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Abstract. Differentially methylated genes in breast cancer 
were screened out and a prognostic risk model of breast 
cancer was constructed. RNA-seq data and methylation data 
for breast cancer-related level 3 were downloaded from The 
Cancer Genome Atlas (TCGA), and MethylMix R package 
was used to screen out differentially methylated genes in 
cancer tissues and normal tissues. DAVID was used to 
analyze the GO enrichment of differentially methylated genes, 
ConsensusPathDB to analyze the PATHWAY pathways of 
differentially methylated genes, the single factor, multivariate 
Cox analysis and Akaike Information Criterion (AIC) to 
construct the prognostic risk model of breast cancer, and the 
ROC curve to judge the clinical application value of the risk 
model. Two hundred and fifty-seven differentially methylated 
genes were successfully screened out in cancer tissues and 
normal tissues; 39 related to GO enrichments and 19 related 
to PATHWAY pathways were found; the best prognostic risk 
model was obtained, risk score = QRFP (degree of methyla-
tion) x (-3.657) + S100A16 x (-3.378) + TDRD1 x (-4.001) + 
SMO x (3.548); it was determined from each sample that the 
median value of the risk score was 0.936; using it as the cut-off 
value, the five-year survival rate in high-risk group of patients 
was 72.4% (95% CI, 62.7-83.6%), and that in low-risk group 
of patients was 86.6% (95% CI, 78.6-95.3%). The difference 
in the survival rate between the high-risk and low-risk groups 
was significant (P<0.001). The AUC of ROC curve was 0.791, 
so the model had a good clinical application value. This study 

successfully found multiple breast cancer-related methylation 
genes, the relationship between them and the course and prog-
nosis of breast cancer was analyzed. Moreover, a prognostic 
risk model was constructed, which facilitated the expansion of 
the current study on the role of methylation in the occurrence 
and development of breast cancer.

Introduction

Breast cancer is a malignant tumor in the mammary gland 
tissue (1). Orthotopic breast cancer is not fatal, but its cells 
are easy to fall off, and these shedding cancer cells will be 
free from blood or lymph fluid and spread throughout the 
body to form cancer, then cancer metastasis is formed, thereby 
threatening life (2). The incidence of breast cancer has been 
on an upward trend, and in statistics of DeSantis et al (3), 1 out 
of 10 women in the United States has breast cancer. Although 
China is not a country with a high incidence of breast cancer, 
the growth rate in China has been approximately 2 percentage 
points higher than that in some high-incidence countries in 
recent years (4). In the recently published data (5), the inci-
dence of breast cancer still ranks first among female malignant 
tumors in the cancer registration in China. The peak of onset 
age of breast cancer is approximately 53 years, but now it tends 
to be younger (6).

Methylation is an important modification of protein and 
nucleic acid and one of the most important research topics in 
epigenetics (7). In recent years, methylation has been studied 
in the diagnosis, efficacy and prognostic evaluation of various 
cancers such as ovarian cancer (8), cervical cancer (9) and 
hepatocellular carcinoma (10). The clinical application of 
methylation in breast cancer has also been systematically 
studied. The report of An et al (11) proposed that the methy- 
lation of MGMT gene that was closely related to the clinical 
stage, histological grade and lymph node metastasis of breast 
cancer played an important role in its progression. Studies of 
Hao et al (12) showed that the combined detection of the methy- 
lation degree of a variety of genes could be a good judgement 
of tumor stage and lymph node metastasis. However, these 
studies have focused on a small number of candidate genes 
and have not systematically screened out methylation genes 
that may be related to the occurrence and development of 
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breast cancer. The Cancer Genome Atlas (TCGA) (13) and 
the Gene Expression Omnibus (GEO) (14) are commonly used 
public databases in bioinformatics analysis, but the former 
has complete patient data and is more conducive to the related 
analysis of the course and prognosis. Therefore, we hope to 
expand the current study on the role of methylation in the 
occurrence and development of breast cancer by screening 
out breast cancer-related methylation genes from the TCGA 
database, and analyzing the relationship between them and the 
course and prognosis of breast cancer.

