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Ventilator-induced lung injury (VILI) is one of the most common complications of
mechanical ventilation and can severely affect health. VILI appears to involve excessive
inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-
17 (IL-17) plays a critical role in the immune system and the development of infectious and
inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse
model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of
lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated
macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase.
Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17
significantly reduced HTV-induced lung injury and inflammatory response. These results
were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that
IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for
its treatment.

Keywords: ventilator-induced lung injury, IL-17, inflammatory response, p38 MAPK, MCP-1
INTRODUCTION

Mechanical ventilation is widely used to support patients with acute respiratory failure and other
severe diseases. However, it is associated with ventilator-induced lung injury (VILI), a syndrome
that can cause or exacerbate lung injury through volu-, baro- and biotrauma (1–3). VILI can lead to
overwhelming inflammatory responses, such as activation of the innate immune system and release
org December 2021 | Volume 12 | Article 7688131
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of inflammatory molecules, which increase alveolar edema and
pulmonary vascular permeability (4). We previously found that
alveolar macrophages (AM) played an important role in
promoting inflammation in the occurrence and development
of VILI-mediated lung inflammation (5). VILI-induced
inflammation and the release of inflammatory factors appear
to involve phosphorylation of p38 mitogen-activated protein
kinase (MAPK) (6), but many details of the processes behind
VILI remain unclear.

Interleukin (IL)-17, a pro-inflammatory cytokine that was
first detected in human peripheral blood (7, 8), contributes to
inflammatory, tumor, and autoimmune diseases (9), as it can
induce the production of chemokines and inflammatory
molecules such as tumor necrosis factor-a, thereby activating
innate immune responses and recruiting immunecells (10).
Increased IL-17 levels in the serum, sputum, and broncho
alveolar lavage fluid (BALF) of asthmatic patients positively
correlate with disease severity (11–13). Moreover, IL-17 was
found to aggravate lung inflammation and reduce lung function
during H1N1 influenza virus infection and Klebsiella
pneumoniae-induced pneumonia (14, 15).

The p38 MAPK, a member of the MAPK superfamily, is
activated by various pro-inflammatory and stressful stimuli,
mediating the release of inflammatory cytokines involved in the
regulation of various diseases (16–19). Macrophage
chemoattractant protein-1 (MCP-1), also known as C–C
chemokine ligand 2 (CCL2), is an important downstream
molecule of p38 MAPK activation that modulates the recruitment
of inflammatory cells into damaged organs and tissues (20). MCP-1
may also exacerbate lung injury in patients with polycystic kidney
disease and acute respiratory distress syndrome (21, 22).

In this study, we aimed to determine whether IL-17 plays a
role in VILI. In particular, we asked whether IL-17 influences
VILI by activating p38 MAPK/MCP-1 signaling.
MATERIALS AND METHODS

Animals
Male C57BL/6 mice aged 6–8 weeks with a body weight of
22 ± 5 g were purchased from the Experimental Animal Center
of Guangxi Medical University. All mice were raised at 20–25°C
and 30–70% relative humidity and provided with protein-
containing feed and purified water. The study was approved by
the Experimental Animal Committee of Guangxi Medical
University, and all animal experiments were performed in
accordance with local and international ethical guidelines. Age-
and weight-matched controls were used in all experiments.

Mouse Model of VILI
Before tracheal incubation, all mice were fasted for 8h and left
without water for 4 h. Mice were then anesthetized by
intraperitoneal injection of sodium pentobarbital (60 mg/kg);
they were administered in 1/3 of the first dose to maintain
anesthesia every 45 min. A sterile 20G intravenous trocar was
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used for tracheal intubation at a depth of 1.2 ± 0.5 cm. The
catheter was fixed in the trachea to prevent one-lung ventilation
and was connected to a small-animal ventilator (catalog no.
SAR-1000, CWE) for mechanical ventilation with air. Non-
ventilated mice were used as controls, while mechanically
ventilated mice were ventilated with either normal tidal
volume (NTV, 7 mL/kg) or high tidal volume (HTV, 20 mL/kg).

