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Triatomine behaviour as a basis for functional genet-
ics - Kissing-bugs have become an important model or-
ganism for neuroethological studies in the last two decades 
(Guerenstein & Lazzari 2009, Manrique & Lorenzo 2012, 
Lazzari et al. current issue). The range of topics covered 
includes host search mechanisms (Guerenstein & Lazzari 
2009), pheromone communication in contexts like mating 
(Manrique & Lorenzo 2012), shelter recognition (Lorenzo 
& Lazzari 1996) and predation risk (Ward 1981, Manrique 
et al. 2006), circadian rhythms and microclimatic prefer-
ences (Lazzari 1991, Roca & Lazzari 1994, Lorenzo & 
Lazzari 1999, Guarneri et al. 2002, 2003), state depen-
dency (Bodin et al. 2009a, b) and diverse forms of learn-
ing (Vinauger et al. 2011a, b, 2012, 2013).

Triatomine host searching mechanisms include orien-
tation to airstreams laden with CO2 and other host odours 
(Núñez 1982, Taneja & Guerin 1995, Barrozo & Lazzari 
2004), exploitation of bird and mammal emission of in-
frared radiation (Lazzari & Núñez 1989, Flores & Laz-
zari 1996, Ferreira et al. 2007) and orientation to sources 
of water vapour (Barrozo et al. 2003). Furthermore, the 
intensity of these responses depends on modulatory fac-

tors such as the phase of the daily cycle (Barrozo et al. 
2004, Bodin et al. 2008), bug nutritional status (Bodin et 
al. 2009a) and experience (Vinauger et al. 2011a, b).

Kissing bugs also communicate through pheromones 
in diverse behavioural contexts (Lazzari et al. current is-
sue). Disturbed adult triatomines emit alarm pheromones 
to trigger avoidance of the emission spot by conspecif-
ics (Ward 1981, Manrique et al. 2006) and this has been 
suggested to mediate the avoidance of predators (Man-
rique et al. 2006). A pheromone also mediates triatomine 
aggregation inside shelters (Schofield & Patterson 1977, 
Figueiras et al. 1994, Lorenzo & Lazzari 1996, Pires et 
al. 2002b). The use of shelters during daylight hours is 
fundamentally driven by their strong negative phototax-
is (Reisenman et al. 1998) and at a later phase by an in-
tense thigmotactic behaviour. In addition, these insects 
locate bug aggregations searching for shelters marked 
with triatomine faeces. Once inside refuges, a contact 
chemical signal present in their cuticule induces their ar-
restment (Figueiras et al. 2009).Finally, a sex pheromone 
is emitted by female adults to attract males (Manrique 
et al. 2006, Pontes et al. 2008, Vitta et al. 2009, May-
Concha et al. 2013). Sexual signals also mediate male 
aggregation around mating pairs, apparently promoting 
polyandric reproduction in some bug species (Crespo & 
Manrique 2007, Pontes & Lorenzo 2012). Nevertheless, 
the latter seems not to be generalised in the subfamily 
Triatominae (Pires et al. 2004).

These insects seem to evaluate the adequacy of poten-
tial refuges by their physical properties (Lorenzo & Laz-
zari 1999). Temperature and relative humidity range pref-
erences apparently vary from species to species (Lazzari 
1991, Roca & Lazzari 1994, Guarneri et al. 2002, 2003, 
Pires et al. 2002a, Schilman & Lazzari 2004). The level of 
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Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine 
host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge 
choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular 
genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases 
of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius 
prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we 
suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper un-
derstanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown 
features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust 
comparative studies of insect sensory function and cognition.
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illumination and light spectral qualities of their environ-
ments clearly affect their spatial choices and the intensity 
of these responses seems to depend on the phase of the 
daily cycle (Reisenman et al. 1998, 2002). Vision also 
plays an important role in locomotion, flight orientation 
and spatial recognition by triatomines (Lazzari & Varjú 
1990, Reisenman et al. 1998, 2000, Minoli & Lazzari 
2006, Reisenman & Lazzari 2006, Insausti et al. 2013).

Triatomine behaviour is finely controlled by circa-
dian clocks (Lazzari 1992, Barrozo et al. 2004, Gueren-
stein & Lazzari 2009). In fact, activities are distributed 
within two precise temporal windows: one after dusk 
devoted to host search and another at dawn, dedicated to 
shelter location, egg-hatching and ecdysis (Lazzari et al. 
2013). Each activity peak is under the control of a spe-
cific endogenous oscillator that establishes the proper 
timing (Lazzari 1992).