Materials and methods

Data collection and preprocessing. The data were down-
loaded from the TCGA database. The RNA-seq data and 
methylation data for level 3 were downloaded from TCGA, 
and the selected samples were all patient tissue samples. First, 
the RNA-seq data files were merged into a matrix file using 
the merge script of the Perl language (http://www.perl.org/). 
Then, the gene name was converted from the Ensembl id to 
the matrix of the gene symbol through the Ensembl database 
(http://asia.ensembl.org/index.html). At the same time, the 
methylation data were merged into a single file through the 
merge script of the Perl language. In the downloaded RNA-seq 
data and methylation data, the data with incomplete clinical 
information were excluded. Only the samples that had under-
gone RNA sequencing and methylated chip data were retained 
in the remaining data to make it possible to perform a linkage 
analysis of transcription and methylation.

The study was approved by the Ethics Committee of 
The First Affiliated Hospital of China Medical University 
(Shenyang, China).

Screening of differentially methylated genes. All cancer 
tissues and normal tissues were compared and all high and 
low methylated genes were looked for (FDR<0.05) using the 
MethylMix R package (http://www.bioconductor.org/packa- 
ges/release/bioc/html/MethylMix.html) in the R Project for 
Statistical Computing software (Sax software; SAS Institute 
Inc., Cary, NC, USA). Bidirectional hierarchical clustering 
of differentially methylated genes was performed, and the 
differential distribution map of the genes with the most signifi-
cant methylation difference screened out was plotted using 
pheatmap R package (https://cran.r-project.org/web/packages/
pheatmap/), and the distribution of methylation degree of 
cancer samples relative to normal tissues was observed. The 
correlation between the gene methylation degree and the 
corresponding gene expression was calculated using Pearson's 
correlation test in the cor.test function of the R language 
(https://www.r-project.org/) (filter condition was cor <-0.3 and 
P<0.05).

GO enrichment analysis. The GO enrichment analysis of 
differentially methylated genes was performed using DAVID 
(Database for Annotation, Visualization and Integration 
Discovery). First, the DAVID database was logged in (https://
david.ncifcrf.gov/), the Functional Annotation was selected, 
and the list of differentially expressed genes was submitted. 
Then, the OFFICIAL_GENE_SYMBOL in the Select 
Identifier was selected, and the Gene List in List Type was 

selected, and the Submit List was clicked finally. At the same 
time, the figure of enrichment results was plotted using the 
GOplot R package (https://cran.r-project.org/web/packages/
GOplot/).

PATHWAY analysis. The differentially methylated genes 
were analyzed using the over-representation analysis func-
tion of ConsensusPathDB (http://cpdb.molgen.mpg.de/). The 
PATHWAY pathways enrichment analysis of differentially 
methylated genes was performed using the KEGG database. 
P<0.05 was the screening condition.

Single factor and multivariate Cox analysis. To determine 
the methylation genes related to survival, single factor Cox 
analysis of differentially methylated genes was performed 
using Survival R package (https://cran.r-project.org/web/
views/Survival.html), and selection of differentially meth-
ylated genes with P<0.05 in the single factor analysis for 
subsequent multivariate analysis was performed. The optimal 
risk model was found based on the Akaike Information 
Criterion (AIC) (15).

Survival curve and ROC curve plotting. According to the 
optimal risk model obtained from the multivariate Cox 
analysis and the gene methylation degree of each sample, the 
survival score was performed, and the median value of risk 
score of each sample was calculated. The patients above the 
median value were in the high-risk group, patients below it in 
the low-risk group. The survival curves of the two groups were 
plotted using the Kaplan-Meier method, and the difference 
between them was tested using the log-rank method. The ROC 

Table I. Clinical data of samples.

Covariates Type No. of patients [n (%)]

Survival status Alive 616 (91.94%)
 Dead 54 (8.06%)
T T1 175 (26.12%)
 T2 381 (56.87%)
 T3 93 (13.88%)
 T4 21 (3.13%)
N N0 306 (45.67%)
 N1 233 (34.78%)
 N2 76 (11.34%)
 N3 49 (7.31%)
 NX 6 (0.90%)
M M0 530 (79.10%)
 M1 11 (1.64%)
 MX 129 (19.25%)
Stage Stage I 112 (16.72%)
 Stage II 380 (56.72%)
 Stage III 167 (24.93%)
 Stage IV 11 (1.64%)
Age ≤65 482 (71.94%)
 >65 188 (28.06%)
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curve was plotted to predict the value of the patient's survival 
time through the gene methylation degree.