To explore the source of IL-17 in the mice treated with HTV,
the mice were injected intraperitoneally with anti-Ly6G antibody
(400 µg; BP0075, BioXCell) one day before ventilation to deplete
neutrophils in vivo. To assess the role of IL-17 in the p38 MAPK/
MCP-1 pathway after HTV ventilation, mice were randomly
divided into four groups (H1-4) depending on whether
ventilation lasted 1, 2, 3, or 4 h. One day before ventilation,
the mice were injected intraperitoneally with anti-IL-17 antibody
(400 µg; BE0173, BioXCell), and at 30 min before anesthesia 200
µg anti-IL-17 antibody was administered through intratracheal
instillation. Recombinant mouse IL-17 (rmIL-17; 0.5 mg, catalog
no. 576006, Biolegend) was administered through intratracheal
instillation 30 min before anesthesia. HTV-ventilated mice
administered with saline served as controls.

Cell Strains
RAW264.7 mononuclear macrophage leukemia cells were
purchased from the American Type Culture Collection. Cells
were grown in Dulbecco’s Modified Eagle’s medium (DMEM;
catalog no. C11995500BT, Gibco), and the optimal infection
conditions and multiplicity of infection were determined. In the
optimized procedure, a 500 mL suspension of RAW246.7 cells
and 20 mL of HitransG A infection-enhancing solution were
added to each well of a 24-cell well plate. After cells reached 50%
confluence, they were co-cultured with 20 mL of HitransG P
infection-enhancing solution and lentivirus infection solution.
After 16 h, the medium was replaced with fresh DMEMmedium.
At 72 h after transfection, the transfection efficiency was
determined by fluorescence microscopy. Transfected cells were
selected using 2 mg/mL puromycin, which was reduced to 1 mg/
mL for further screening.

To clarify the mechanism of IL-17 in vitro, wild-type
RAW264.7 cells were stimulated with rmIL-17(100 ng/mL)
and cultured for 1, 2, 3, 4, or 5 h. Non-stimulated wild-type
RAW264.7 cells served as controls. RAW264.7 cells transfected
with negative-control lentivirus and stimulated with rmIL-17 for
4 h are referred to below as the CN group. RAW264.7 cells
transfected with lentivirus encoding short hairpin RNA (shRNA)
against p38 MAPK (Shanghai Jikai Gene Technology, Shanghai,
China) and cultured with rmIL-17 for 4 h are referred to below as
the shRNA group.

Inflammatory Response
After the animal model was established, all mice were sacrificed by
carotid artery bleeding, and their lungs were excised and weighed
immediately (wet weight) and again after drying in an oven at
60°C for 72 h (dry weight). All operations were conducted
carefully to minimize the risk of inflammatory activation.

The total protein concentration in BALF was estimated using
the bicinchoninic acid (BCA) assay (P0012S, Beyotime) to assess
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pulmonary permeability. The levels of IL-17 and MCP-1were
assayed in BALF and culture medium were detected using the
ELISA kits (CSB-E04608m, Cusabio Biotech and EK0568,
Boster) according to the manufacturers’ instructions.

Histopathological Analysis
The pathological damage in mouse lungs after HTV ventilation
was assessed after hematoxylin–eosin (H&E) staining. Briefly, the
collected mouse lungs were fixed with 3.7% paraformaldehyde,
embedded in paraffin, and cut into 5-mm sections. After dewaxing,
the sections were stained and the tissue morphology was observed
with a microscope. The degree of lung injury was evaluated by
applying a four-point scale (0, no injury; 1, minor injury; 2,
moderate injury; 3, severe injury) to each of the following
parameters (6, 23, 24): alveolar congestion, hemorrhage,
inflammatory cell infiltration, and alveolar wall thickening.
These individual scores were summed to give the total score of
lung damage.

