).

(EPS)

S7 Fig. Visualization of skeletons, individual motifs, and drug effects for 1-second and
5-second motif clusters. (A, B) Randomly selected skeletons of animals that correspond to
each of the clusters shown in Fig 3D and 3E. (C, D) Individual motifs were grouped according
to the motif cluster they correspond to. Panel C includes 1-second clusters, while panel D
shows 5-second clusters. Motifs are color coded to show temporal progression (start=>end;
violet=>red). (E-H) Raclopride shows much stronger effects on several clusters relative to the
other drugs used in our screen. This means that in heatmaps Fig 3F-31, it is hard to visually
appreciate the differences between wild type and the other drugs. Thus, in panels E-H, we
show the same heatmaps but we exclude Raclopride; (E) 1-second time window motif clusters
representation (516 Table). (F) Percentage fold changes relative to wild type for 1-second time
window motif clusters (5§17 Table); (G) 5-second time window motif clusters representation
(S18 Table). (H) Percentage fold changes relative to wild type for 5-second time window motif
clusters (S19 Table). The data used to generate these figures can be downloaded from https://
doi.org/10.5281/zenodo.6761771.

(EPS)

S8 Fig. Examples of skeleton trajectories corresponding to the 10 states identified by
HMM. (A-J) Shows 36 distinct samples of skeleton trajectories exhibiting each of the 10
behavioral states (identified by HMM). Each of the 36 motifs in the panels are of a minimum
of 21 frames long. Ciona skeletons were sampled from our dataset that can be downloaded
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from https://doi.org/10.5281/zenodo.6761771.
(EPS)

S9 Fig. Chord transitions illustrating behavioral state transitions inferred from HMM for
a subset of drugs and example tracks colored according to HMM derived states. (A-C)
Chord diagrams showing behavioral state transitions inferred from HMM for (A) paroxetine,
(B) ascorbic acid, (C) quinpirole. (D-R) Markov transition graphs for wild type and drugs.
The graph represents the probability of transitions from 1 behavioral state to any other state as
defined by the HMM model. Each of the nodes in the graph represents a behavioral state. Self-
transitions are represented by arrows with matching colors. Any transition with a probability
greater than 0.001 are shown with an arrow. Probability values are printed for all transitions
that have a probability greater than 0.01. (S-V) Four example tracks of the neck point of larvae
in the arena colored according to the behavioral state identified by HMM. The underlying data
can be downloaded from https://doi.org/10.5281/zenodo.6761771.

(EPS)

$10 Fig. Example skeleton trajectories for the 6 behavioral clusters inferred by spatiotem-
poral embedding and tSNE embedding of different drugs against neuromodulators. (A-F)
These panels show 36 distinct samples of skeleton trajectories exhibiting each of the 6 behav-
ioral clusters inferred from the spatiotemporal embedding approach. Each of the 36 skeleton
trajectories in the panels are of a minimum of 21 frames long. Ciona skeletons were sampled
from our dataset that can be found in https://doi.org/10.5281/zenodo.6761771. (G-M) 2D
tSNE embedding of different drugs. The color is showing the density with which the different
clusters are occupied (blue being lower and red higher).

(EPS)

S11 Fig. Transition graphs for wild type and neuromodulator drugs. (A-N) Transition graphs
for wild type and drugs. The graph shows the transitions from 1 behavioral cluster to any other
cluster in terms of the probability of the transition as determined by our data. Each of the nodes
in the graph represents a behavioral cluster. Self-transitions are represented by arrows with match-
ing colors. All transitions with a probability greater than 0.001 are shown with an arrow. Probabil-
ity values are printed for all transitions that have a probability greater than 0.01. The underlying
numerical data can be downloaded from https://doi.org/10.5281/zenod0.6761771.