Results

Clinical data of samples. According to the inclusion criteria 
we set, 670 samples were finally obtained as the subjects, and 
the clinical data statistics are shown in Table I.

Screening of differentially methylated genes. Through a 
comparison of the gene methylation levels in cancer and normal 
tissues, 257 differentially methylated genes were screened out 
(FDR<0.05) and the thermal map was plotted (Fig. 1), in which 
there were 161 genes with higher methylation degree of cancer 
tissues than that of normal tissues, and 96 genes with it lower 
than that of normal tissues. The FDR (corrected P-value) was 
used as the standard and the first 10 differentially methylated 

Figure 1. Thermal map analysis of differentially methylated genes. The pheatmap R package was used for bidirectional hierarchical clustering of differentially 
methylated genes in breast cancer and adjacent tissues. In the figure, red indicates that the gene is highly methylated in the sample, and green low methylated 
in the sample.
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genes with the smallest P-value were selected (Table II). The 
distribution map of methylation degree was plotted (Fig. 2A-J).

Correlation analysis between methylation degree and gene 
expression. Correlation analysis between methylation degree of 

257 differentially methylated genes and their gene expression 
was performed, and it was found that the methylation degree 
of these 257 genes was negatively correlated with their 
expression. The higher the methylation degree was, the lower 
the gene expression. Based on the P-value obtained from the 

Figure 2. Distribution map of methylation degree of partially differentially methylated genes (A-J). The abscissa is the methylation degree, the ordinate is 
the number of methylation samples, the histogram represents the methylation distribution of cancer group, and the curve is the simulated trend curve of the 
methylation distribution of cancer group. The black horizontal line above the figure is the methylation level distribution of the normal sample. The distribution 
of methylation degree of the cancer sample relative to the normal sample can be clearly seen from the figure.
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Pearson's correlation test, the first 10 genes with the smallest 
P-value were selected (Table III), and the correlation figure 
was plotted (Fig. 3A-J).

GO enrichment analysis. The GO enrichment analysis of 
257 differentially methylated genes was performed using 

DAVID, and results showed that the most relevant enrichments 
were ‘extracellular exosome’, ‘superoxide dismutase activity’, 
‘intracellular’, ‘mast cell granule’ and ‘glutathione derivative 
biosynthetic’, (Table IV and Fig. 4).

PATHWAY analysis. The PATHWAY pathways enrichment 
analysis of 257 differentially methylated genes was performed 
using ConsensusPathDB, and a total of 19 related PATHWAYs 
were found (P<0.05), among which the most relevant were 
‘D-Glutamine and D-glutamate metabolism’, ‘Estrogen 
signaling pathway’ and ‘Fluid shear stress and atherosclerosis’ 
(Table V and Fig. 5).

Single factor and multivariate Cox analysis. Single factor Cox 
analysis of differentially methylated genes was performed 
using the Survival R package, the screening condition was 
P<0.01, and 14 genes were obtained (Table VI). At the risk 
ratio (HR) >1, the higher the gene expression was, the higher 
the risk was; at HR <1, the higher the gene expression was, the 
lower the risk was. Multivariate analysis of 14 selected genes 
significantly different from single factor was performed using 
Survival package. The optimal model was found according to 
AIC and four optimal gene models were obtained. The risk 
model obtained was: risk score = QRFP (Degree of methyla-
tion) x (-3.657) + S100A16 x (-3.378) + TDRD1 x (-4.001) + 
SMO x (3.548).

Survival curve and ROC curve plotting. According to the 
optimal risk model obtained from the multivariate Cox anal-
ysis and the degree of gene methylation of each sample, the 
survival score was performed. The median value of risk score 
of each sample was calculated to be 0.936, and used as the 
cut-off value, 335 patients with a risk score >0.936 were in the 
high-risk group and 335 patients <0.936 in the low-risk group. 
Based on the high-risk and low-risk groups, the survival curve 
was plotted using the Kaplan-Meier method (Fig. 6). From the 
survival data, we could see that the five-year survival rate in the 
high-risk group of patients was 72.4% (95% CI, 62.7-83.6%), 
and that in the low-risk group of patients was 86.6% (95% 
CI, 78.6-95.3%), and the difference thereof between the two 
groups was significant (P<0.001). At the same time, the ROC 
curve was plotted (Fig. 7) and AUC was 0.791, indicating that 
our model could well predict patient survival.