Immunoblot Analysis
Lung tissues and RAW264.7 cells were lysed in RIPA lysis buffer
(P0013B,Beyotime) supplemented with protease inhibitor
(ST505, Beyotime) and phosphatase inhibitor (P1050,
Beyotime), and the protein concentration in each sample was
determined using the BCA assay. Samples were denatured,
fractionated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, and transferred to polyvinylidene difluoride
membranes. The non-specific membrane binding sites were
blocked with 5% bovine serum albumin (BSA) for 1 h.
Membranes were then incubated at 4°C overnight with
primary antibodies (all diluted 1:1000) against the following
proteins: IL-17 (ab79056, Abcam), MCP-1 (catalog no. 2029,
CST),p38 MAPK (catalog no. 9212, CST), and phosphorylated
(p)-p38 MAPK (catalog no. 4511, CST). Blots were washed
several times with PBS buffer, then incubated for 1 h with goat
anti-rabbit IgG secondary antibody (diluted 1:15000; ab96899,
Abcam). The bands were visualized using a fluorescent scanner.
As an internal reference, GAPDH was immunostained using an
antibody (1:1000; catalog no. 5174, CST).

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total RNA was isolated from lungs and RAW264.7 cells using the
MiniBEST Universal RNA Extraction kit (catalog no. 9767, TaKaRa
Bio, Otsu) following the manufacturer’s instructions. After
determining RNA quality and quantity by spectrophotometry,
cDNA was synthesized using the PrimeScript™ RT Master Mix
kit(RR036A, TaKaRa) and amplified with the SYBR® Premix Ex
Taq™ II(TliRNaseH Plus) kit(RR820A, TaKaRa). The following
primers were used: GAPDH forward, 5′-TGTGTCC
GTCGTGGATCTGA-3′; GAPDH reverse,5′-TTGCTGT
TGAAGTCGCAGGAG-3′; MCP-1 forward, 5′-CAGGT
CCCTGTCATGCTTCT-3′; MCP-1 reverse, 5′-GTGGGGCG
TTAACTGCATCT-3′ ; p38 forward, 5′-CTGTCGAGA
CCGTTTCAGTCCA-3 ′ ; p38 reverse ,5 ′-GTGTGAAC
ACATCCAACAGACCAA-3′. The relative expression of
Frontiers in Immunology | www.frontiersin.org 3
GAPDH, MCP-1, and p38 was determined using the 2−DDCt
method and normalized to expression of GAPDH.

Flow Cytometry
Flow cytometry was used to detect the accumulation of
neutrophils in the lung tissues of mice and the expression of
IL-17 in neutrophils, Th17 cells, and T cells. Lung sections were
treated with 200 U/mL Type I collagenase (950 mL, 17018029,
Gibco), DNaseII(20 U,4942078001, Merck), and FBS
(50 mL,10099141, Gibco)to prepare single-cell suspensions. Red
blood cell lysis solution (1mL) was then added to each cell
suspension to remove red blood cells and adjust the density to
5 × 106 mL−1. Cells were labelled using antibodies against Ly6G
(catalog no.REA256, Miltenyi Biotec), CD4 (catalog no. GK1.5,
Miltenyi Biotec), and CD90 (catalog no. 105201, Biolegend).
After washing with PBST buffer, cells were ruptured and
intracellular proteins were labelled for 20 min using anti-IL-17
antibody (catalog no. 560522, BD Horizon) and analyzed at 4 °C
using a flow cytometer.

Immunofluorescence
Immunofluorescence was used to assess the expression of MCP-1
in RAW264.7 cells; the expression of IL-17 (catalog no.14-7179-82,
Thermo Fisher Scientific), CD4 (catalog no.100401, Biolegend),
CD90 (catalog no.105201, Biolegend), and Ly6G (catalog
no.127601, Biolegend) in mouse lungs; and the source of IL-17
in mouse lung tissues. All sections were fixed with 3.7%
paraformaldehyde, ruptured with 0.2% Triton X-100, and
blocked with BSA and goat serum. After incubation with the
above- mentioned primary antibodies at 4°C overnight, samples
were incubated with goat anti-rabbit IgG secondary antibody for
1 h. Nuclei were stained with 4′,6-diamidino-2-phenylindole, then
samples were observed using a confocal laser scanning microscope.