(EPS)

$12 Fig. Comparison of different features in response to switching ON the light stimuli.
(A-D) Change induced in different feature values by switching ON the light stimulus: Com-
parison of distribution of curvature, relative tangent angles, speed, eigenciona coefficient, and
quirkiness features before (tONbefore) and after (tONafter) the light ON event. Effect of 4 dif-
ferent stimuli—red, green, blue, and white shown from left to right. Note: In all the panels, sig-
nificant results are highlighted with a higher opacity. S29 and S30 Tables provide the mean
and standard deviation values for all plots shown in this figure. For statistical analysis, we used
Shapiro-Wilk test for normality analysis. Subsequently, we performed Mann-Whitney U tests
with Bonferonni correction; S33-536 Tables provide statistical analysis for this figure. The
underlying numerical data are available from https://doi.org/10.5281/zenodo.6761771.

(EPS)

$13 Fig. Comparison of different features in response to switching OFF the light stimuli.
(A) Change induced in terms of curvature values by switching OFF light stimulus: Compari-
son of distribution of segment-wise curvature values before (tOFFbefore) and after (tOFFafter)
the light OFF event. Effect of 4 different stimuli—red, green, blue, and white shown from left
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to right. (B, C) Plots similar to A for relative tangent angles and speeds, respectively. (D) Effect
of switching OFF the light stimuli in terms of change in 6 eigencoefficient features. (E) Change
in quirkiness feature with the light OFF event. Note: In all the panels, significant results are
highlighted with a higher opacity; S31 and S32 Tables provide the mean and standard devia-
tion values for all plots shown in this figure. For statistical analysis, we used Shapiro-Wilk test
for normality analysis. Subsequently, we performed Mann-Whitney U tests with Bonferonni
correction. Statistical analysis for data included in this figure can be found in S33-S36 Tables.
Underlying data can be extracted from https://doi.org/10.5281/zenodo.6761771.

(EPS)

$14 Fig. Occupancy of behavioral space by each color stimulus shown individually. (A-P)
This figure shows each color stimulus is shown individually, the data is the same as in Fig 6.
2D density plots showing the change in the pattern of occupancy of the 2D behavioral space
across different color light stimuli before and after the ON and OFF events. This figure shows
each color stimulus individually, the data is the same as in Fig 6. Boundaries of the 6 DBSCAN
clusters are also shown on the plots. Underlying data can be downloaded from https://doi.org/
10.5281/zenodo.6761771.

(EPS)

S15 Fig. Age distribution plots for animals used in this study. (A-N) Histograms indicating
the age distribution in hours post hatching (hph) for wild type and drug-treated larvae.
(EPS)

S16 Fig. Alternative hidden Markov models. (A) Means and standard deviations of the
observation probability distributions for the original HMM model trained on the entire dataset
(1,613 videos). (B, C) Means and standard deviations of the observation probability distribu-
tions for 2 additional 10-state HMMSs trained on the same dataset as A. (D-F) Means and stan-
dard deviations of the observation probability distributions for the 3 models (10-state HMM)
trained on the 3 mutually exclusive subset of the original dataset with 581 videos each. The 3
subsets have different distribution of wild type, drug treatment, and light stimuli cases. (G-I)
Means and standard deviations of the observation probability distributions for the 3 models
(10-state HMM) trained on the 3 mutually exclusive subset of the original dataset with 580 vid-
eos each, and the 3 subsets have uniform distribution of wild type, drug, and light cases. (J-L)
The transition probability matrices corresponding to panels A-C. (M-0O) The transition prob-
ability matrices corresponding to the models referred to in D-F. (P-R) The transition proba-
bility matrices corresponding to the models referred to in G-I1. Underlying data can be found
in §58-S81 and https://doi.org/10.5281/zenodo.6761771.

(EPS)

S$17 Fig. Examples of skeleton trajectories corresponding to the 10 states identified by the
alternative HMM trials. Postures/skeletons were randomly sampled from the training dataset
for each of the 10 different HMM states, aligned such that the neck points coincide and are col-
linear with tail-ends on a vertical line for each of the additional HMM models trained. (A, B)
Skeletons sampled for the 10 states as learned by the 2 additional models trained on the entire
dataset. (C-E) Skeletons sampled for the 10 states as learned by the 3 models trained on the 3
randomly split subsets. (F-H) Skeletons sampled for the 10 states as learned by the 3 models
trained on the 3 uniformly split subsets. Ciona skeletons were randomly sampled from our
dataset that can be found in https://doi.org/10.5281/zenodo.6761771.