There is a clear state dependency in the motivation of 
these insects to search for hosts, shelters and mates. Host 
search is modulated by age, nutritional status and repro-
ductive condition (Bodin et al. 2008, 2009a). Recently-fed 
insects and gravid females avoid host associated odours 
(Bodin et al. 2009a). The search for refuges also depends 
on the nutritional state and the phase of the diel cycle 
(Lorenzo & Lazzari 1998). The search for reproductive 
mates and mating receptivity depend upon the age since 
the adult ecdysis and the nutritional state of the adult in-
sects (Manrique & Lazzari 1994, Vitta & Lorenzo 2009).

The advent of next-generation sequencing (NGS), 
gene expression/regulation techniques and heterolo-
gous expression systems in the post-genomic era - Many 
insect genomes have been sequenced to date, forming a 
rich source of appropriate orthologues of behaviour con-
trolling genes to initiate searches in the Rhodnius pro-
lixus genome. Particularly, the genome of the pea aphid 
Acyrthosiphon pisum represents one of the best candi-
dates for guiding BLAST searches due to their closer 
phylogenetic relation (The International Aphid Genom-
ics Consortium 2010). This will be more relevant when-
ever a greater functional characterisation of this genome 

is made available. An assortment of gene sequencing, si-
lencing, deletion and heterologous expression techniques 
have enabled more elaborate studies on the genetic bases 
of biological processes (Figure). Insect physiology bene-
fited from this wealth of novel techniques and has shown 
impressive progress concomitant with the amazing po-
tential of one particular insect model, Drosophila mela-
nogaster (Table). In the last decades, it has been adopted 
as a main model for the study of the genetic and mo-
lecular bases of behaviour, being central to current neu-
roscience. The molecular mechanisms underlying circa-
dian rhythms, plasticity and the formation of memories, 
sensory function and even, sexual behaviour have been 
studied in Drosophila (Table). Nevertheless, it presents 
limitations for neuroscience studies due its small size 
that restricts manipulation. For example, studies like 
those developed by VB Wigglesworth using R. prolixus 
as an insect model for the study of metamorphosis and 
neurosecretory function could only be performed thanks 
to an extremely practical model that allowed surgical 
procedures with minimal deleterious consequences. The 
present paper intends to propose R. prolixus as a new 
tool for the study of insect neuroscience due to these 
three characteristics: manipulation-friendly size, back-
ground as a classical insect physiology model and deep 
knowledge of diverse aspects of its behaviour. These 
facts, together with the recent characterisation of its ge-
nome sequence, will allow the resurgence of an excel-
lent insect physiology model, as in Wigglesworth’s time, 
but in the omics era. Next follows a series of aspects of 
triatomine behaviour, as well as related candidate genes 
uncovered for other insects, whose characterisation and 
study would be invaluable in R. prolixus and other rel-
evant Chagas disease vectors.

The molecular basis of insect behaviour as a frame-
work for studies on triatomines - Sensory ecology of host 
searching - Host location in triatomines is dependent on 
environmental and physiological conditions evaluated by 
their brain in order to regulate a proper expression of this 
behaviour. When properly motivated to feed, these insects 

Workflow scheme for the study of functional genetics underlying triatomine behaviour. EAG: electroantennogram; FISH: fluorescence in situ 
hybridisation; IHC: immunohistochemistry; NGS: next-generation sequencing; qPCR: quantitative polymerase chain reaction; RT: reverse 
transcription; SSR: single sensillum recording. 
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need to locate warm-blooded animals for a blood meal. 
As mentioned above, this task is performed detecting host 
signals through an array of sensory channels that include 
the detection of CO2, diverse odours, heat and water va-
pour. Once host detection is achieved, these insects ap-
proach the animal and finally need to find an appropriate 
biting site to pierce a blood vessel. All these behavioural 
steps depend on the detection of stimuli at sensory neu-
rons in the periphery of their nervous system.