Statistical Analysis
Statistical analysis was performed using SPSS 22.0 software (IBM,
USA). All data were reported as mean ± standard deviation (SD).
Differences in parametric data that showed a normal distribution
were assessed for significance using one-way analysis of variance
and the Bonferroni test. Differences associated with a two-tailed
P < 0.05 were considered statistically significant.
RESULTS

HTV Ventilation Upregulates IL-17 in
Lung Tissues
To assess the effect of HTV ventilation on IL-17 expression, we
determined the levels of IL-17 in non-ventilated, NTV, and HTV
ventilated mice. The IL-17 levels in lungs were significantly
higher in the HTV group than in the control and NTV groups
(Figures 1A–C). Compared with CON group, the concentration
of IL-17 in BALF also increased in HTV group (Figure 1D).
These results suggest that IL-17 is closely associated with the
development of VILI.
December 2021 | Volume 12 | Article 768813
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A

B D
C

FIGURE 1 | Ventilation with high tidal volume (HTV) up regulates interleukin (IL)-17 in the lungs. (A–C) IL-17 expression in the lung tissue of mice ventilated for 4 h
with normal tidal volume (NTV, 7 mL/kg) or high tidal volume (HTV, 20 mL/kg). (D) Concentration of IL-17 in bronchoalveolar lavage fluid (BALF) of mice ventilated
with NTV and HTV for 1 h, 2 h, 3 h, or 4 h. CON, non-ventilated mice. #P < 0.05 vs. CON group; *P < 0.05 vs. H1, H2, H3, or H4 group.
A

B

FIGURE 2 | Interleukin (IL)-17 does not originate from Th17 cells and T cells after high tidal volume (HTV) ventilation. (A) Number of CD4+IL-17+ cells in mouse lung
tissue. (B) Co-localization of IL-17 with CD4 and CD90 in the lung tissues. Data are shown as mean ± SD (n = 6). CON, non-ventilated mice; NTV, ventilated for 4 h
with normal tidal volume; HTV, ventilated for 4 h with high tidal volume.
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IL-17 Is Mainly Produced by Lung
Neutrophils After HTV Ventilation
IL-17 is expressed mainly by Th17 cells and neutrophils (25, 26).
Flow cytometry showed no significant difference in the numbers
of CD4+IL-17+ cells among control, NTV and HTV groups
(Figure 2A). IL-17 in the HTV group did not co-localize with
the Th17 cell surface marker CD4 or the T cell surface marker
Frontiers in Immunology | www.frontiersin.org 5
CD90 (Figure 2B), suggesting that IL-17 is not produced by
Th17 cells and T cells during VILI. In contrast, the number of
Ly6G+neutrophils was significantly higher in the HTV group
than in the other two groups (Figure 3A). Immunofluorescence
shows that IL-17 co-localizes with the neutrophils surface
marker Ly6G (Figure 3B). Furthermore, when neutrophils
were depleted in mice (Figures 3C, F), compared with the
A

B

D

E F G

C

FIGURE 3 | Interleukin (IL)-17 is produced by lung neutrophils after HTV. (A) Aggregation of neutrophils in mouse lung tissue. (B) Co-localization of IL-17 with Ly6G
in the lung tissues. (C) Neutrophils in mouse lung cells. (D) IL-17 levels in mouse lung tissues. (E) Concentration of IL-17 in BALF. (F) Neutrophils in blood of mice.
(G) Concentration of IL-17 in serum. Data are shown as mean ± SD (n = 6). aP < 0.05 vs. CON group, bP < 0.05 vs. NTV group, eP < 0.05 vs. HTV+anti-Ly6G
group. CON, non-ventilated mice; HTV+NS, intraperitoneal injection with normal saline (NS) and ventilated for 4 h with high tidal volume; HTV+anti-Ly6G,
intraperitoneal injection with anti-Ly6G antibody and ventilated for 4 h with high tidal volume.
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HTV group, the levels of IL-17 in lung tissue (Figure 3D), BALF
(Figure 3E) and plasma (Figure 3G) were significantly reduced
in the HTV+anti-Ly6G group. These results indicate that IL-17 is
produced mainly by Ly6G+neutrophils that are recruited to the
lungs at the onset of VILI.