(TIF)
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S1 Movie. Example 1 of startle-like behavior exhibited by a C. intestinalis larva.
(AVI)

$2 Movie. Example 2 of startle-like behavior exhibited by a C. intestinalis larva.
(AVI)

$3 Movie. Animation of an animal exploring the tSNE behavioral space.
(AVI)

S1 Table. Number of animals used in our analysis.
(XLSX)

S2 Table. Number of video frames per condition assayed that we used in our analysis.
(XLSX)

§3 Table. P-values for data corresponding to Fig 1G.
(XLSX)

$4 Table. P-values for data corresponding to Fig 1H.
(XLSX)

S5 Table. P-values for data corresponding to Fig 11.
(XLSX)

S6 Table. P-values for data corresponding to Fig 1P.
(XLSX)

S7 Table. (Separate file) Fig 2A SMD values for 25 features, calculated for drug-treated lar-
vae relative to wild-type larvae.
(XLSX)

S8 Table. (Separate file) Fig 2B EC mean values for drug-treated and wild-type larvae.
(XLSX)

S9 Table. (Separate file) Fig 2B EC standard deviation for drug-treated and wild-type lar-
vae.
(XLSX)

$10 Table. (Separate file) Mean values of violin plots for different drugs and features
shown in S3-S6 Figs.
(XLSX)

S11 Table. (Separate file) Standard deviation values of violin plots for different drugs and
features shown in S3-S6 Figs.
(XLSX)

S12 Table. (Separate file) Shapiro-Wilk tests for normality analysis of the data shown in
$3-S6 Figs.
(XLSX)

S$13 Table. (Separate file) Mann-Whitney U 2-sided tests with Bonferroni correction for
statistical significance analysis of the data shown in S3-S6 Figs.
(XLSX)

S$14 Table. (Separate file) Mann-Whitney U 1-sided (less) tests with Bonferroni correction
for statistical significance analysis of the data shown in S3-S6 Figs.
(XLSX)
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S15 Table. (Separate file) Mann-Whitney U 1-sided (greater) tests with Bonferroni correc-
tion for statistical significance analysis of the data shown in S3-S6 Figs.
(XLSX)

$16 Table. (Separate file) Quantification of 1-second time window motif clusters represen-
tation (shown as %) in wild type and drug datasets corresponding to heatmaps shown in
Figs 3F and S7E (in this case, raclopride is not included in the heatmap).

(XLSX)

$17 Table. (Separate file) Quantification of percentage fold increase of 1-second time win-
dow motif clusters representation of drugs relative to wild type corresponding to heatmap
shown in Figs 3G and S7G (raclopride is omitted in this heatmap). Dopamine is compared
to ascorbic acid in which it was dissolved.

(XLSX)

$18 Table. (Separate file) Quantification of 5-second time window motif clusters represen-
tation (shown as %) in wild type and drug datasets corresponding to heatmap shown in
Figs 3H and S7F (with raclopride omitted in this heatmap).

(XLSX)

S$19 Table. (Separate file) Quantification of percentage fold increase of 5-second time win-
dow motif clusters representation of drugs relative to wild type corresponding to the heat-
map shown in Figs 31 and S7H (where raclopride is left out). Dopamine is compared to
ascorbic acid in which it was dissolved.