Discussion

In this study, 670 samples which had undergone RNA 
sequencing and methylated chip data were selected by TCGA, 
in which a differential methylation analysis was performed, 
and correlation analysis, GO enrichment analysis, PATHWAY 
analysis, single factor analysis, multivariate analysis, 
prognostic model and ROC curve were performed on the 
differentially methylated genes.

Methylation is one of the most important studies in 
epigenetics. In mammals, DNA methylation mainly occurs 
on CpG islands, often in the promoter region or the first exon 
and the 3' end of the gene (16), and about 70% of human 
gene promoters exist in CpG islands (17). Studies have found 
that almost all tumors can find abnormal DNA methylation 
in comparison between cancer tissues and corresponding 

Figure 3. Correlation between methylation degree of partially differentially 
methylated genes and gene expression (A-J). Pearson's correlation analysis 
was used for analysis of the correlation between the methylation degree and 
gene expression. It can be seen from the figure that the gene methylation 
degree is negatively correlated with the expression. The abscissa is the beta 
value of the gene methylation degree, and the ordinate is the expression of 
the gene. Cor is the correlation coefficient and P-value is the test value of 
correlation.
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Table II. Partially differentially methylated genes.

 Normal group Cancer group Methylation
Gene symbol methylation level (A) methylation level (B) degree P-value FDR

NKAPL 0.340837653 0.577383257 0.236545604 4.31E-54 1.22E-51
LCAT 0.664095202 0.803431309 0.139336107 1.16E-50 1.64E-48
ZNF728 0.099901799 0.333781489 0.233879691 1.24E-49 1.16E-47
COX7A1 0.498567597 0.664727174 0.166159577 2.04E-46 1.44E-44
ALS2CR11 0.334427241 0.470741226 0.136313985 4.83E-46 2.72E-44
LYPD8 0.512159389 0.335695176 -0.176464213 9.37E-46 4.40E-44
CCDC8 0.312900607 0.518293085 0.205392479 7.78E-45 3.09E-43
NAALADL1 0.467929203 0.578828343 0.110899139 8.77E-45 3.09E-43
MUC1 0.384572295 0.246245302 -0.138326993 1.13E-43 3.54E-42
USP44 0.333728357 0.532191383 0.198463026 1.97E-43 5.56E-42

Methylation degree, B-A.

Figure 4. GO enrichment analysis of differentially methylated genes. The left side of the circle is the gene and the right side is the pathway. Different colors 
represent different pathways, and the color of each pathway is annotated below the circle. If the gene belongs to a pathway, there will be a line between the 
gene and the pathway.
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non-tumor normal tissues (18). Therefore, methylation is a 
very important part in the current study on the molecular level 
of cancer.

In our study, a total of 257 differentially methylated genes 
were found by comparison between breast cancer tissues and 

their corresponding normal tissues, of which the methyla-
tion degree of NKAPL was the highest. In a study on 5 liver 
cancer cell lines and 62 pairs of primary liver cancer and 
its adjacent non-cancerous liver tissues, Ng et al (19) found 
that NKAPL was highly methylated in liver cancer, and 

Figure 5. PATHWAY analysis of differentially methylated genes. The circle in the figure represents the pathway, and the line represents the relationship 
between pathways. The size of the circle represents the number of genes in the pathway. The larger the number is, the more the number of pathway gene data 
is; the color of the circle represents an enriched significant P-value, and the stronger red represents a higher degree of enrichment. The bold line represents the 
number of genes with the same pathway and the line color represents the number of genes with the same difference before the pathway.

Table III. Correlation analysis between methylation degree 
and gene expression.