IL-17 Inhibition Attenuates VILI-Induced
Inflammation
The wet weight to dry weight ratio (W/D) of mouse lungs reflects
the degree of lung edema, as the fluid that accumulates in the
lung interstitium, alveolar cavity, and small bronchi increases
lung tissue wet weight. Moreover, lung inflammation leads to the
secretion of several inflammatory molecules in the alveolar
cavity. We took advantage of these phenomena to assess
whether inhibiting the function of IL-17 using an anti-IL-17
antibody (Figure 4A) would reduce pulmonary edema and total
protein levels in BALF. Indeed, treating the HTV group with
anti-IL-17 antibody led to significantly lower pulmonary edema
and total BALF protein (Figures 4B, C), as well as milder
alveolar congestion, alveolar interstitial thickening, and
neutrophil infiltration (Figure 4D). These results suggest that
blocking IL-17 can mitigate inflammation caused by VILI.

rmIL-17 Upregulates MCP-1 in RAW264.7
Cells via the p38 MAPK Pathway
The p38 MAPK, as a classic downstream molecule of TLR4, has
been associated with the pathogenesis of VILI (6). RAW264.7
cells were stimulated with rmIL-17 to examine whether IL-17
may interact with p38 MAPK. RT-qPCR analysis revealed that
rmIL-17 significantly upregulatedMCP-1 mRNA expression
(Figures 5A, B), which p38 MAPK knockdown partially
Frontiers in Immunology | www.frontiersin.org 6
reversed (Figures 5C–F). Western blot and RT-qPCR analysis
also showed that rmIL-17 promoted the phosphorylation of p38
MAPK and MCP-1, without affecting total levelsofp38-MAPK
(Figures 5A, E). These results suggest that IL-17 upregulates the
expression ofMCP-1 by promoting the phosphorylation of p38
MAPK in lung macrophages.

IL-17 Upregulates MCP-1 in Mouse Lung
Tissues via the p38 MAPK Pathway
To explore whether the observed effects of IL-17 on the p38
MAPK/MCP-1 pathway in vitro also occur in vivo, HTV
ventilated mice were injected with anti-IL-17 antibody orrmIL-
17 before ventilation. Anti-IL-17 antibody significantly reduced
MCP-1 and p-p38 MAPK expression (Figures 6A–C), whereas
rmIL-17 exerted the opposite effects (Figures 6D, E). At the
same time, neither treatment affected the total level of p38
MAPK in lung or BALF (Figures 6C, E). These results confirm
that IL-17 can upregulate MCP-1 by promoting the
phosphorylation of p38 MAPK.
DISCUSSION

VILI is a pathophysiological process that leads to overwhelming
inflammatory responses when alveolar macrophages,
neutrophils, alveolar epithelial cells, and endothelial cells
migrate to the lungs (27–29) and when pro-inflammatory
cytokines are expressed. Current treatment methods for VILI
are mainly based on regulating the tidal volume, oxygen
concentration, and positive end-expiratory pressure of the
A
B

D

C

FIGURE 4 | Inhibition of interleukin (IL)-17 attenuates ventilator-induced pulmonary edema. (A) IL-17 levels in mouse lung tissues. (B) Total protein concentration in
bronchoalveolar lavage fluid (BALF) of mice. (C) Wet weight to dry weight (W/D) ratio of mouse lungs. (D) Histopathological analysis and degree of lung injury after
ventilation with high tidal volume (HTV). Magnification, 400×. Data are shown as mean ± SD (n = 6). aP < 0.05 vs. CON group, cP < 0.05 vs. HTV group. CON, non-
ventilated mice; HTV, ventilated for 4 h with high tidal volume; anti-IL-17+HTV, treated with anti-IL-17 antibody and ventilated for 4 h with high tidal volume.
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ventilator (1, 30, 31). However, these therapies generally show
low efficacy, highlighting the need to clarify the underlying
mechanism of VILI in order to identify more effective targets.