(XLSX)

$20 Table. (Separate file) Mean values of Gaussian distributions of each of the 7 input fea-
tures corresponding to Fig 4A.
(XLSX)

$21 Table. (Separate file) The variance of the observed probability distributions of each of
the 7 input features corresponding to Fig 4A.
(XLSX)

§22 Table. Probability values matrix for all possible transitions between behavioral states
and self-transitions corresponding to Figs 4A and S16].
(XLSX)

$23 Table. (Separate file) Percentage of representation of the HMM states for different
drug datasets, corresponding to panels Fig 4E.
(XLSX)

$24 Table. (Separate file) Percentage fold change of representation of the HMM states for
different drug datasets, corresponding to panels Fig 4F.
(XLSX)

$25 Table. (Separate file) Percentage of representation of the tSNE clusters for different
drug datasets, corresponding to heatmap Fig 5G.
(XLSX)

$26 Table. (Separate file) Percentage fold change of representation of the tSNE clusters for
different drug datasets, corresponding to panel Fig 5H.
(XLSX)
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$27 Table. (Separate file) SMD values corresponding to Fig 6B.
(XLSX)

$28 Table. (Separate file) SMD values corresponding to Fig 6C.
(XLSX)

$29 Table. (Separate file) Mean values of violin plots for different color light ON stimuli
shown in S12 Fig.
(XLSX)

$30 Table. (Separate file) Standard deviation values of violin plots for different color light
ON stimuli shown in S12 Fig.
(XLSX)

$31 Table. (Separate file) Mean values of violin plots for different color light OFF stimuli
shown in S13 Fig.
(XLSX)

$32 Table. (Separate file) Standard deviation values of violin plots for different color light
OFF stimuli shown in S13 Fig.
(XLSX)

$33 Table. (Separate file) Shapiro-Wilk tests for normality analysis of the data shown in
S$12 and S13 Figs.
(XLSX)

$34 Table. (Separate file) Mann-Whitney U 2-sided tests with Bonferroni correction for
statistical significance analysis of the data shown in S12 and S13 Figs.
(XLSX)

$35 Table. (Separate file) Mann-Whitney U 1-sided (less) tests with Bonferroni correction
for statistical significance analysis of the data shown in S12 and S13 Figs.
(XLSX)

$36 Table. (Separate file) Mann-Whitney U 1-sided (greater) tests with Bonferroni correc-
tion for statistical significance analysis of the data shown in S12 and S13 Figs.
(XLSX)

S$37 Table. (Separate file) Percentage of representation of the tSNE clusters for different
light color stimuli ON and OFF periods, corresponding to Figs 6D-6G and S14A-S14P.
(XLSX)

$38 Table. (Separate file) Effect size for Mann-Whitney U 2-sided, corresponding to S3-S6
Figs.

(XLSX)

$39 Table. (Separate file) Effect size less for Mann-Whitney U, corresponding to S3-S6

Figs.
(XLSX)

$40 Table. (Separate file) Effect size greater for Mann-Whitney U, corresponding to S3-S6
Figs.
(XLSX)
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$41 Table. Mann-Whitney U 2-sided tests with Bonferroni correction for statistical signif-
icance analysis of the data shown in Fig 3F and 3G.
(XLSX)

$42 Table. Effect size for Mann-Whitney U 2-sided, corresponding to Fig 3F and 3G.
(XLSX)

$43 Table. Summary Table indicating which drugs are significantly different (value 1) and
which are not significantly different relative to control (value 0) corresponding to Fig 3F
and 3G.

(XLSX)

S$44 Table. Mann-Whitney U 2-sided tests for statistical significance analysis of the data
shown in Fig 3H and 3L
(XLSX)

$45 Table. Effect size for Mann-Whitney U 2-sided, corresponding to Fig 3H and 31.
(XLSX)

$46 Table. Summary Table indicating which drugs are significantly different (value 1) and
which are not significantly different relative to control (value 0) corresponding to Fig 3H
and 3L

(XLSX)

$47 Table. Mann-Whitney U 2-sided tests for statistical significance analysis of the data
shown in Fig 4E and 4F.
(XLSX)

$48 Table. Effect size for Mann-Whitney U 2-sided, corresponding to Fig 4E and 4F.
(XLSX)

$49 Table. Summary Table indicating which drugs are significantly different (value 1) and
which are not significantly different relative to control (value 0) corresponding to Fig 4E
and 4F.