Chemoreceptor mediated host searching - CO2 is 
considered a long distance host cue promoting both 
the activation of resting triatomines and their orienta-
tion through odour modulated anaemotaxis (Barrozo & 
Lazzari 2004). The physiological and molecular bases of 
detection of this host cue are unknown for triatomines, 
but relevant progress has been made to uncover a simi-
lar mechanism in two dipterans (Jones et al. 2007, Lu et 
al. 2007). According to these reports, both Drosophila 
and Anopheles gambiae detect CO2 with heterodimers 
composed of gustatory receptors (GRs) that are co-ex-
pressed in specific olfactory receptor neurons (ORNs). 
These receptors (DmGr21a and DmGr63a) are expressed 
in the antennae of D. melanogaster and the maxillary 
palps of An. gambiae (AgGr22, AgGr23 and AgGr24). 
These GRs belong to three ancient lineages of GRs also 
found in moths and beetles (Robertson & Kent 2009). 
Surprisingly, these gene lineages have not been found 
in other arthropods like aphids, lice, honey bees, water 
fleas and black-legged ticks. Nevertheless, some of these 
arthropods are known to detect CO2, suggesting that 
they evolved a different molecular mechanism to detect 
this cue. The study of the molecular bases of CO2 detec-
tion by triatomines is therefore relevant and will rely on 
diverse bioassays already developed.

Host odours other than CO2 play a fundamental role 
in the orientation of triatomine bugs and their detection 
is probably mediated by proteins belonging to two dif-
ferent families: the odourant receptors (ORs) and the 
ionotropic receptors (IRs). In insects, ORs present seven 
transmembrane domains characteristic of all members of 
this protein family (Vosshall et al. 1999). In the ORNs 
expressing them, these receptors need to be co-expressed 
together with a phylogenetically conserved chaperon pro-
tein currently named “odourant receptor coreceptor-Or-
Co” for all insects (Larsson et al. 2004, Vosshall & Hans-
son 2011). ORs are divergent proteins with low sequence 
identity between insect species and their roles cannot 
be predicted by sequence homology alone. Olfactory 
sensory neurons express different receptor genes, such 
that individual neurons are functionally distinct (Table). 
Numbers of ORs are extremely variable in insects, rang-
ing from only 10 in the human louse to 265 in the flour 
beetle (TGSC et al. 2008, Kirkness et al. 2010).

A second family of insect ORs includes IRs, recently 
described in Drosophila, which present three transmem-
brane domains and constitute cation channels (Benton et 
al. 2009). These proteins have been suggested to mediate 
olfaction and taste in protostomes, an apparently ancient 
function for detecting chemical signals from the envi-
ronment (Croset et al. 2010). IRs have been proposed to Pr
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act as dimers or trimers of subunits co-expressed in the 
same neuron, which comprise individual odour-specific 
receptors and one or two broadly expressed coreceptors 
(Abuin et al. 2011). The suggested coreceptor units for 
IRs have thus been named IR25a, IR8a and IR76b. The 
ORNs expressing IRs are restricted to chemoreceptor 
hairs characterised by being double-walled, wall pore 
sensilla (e.g., grooved-pegs) and appear to have a rela-
tively conserved role for detection of a restricted set of 
odourants in different insects (Pophof 1997, Diehl et al. 
2003, Yao et al. 2005, Qiu et al. 2006). According to Sil-
bering et al. (2011), odourant detection by IRs represents 
an insect olfactory subsystem that evolved in parallel to 
OR based olfaction. Numbers of IRs also show a relevant 
degree of variation ranging from 12 in the human body 
louse to 95 in Aedes aegypti (Croset et al. 2010).

The identification of receptor genes mediating host 
odour detection in the R. prolixus genome along with an 
analysis of olfactory-driven behaviour in these insects 
may enable researchers to understand the mechanisms 
linking host recognition and triatomine behaviour. These 
receptors and their ligands need to be characterised us-
ing a multidisciplinary approach including the study of 
gene expression, its physiological modulation and the 
electrophysiological properties of the ORNs expressing 
them (Figure). A deeper comprehension of the olfactory 
physiology underlying triatomine host detection would 
permit the design of antagonists to block these func-
tions, both for OR and IR proteins involved.