Gene cor P-value

DQX1 -0.737068974 4.83E-135
C10orf82 -0.721853363 5.52E-127
SLC39A6 -0.71121904 1.15E-121
DNALI1 -0.684796632 1.93E-109
RHOH -0.677085189 4.09E-106
AGR3 -0.670876546 1.65E-103
TDRD1 -0.660058794 4.04E-99
RIPK3 -0.658304073 2.00E-98
ZNF502 -0.654789106 4.78E-97
MPC2 -0.64767024 2.60E-94

Figure 6. Survival curve. The patients were divided into high-risk group 
(>0.936) and low-risk group (<0.936) according to the median value:-0.936 
of risk score. The Kaplan-Meier method was used to plot the survival curves 
of the two groups, and the log-rank method was used to test the difference 
between them that was significant in the survival rate between the high-risk 
and low-risk groups (P<0.001).
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the methylation degree was negatively correlated with its 
expression level. It could also inhibit the growth of cancer 
cells in liver cancer cells, which was a potential prognostic 
marker. In our study, NKAPL was also highly methyla- 
ted in breast cancer tissues, and the methylation degree 
was also negatively correlated with its expression level. It 
suggested that NKAPL may be involved in mechanism of 
cancer suppression in breast cancer tissues. At the same 
time, NKAPL was also enriched in ‘regulation of transcrip-
tion, DNA-templated’ and we hypothesized that it may 
affect cancer cell changes by affecting the transcription and 
regulation of DNA. However, there have been no reports of 
NKAPL in breast cancer-related studies. In the follow-up 
GO enrichment analysis, it was found that ‘extracellular 
exosome’ and ‘superoxide dismutase activity’ were the most 
relevant enrichments with differentially methylated genes, 
which mainly affected the activity of extracellular body and 
superoxide dismutase (SOD). 

Table IV. GO enrichment analysis of differentially methylated genes.

Term Enrichments Count P-value FDR

GO:0070062 Extracellular exosome 60 8.25E-05 0.10545219
GO:0004784 Superoxide dismutase activity   3 0.001692298 2.353503638
GO:0005622  Intracellular 31 0.002142855 2.7070955
GO:0042629  Mast cell granule   4 0.002400191 3.027607057
GO:1901687  Glutathione derivative biosynthetic process   4 0.002628416 4.227224422
GO:0006355  Regulation of transcription, DNA-templated 33 0.002759092 4.43294563
GO:0042178  Xenobiotic catabolic process   3 0.003254731 5.209453579
GO:0003700  Transcription factor activity, sequence-specific DNA binding 24 0.004284423 5.858842135
GO:0042476  Odontogenesis   4 0.004764259 7.538061353
GO:0043066  Negative regulation of apoptotic process 14 0.005694098 8.94558752

Table V. Partial PATHWAY enrichment analysis.

Pathway ID Pathway P-value Enriched genes

hsa00471 D-Glutamine and D-glutamate metabolism 0.001650165 GLS; GLUD1
hsa04915 Estrogen signaling pathway 0.002030577 SHC1; ESR1; CALML3; CALML5; KRT17;
   KRT14; KRT19
hsa05418 Fluid shear stress and atherosclerosis 0.00229801 BMP4; CALML3; GSTM1; GSTM2;
   CALML5; NQO1; GSTP1
hsa00220 Arginine biosynthesis 0.002443407 GPT; GLS; GLUD1
hsa04964 Proximal tubule bicarbonate reclamation 0.003192003 GLS; GLUD1; AQP1
hsa00480 Glutathione metabolism 0.005331216 GSTM1; GSTM2; GSTP1; GPX7
hsa04217 Necroptosis 0.005718681 H2AFY2; RIPK3; GLUD1; STAT5A; IFNGR2;
   TNFRSF10D; HIST3H2A
hsa00130 Ubiquinone and other terpenoid-quinone 0.008620151 TAT; NQO1
 biosynthesis
hsa05034 Alcoholism 0.009346881 SHC1; CALML3; GNB4; H2AFY2; CALML5;
   HIST1H3G; HIST3H2A
hsa00250 Alanine, aspartate and glutamate metabolism 0.010523928 GPT; GLS; GLUD1