(XLSX)

§50 Table. Mann-Whitney U 2-sided tests for statistical significance analysis of the data
shown in Fig 5G and 5H.
(XLSX)

S51 Table. Effect size for Mann-Whitney U 2-sided, corresponding to Fig 5G and 5H.
(XLSX)

$52 Table. Summary Table indicating which drugs are significantly different (value 1) and
which are not significantly different relative to control (value 0) corresponding to Fig 5G
and 5H.

(XLSX)

§53 Table. Summary Table for Figs 2B and S6B listing the drugs that resulted in signifi-
cantly higher or lower EC values relative to controls. The corresponding p-values for the
drugs listed in this table can be found in S14 and S15 Tables.

(XLSX)

§$54 Table. Summary Table for Figs 3F, 3G, S7E, and S7G listing the drugs that resulted in
significantly higher or lower representation of 1-second motif clusters relative to controls.
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Corresponding data are in S41-543 Tables.
(XLSX)

§55 Table. Summary Table for Figs 3H, 31, S7F, and 37H listing the drugs that resulted in
significantly higher or lower representation of 5-second motif clusters relative to controls.
The corresponding data are in S44-546 Tables.

(XLSX)

$56 Table. Summary Table for Fig 4E and 4F listing the drugs that resulted in significantly
higher or lower representation of HMM states relative to controls. The corresponding data
are in S47-549 Tables.

(XLSX)

§57 Table. Summary Table for Fig 5G and 5H listing the drugs that resulted in signifi-
cantly higher or lower representation of spatiotemporal embedding clusters relative to
controls. The corresponding data are in S50-S51 Tables.

(XLSX)

$58 Table. (Separate file) Mean values of observed probability distributions of each of the
7 input features for additional 10-state hidden Markov model 2 trained on the entire data-
set (1,613 videos), corresponding to S16B Fig.

(XLSX)

$59 Table. (Separate file) Variance values of observed probability distributions of each of
the 7 input features for additional 10-state hidden Markov model 2 trained on entire data-
set (1,613 videos), corresponding to S16B Fig.

(XLSX)

S60 Table. (Separate file) Transition probability matrix values corresponding to S16K Fig.
(XLSX)

S61 Table. (Separate file) Mean values of observed probability distributions of each of the
7 input features for additional 10-state hidden Markov model 3 trained on the entire data-
set (1,613 videos), corresponding to S16C Fig.

(XLSX)

$62 Table. (Separate file) Variance values of observed probability distributions of each of
the 7 input features for additional 10-state hidden Markov model 3 trained on the entire
dataset (1,613 videos), corresponding to S16C Fig.

(XLSX)

$63 Table. Transition probability matrix values corresponding to S16L Fig.
(XLSX)

S$64 Table. (Separate file) Mean values of observed probability distributions of each of the
7 input features for additional 10-state hidden Markov model 1 trained on randomly shuf-
fled data, corresponding to S16D Fig.

(XLSX)

$65 Table. (Separate file) Variance values of observed probability distributions of each of
the 7 input features for additional 10-state hidden Markov model 1 trained on randomly
shuffled data, corresponding to S16D Fig.

(XLSX)
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S66 Table. Transition probability matrix values corresponding to S16M Fig.
(XLSX)

S67 Table. (Separate file) Mean values of observed probability distributions of each of the
7 input features for additional 10-state hidden Markov model 2 trained on randomly shuf-
fled data, corresponding to S16E Fig.

(XLSX)

S68 Table. (Separate file) Variance values of observed probability distributions of each of
the 7 input features for additional 10-state hidden Markov model 2 trained on randomly
shuffled data, corresponding to S16E Fig.

(XLSX)

$69 Table. Transition probability matrix values corresponding to S16N Fig.
(XLSX)

$70 Table. (Separate file) Mean values of observed probability distributions of each of the
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