Thermo and hygroreceptor mediated host searching - 
Triatomines make use of their highly developed thermal 
sense to detect potential hosts. These bugs detect the heat 
emitted by warm-blooded animals in the form of infrared 
radiation (Lazzari & Núñez 1989, Schmitz et al. 2000). 
The antennae of these insects house infrared detection or-
gans (Lazzari & Wicklein 1994, Flores & Lazzari 1996) 
and are also critical for the bilateral integration of thermal 
information necessary to approach hosts (Flores & Laz-
zari 1996). Triatomine thermoreceptor neurons have been 
poorly studied and information on their electrophysiologi-
cal properties is very limited (Bernard 1974). The physiol-
ogy of thermoreceptor neurons and their receptor proteins 
should be studied in these insects, which represent one of 
the most practical models to determine the molecular ba-
sis of heat perception in animals. Several genes belonging 
to the transient receptor potential A (TRPA) subfamily are 
known to mediate thermoreception in D. melanogaster, 
An. gambiae and Apis mellifera. The TRPA proteins be-
long to the TRP superfamily, which is composed of seven 
subfamilies of transmembrane protein channels with a 
relevant role in diverse sensory modalities including vi-
sion, taste, smell, thermo and mechanosensation (Table). 
The members of the TRPA subfamily are characterised by 
presence of six transmembrane domains and large num-
bers of ankyrin motifs in the N-terminal domain (Montell 
2005). Orthologous sequences in the genome of R. pro-
lixus need to be identified. Thermoreceptor genes with 
functional roles such as TRPA1, pyrexia and painless 
have been described in Drosophila (Tracey Jr et al. 2003, 
Lee et al. 2005, Wang et al. 2009).

Water vapour has been implicated as a host signal 
used by triatomines during their approach to blood-meal 
sources (Barrozo et al. 2003) and the molecular basis of 
its detection have been well studied in D. melanogaster 
(Liu et al. 2007). Briefly, vinegar flies detect air hu-
midity levels by means of two different TRP proteins 
belonging to the TRPV subfamily, nanchung (involved 
in detecting dry air) and water witch (required to detect 
moist air). An evaluation of possible orthologues of these 
genes in the genome of R. prolixus would allow func-
tional studies on their role in host location.

Host recognition and biting - After their final ap-
proach, triatomines need to recognise surface properties 
on the potential host in order to trigger biting responses 
properly. These can be reinforced by stimuli perceived 
through diverse sensory channels, but fundamentally 
through thermoreception and contact chemoreception. 
The first is mediated by antennal thermodetection struc-
tures recognising warm surfaces and even warmer blood 
vessels (Flores & Lazzari 1996, Ferreira et al. 2007). The 
second can be mediated by proteins belonging to at least 
two different families, the GRs and pickpocket recep-
tors (ppks). Insect GRs are membrane proteins gener-
ally dedicated to detect non-volatile substances (Table). 
These are G protein-coupled receptors presenting seven 
transmembrane domains that mediate the recognition of 
substances present on substrates and are expressed in 
the cilia of neurons housed inside contact chemoreceptor 
sensilla (Clyne et al. 2000). Pickpocket receptors belong 
to the Degenerin/epithelial sodium channel gene family 
and present two transmembrane helixes, two short intra-
cellular domains and a large cysteine-rich extracellular 
loop (Ben-Shahar 2011). In Drosophila, ppk receptors 
have been related with the detection of water, e.g. ppk28 
(Cameron et al. 2010, Chen et al. 2010) and salt, e.g. 
ppk11 and ppk19 (Liu et al. 2003). Their presence in the 
genome of R. prolixus should be assessed and their po-
tential role in host recognition in triatomines evaluated.

Pheromones: the molecular basis of chemical com-
munication processes - As already mentioned, phero-
mones are used by triatomines to exchange information 
in diverse behavioural contexts. The substances compos-
ing them are most probably detected by triatomine ORs, 
IRs, GRs and ppks which still need to be characterised. 
Potential agents blocking their functions may become al-
ternatives for triatomine control, which suggests that the 
identification of genes coding for these receptors would 
be extremely relevant to allow their manipulation. In the 
case of sex pheromone detection, any receptors showing 
exclusive expression in adults, males or female triatom-
ines should be main research targets and may be identi-
fied through NGS techniques such as RNAseq (Grosse-
Wilde et al. 2011, Pitts et al. 2011, Bengtsson et al. 2012).