Figure 7. ROC curve figure. In the ROC curve analysis, it was obtained that 
AUC was 0.791, indicating that our model can well predict patient survival. 
The larger the AUC value is, the more likely the current classification algo-
rithm is to place the positive sample in front of the negative sample, i.e. for 
better classification.
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Thirty years ago, when the first contact with the extracel-
lular body was made, it was originally thought that the cell 
component was discarded or unwanted. Recently, it was real-
ized that the extracellular body contains cell-specific proteins, 
lipids and genetic material that can be passed to distant tissues 
and cells, thereby changing their function and physiology (20). 
Urabe et al (21) believed that the extracellular body was 
expected to become a liquid biomarker for prostate cancer, 
kidney cancer and bladder cancer by regulating the immune 
system and angiogenesis that affect cancerous changes. At 
the same time, Chen et al (22) thought that the extracellular 
body induced the occurrence and recurrence of liver cancer 
cells through the MAPK/ERK signaling pathway. In our study, 
methylation genes influenced changes in the extracellular body 
and thus affected changes in breast cancer, but specific experi-
ments are needed to confirm this conjecture. SOD can scavenge 
superoxide anion radicals, thereby inhibiting the occurrence of 
lipid peroxidation, autoimmune diseases and tumors (23).

In study of Kocot et al (24), it was believed that SOD was closely 
related to the metastasis and differentiation of colorectal cancer, 
and had certain application value in its treatment. According to 
the characteristics of SOD, we believed that its activity was related 
to the occurrence of cancer, and it was not comprehensive in the 
study on breast cancer. The results of this study again suggest the 
importance of SOD, and it is necessary to further discuss its influ-
encing mechanism. In the PATHWAY analysis, the most closely 
related to the differentially methylated genes in breast cancer 
tissues was the ‘D-Glutamine and D-glutamate metabolism’. 
Glutamine is an important fuel for the immune system and has 
important immunomodulatory effects (25), which can promote 
the division and differentiation of lymphocytes and macrophages. 
Exogenous glutamine can significantly increase the number of 
lymphocytes, T lymphocytes and CD4/CD8 ratio in critically 
ill patients and enhance the body immunity (26). Many cancers 
are very dependent on glutamine (27), transcriptional programs 
of which drives its high consumption, so it is called ‘glutamine 
metabolism addiction’ (28). However, whether this phenomenon 
exists in breast cancer still needs further study.

In the follow-up risk model construction and ROC curve 
judgement, the best risk model was obtained, risk score = 
QRFP x (-3.657) + S100A16 x (-3.378) + TDRD1 x (-4.001) + 
SMO x (3.548); with the median value-0.936 of risk score as 
the cut-off value, the 5-year survival rate in high-risk group of 
patients (risk score >0.936) was 72.4% (95% CI, 62.7-83.6%), 
and that in low-risk group of patients was 86.6% (95% CI, 
78.6-95.3%) and AUC was 0.791 as judged by ROC curve, 
having a good application value. By obtaining the methylation 
degree of the patient's QRFP, S100A16, TDRD1 and SMO in 
the clinic and it can be calculated whether the patient is in a 
high-risk or low-risk state and can predict its five-year survival 
rate, as a reminder for targeted treatment.

The main drawback of this study is that it only uses 
computer simulation data but fails to verify the results by 
specific clinical data and to perform specific cancer cell and 
animal model experiments. In addition, there are major differ-
ences in the regions and human races. The advantage behind 
these drawbacks lies in the fact that molecular bioinformatics 
has made it more efficient to spend time, resources and 
manpower on the molecular area. In future studies, we will 
conduct a more in-depth study on the differentially methylated 
genes screened out and the related GO and PATHWAY.

After long-term calculations and discussions, we finally 
concluded that the occurrence and development of breast 
cancer were closely correlated with methylation genes 
such as NKAPL, QRFP, S100A16, TDRD1 and SMO and 
related biological processes and signaling pathways such as 
‘extracellular exosome’, ‘superoxide dismutase activity’ and 
‘D-Glutamine and D-glutamate metabolism’. We will conduct 
more in-depth studies on these aspects as conditions permit. 
Recently, there have been few studies on the breast cancer-
related gene methylation; thus, we hope that our experimental 
results can enrich the study in this area and provide help for 
clinical diagnosis and treatment in the future.
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