In this study, we explored the role of IL-17 and the p38
MAPK/MCP-1 pathway in the pathogenesis of VILI. In our
experiments in vitro and in vivo, HTV ventilation significantly
Frontiers in Immunology | www.frontiersin.org 7
increased the number of lung neutrophils, which secreted large
amounts of IL-17, and this cytokine in turn upregulatedMCP-1
via the p38 MAPK pathway. Inhibition of IL-17 significantly
reduced lung injury caused by HTV mechanical ventilation,
suggesting that IL-17 may be a promising new target for the
treatment of VILI-induced inflammation.
A B

D E

F

C

FIGURE 5 | Recombinant mouse interleukin-17 (rmIL-17) upregulates MCP-1 in RAW264.7 cells via the p38 MAPK pathway. (A, C) Levels of mRNAs encoding p38
and MCP-1 in RAW264.7 cells. (B, D) Concentration of MCP-1 in medium from RAW264.7 cultures. (E) Levels of p38, phosphorylated (p)-p38, and MCP-1 in
RAW264.7 cells. (F) Expression of MCP-1 in RAW264.7 cells, as determined by immunofluorescence. Data are shown as mean ± SD (n = 4). #P < 0.05 vs. CON
group, *P < 0.05 vs. wild-type RAW264.7 cells cultured with rmIL-17, nP < 0.05 vs. CON group, mP < 0.05 vs. CN group. CON, wild-type RAW264.7 cells; 1h, 2h,
3h, 4h, wild-type RAW264.7 cells stimulated with rmIL-17 (100 ng/mL) and cultured for 1, 2, 3, 4, or 5 h; rmIL-17, wild-type RAW264.7 cells cultured with rmIL-17
(100 ng/mL); CN, negative lentivirus-transfected RAW264.7 cells stimulated with rmIL-17 (100 ng/mL) for 4 h; p38 MAPK shRNA, RAW264.7 cells transfected with
lentivirus encoding short hairpin RNA against p38 MAPK and cultured with rmIL-17 (100 ng/mL) for 4 h.
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IL-17 receptors contain a conserved SEFIR domain, which
binds to Act1 to activate downstream signal cascades (32, 33).
Downstream targets of IL-17 include the NF-kB signaling
pathway (34, 35), three MAPK pathways (JNK, ERK, and p38),
and the phosphoinositide kinase pathway (36–38). Our findings
about the role of IL-17 in VILI extend the list of conditions in
which the cytokine can contribute to excessive inflammation,
which include bacterial and fungal infections (39, 40). In fact, in
certain cases of bacterial infection, higher levels of IL-17 may be
beneficial to eliminate pathogens (41–43). Thus, whether
elevated IL-17 levels lead to injury or benefit may depend on
the cells secreting the cytokine and on other factors.

Inflammatory cells infiltrate into affected tissues, where they
trigger local immune responses. Neutrophils, a type of
polymorphonuclear leukocytes, are the first inflammatory cells
recruited to inflammatory sites, where they help eliminate
pathogens through multiple mechanisms (44–46). Although
neutrophils are short-lived, they can be activated several times
during inflammation (47, 48) and their chemotaxis is elevated in
the lungs of patients with bacterial pneumonia or chronic
bronchitis (49, 50). Here, we found a significantly high number
of lung neutrophils in HTV ventilated mice, and flow cytometry
revealed that lung neutrophils rather than Th17 cells are the main
source of IL-17 during VILI. Therefore, we speculate that lung
neutrophils may promote pneumonia response after HTV
ventilation by promoting inflammation on their own, as well as
by producing IL-17 to trigger inflammatory responses in other cell
types. Future studies should clarify the role of neutrophils in VILI.

Although IL-17 participates in VILI through the p38 MAPK/
MCP-1 pathway, there are still some limitations in this research
that deserve improvement. First of all, HTV ventilation may
Frontiers in Immunology | www.frontiersin.org 8
cause respiratory alkalosis, we should continue to monitor and
control the PCO2 and pH. However we had some difficulties in
the monitoring methods mentioned above. Another limitation
was there are some other factors that affect the severity of lung
injury besides tidal volume. To reduce the influence of these
factors, we should continuously monitor hemodynamics, PEEP
or lung recruitment.
CONCLUSION

Our study suggests that IL-17 produced by lung neutrophils can act
via the p38 MAPK/MCP-1 pathway to drive pulmonary
inflammatory responses in VILI. Inhibition of IL-17 can effectively
relieve VILI, suggesting that IL-17 may serve as a new target for
attenuating lung inflammation induced by HTV ventilation.
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