Spatial and temporal orientation - Negative photo-
taxis is a common behavioural trait of most triatomine 
bug species (Lazzari et al. 1998, Reisenman et al. 1998, 
2000, Reisenman & Lazzari 2006). This behavioral fea-
ture induces avoidance of open areas during daylight 
hours (Lorenzo & Lazzari 1996, Mota & Lorenzo 2012), 
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which is mediated both by their compound eyes and 
ocelli (Lazzari et al. 1998, Reisenman et al. 1998). The 
sensitivity of behavioural responses mediating negative 
phototaxis in these insects varies in a circadian manner 
(Reisenman et al. 1998) and the migration of screening 
pigments in both visual organs is also under the control 
of a circadian clock (Reisenman et al. 2002). In contrast 
to their robust negative phototaxis, light sources become 
attractive to triatomines when adults initiate flight in 
search for new habitats, food and mates (Noireau & Du-
jardin 2001, Vazquez-Prokopec et al. 2004, Minoli & 
Lazzari 2006).

Insect visual pigments, as those of vertebrates, are 
photoreceptors composed of an opsin protein and a light-
sensitive chromophore derived from retinal (Terakita 
2005). Since most organisms synthesise a single type of 
chromophore, the diversity of visual pigment absorption 
spectra essentially depends on the opsin structure. Thus, 
the spectral sensitivity of a given species is controlled by 
the type of opsins existing in its genome and expressed 
in the retina cells of its visual organs (Briscoe & Chittka 
2001). R. prolixus offers an excellent model to study the 
molecular basis of vision in nocturnal arthropods. Char-
acterisation of its visual receptor genes would enable un-
derstanding their relation to behaviour.

Little is known about the mechanisms of photorecep-
tion and visual processing in triatomines. Some behav-
ioural studies suggest the ability of these bugs to dis-
criminate between distinct spectral properties of visual 
stimuli (Reisenman et al. 1998, 2000, Minoli & Lazzari 
2006, Reisenman & Lazzari 2006), but it remains un-
clear whether triatomine vision relies on chromatic and/
or achromatic mechanisms (Briscoe & Chittka 2001). 
True colour vision depends on subtractive interactions 
between at least two photoreceptor types (Menzel & 
Backhaus 1991), but so far the number of photoreceptor 
types in triatomine visual organs has not been reported. 
The study of opsin gene expression in triatomines could 
be combined with behavioural and neurobiological ap-
proaches to provide insights into the visual processing 
mechanisms displayed by these insects (Figure).

The expression of the triatomine behaviours listed 
so far is under a strict control of circadian clocks (Laz-
zari et al. 2004). This affects host search activity, egg 
hatching, moulting, the expression of thermopreference 
and the use of shelters (Lazzari et al. 2004). The study 
of the molecular bases of circadian rhythms has been 
one of the most elaborate areas in insect physiology 
in the last decades (Sandrelli et al. 2008). A complex 
network of genes controlling the circadian expression 
of insect behaviour, including main roles like those 
of clock, cycle, timeless and period (Table), has been 
characterised in Drosophila (Sandrelli et al. 2008). It 
is probable that orthologues of these and other clock 
genes exist in R. prolixus and their identity should be 
determined through bioinformatic searches. Likewise, 
their expression cycling profiles should be clarified to 
allow experimental studies on their control of relevant 
biological features of triatomine biology such as oscil-
lations in olfactory sensitivity.

Motivation: modulation and plasticity - The levels 
of expression of locomotor activity in triatomines seem 
extremely plastic, varying from almost null in immature 
insects to intense in starved individuals. This particular 
aspect of triatomine behaviour makes their physiology a 
cyclic process of long starvation intervals interspersed 
with short gaps of blood repletion that trigger a cascade 
of neuroendocrine events promoting moulting. This dis-
crete separation allows clearly associating experimental 
manipulation to gene expression alterations, establishing 
cause-effect relations not easily attributable for Droso-
phila or other classic models that feed continuously. The 
underlying physiological processes regulating locomo-
tor activity have not been studied in detail and these may 
involve mechanisms regulating gene expression. In the 
last decade, the study of a gene named foraging ( for), en-
coding a cGMP-dependent protein kinase, has allowed 
a better comprehension of the genetic basis of locomo-
tion in several insects (Reaume & Sokolowski 2011). For 
example, individuals showing two distinct profiles of 
locomotor activity controlled by different alleles of the 
for gene, called rovers and sitters, exist in D. melano-
gaster (Osborne et al. 1997). For locusts, changes in the 
expression levels of this gene are associated with behav-
ioural shifts characteristically triggered at high popula-
tion densities (Lucas et al. 2010). In addition, variations 
in the expression of the for gene have been indicated to 
promote nurse honey bees to become foragers (Ben-Sha-
har 2005). The existence, function and regulation of this 
gene in the R. prolixus genome and its potential relation 
to the ample regulation of locomotor activity in triatom-
ines deserve to be explored.

Brain production of diverse neuropeptides has been 
described in R. prolixus and their roles have been related 
to the control of bug physiology (Ons et al. 2009). Nev-
ertheless, their impact on triatomine behaviour has not 
been analysed and their potential on the modulation of be-
haviour needs to be addressed. Many aspects of triatom-
ine behaviour have been shown to be extremely plastic. 
Therefore, the study of the genetic and molecular bases of 
behaviour modulation in triatomines is necessary.

In recent years, several reports have shown that R. 
prolixus is capable of diverse forms of learning (Vinauger 
et al. 2011a, b, 2012, 2013, Minoli et al. 2013). These in-
clude simple habituation (Vinauger et al. 2013), associa-
tive learning with positive or aversive rewards (Vinauger 
et al. 2011a, b) and operant conditioning (Vinauger et 
al. 2013). All these facts indicate that this species might 
represent a friendly model to study molecular aspects of 
learning. Memory related genes, such as CrebB (Yin et 
al. 1994) or stripe (Lutz & Robinson 2013) have already 
been described in other insects and their characterisa-
tion in triatomines would allow a deeper understanding 
of behavioural plasticity.

Behaviour modulation due to parasite infection is 
another relevant issue not properly evaluated for tri-
atomines. Parasite-host associations are unapparent ele-
ments in an ecological community and affect competi-
tion relations intra and inter species, the distribution and 
abundance of species and even community composition 
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(Horwitz & Wilcox 2005). In this way hosts cannot be 
considered alone, as their relation with the environment 
and conspecifics necessarily includes their natural para-
sites. The ability of parasites to manipulate host pheno-
types facilitating transmission is an important and well 
known paradigm in the study of the evolutionary biology 
of host-pathogen interactions (Thomas et al. 2005, Moore 
2013). Changes in vector behaviour have been reported 
in different systems (Molyneux & Jefferies 1986, Schaub 
1989, 1992, Killick-Kendrick & Molyneux 1990, Alek-
seev 1991, Hurd 2003, Lefevre & Thomas 2008). Gener-
ally, these alterations affect feeding behaviour, funda-
mentally when parasites are transmitted by vector bites, 
as in African trypanosome infected tsetse flies (Jenni 
et al. 1980), Leishmania-infected sandflies (Beach et al. 
1985) and Plasmodium-infected mosquitoes (Ribeiro et 
al. 1985, Rossignol et al. 1986, Koella et al. 1998). R. pro-
lixus has its feeding behaviour affected when infected 
by Trypanosoma rangeli (Garcia et al. 1994). Authors 
suggest that this parasite interferes the synthesis of an-
tihemostatic molecules during salivary gland infection, 
but Paim et al. (2013) showed an unspecific reduction of 
stored proteins in the salivary glands in the presence of 
T. rangeli. Other behavioural effects on vectors, such as 
alterations in locomotory activity in Ae. aegypti infected 
by dengue virus (Lima-Camara et al. 2011) and changes 
in foraging and defecation in Mepraia spinolai infected 
by Trypanosoma cruzi (Botto-Mahan et al. 2006) have 
been eventually reported, but many aspects of infected 
vector behaviour are still unstudied.

In spite of the significant advances described here 
for triatomine behaviour studies, little is known about 
whether trypanosome infection affects bug behaviour. 
The few studies concerning behavioural modifications 
in triatomines infected by trypanosomes suggest that 
such alterations may occur (Garcia et al. 1994, Botto-
Mahan et al. 2006). Triatomines host several parasite 
species, such as T. cruzi, the causative agent of Chagas 
disease and T. rangeli. Alterations in triatomine behav-
iour caused by these parasites could affect their distri-
bution or even increase parasite transmission rates. In 
case trypanosomes are capable of inducing changes in 
triatomine behaviour, the molecular mechanisms trig-
gering this would need to be characterised.

The study of the molecular basis of behaviour in 
R. prolixus would allow a better understanding of fun-
damental features of vector biology. Besides, it would 
enable accessing relevant aspects of insect physiology 
mostly unknown for models other than classic holom-
etabolous insects, like dipterans and moths. This would 
encourage comparative approaches to study insect sen-
sory function, as well as cognition, at the molecular, cel-
lular and organism level.
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