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Abstract: In this research, the aim is to investigate an adaptive digital twin algorithm for fault
diagnosis and crack size identification in bearings. The main contribution of this research is to
design an adaptive digital twin (ADT). The design of the ADT technique is based on two principles:
normal signal modeling and estimation of signals. A combination of mathematical and data-driven
techniques will be used to model the normal vibration signal. Therefore, in the first step, the normal
vibration signal is modeled to increase the reliability of the modeling algorithm in the ADT. Then, to
help challenge the complexity and uncertainty, the data-driven method will solve the problems of
the mathematically based algorithm. Thus, first, Gaussian process regression is selected, and then,
in two steps, we improve its resistance and accuracy by a Laguerre filter and fuzzy logic algorithm.
After modeling the vibration signal, the second step is to design the data estimation for ADT. These
signals are estimated by an adaptive observer. Therefore, a proportional-integral observer is then
combined with the proposed technique for signal modeling. Then, in two stages, its robustness and
reliability are strengthened using the Lyapunov-based algorithm and adaptive technique, respectively.
After designing the ADT, the residual signals that are the difference between original and estimated
signals are obtained. After that, the residual signals are resampled, and the root means square (RMS)
signals are extracted from the residual signals. A support vector machine (SVM) is recommended
for fault classification and crack size identification. The strength of the proposed technique is tested
using the Case Western Reserve University Bearing Dataset (CWRUBD) under diverse torque loads,
various motor speeds, and different crack sizes. In terms of fault diagnosis, the average detection
accuracy in the proposed scheme is 95.75%. In terms of crack size identification for the roller, inner,
and outer faults, the proposed scheme has average detection accuracies of 97.33%, 98.33%, and
98.33%, respectively.

Keywords: rotating machine; bearing; digital twin; gaussian process regression; Laguerre filter;
fuzzy logic; proportional integral observer; Lyapunov robust algorithm; adaptive technique;
support vector machine; fault diagnosis

1. Introduction

Bearings are components that are used in various industries from boiler feed pumps
to automotive transmissions to reduce friction. Due to the many applications of these
components, different research has been presented on how to evaluate the associated
condition monitoring processes. However, the common denominator in all of these studies
is the complexity of the bearings and their nonlinear behavior. Therefore, in this study,
the aim is to provide a robust and reliable method for fault diagnosis and crack size
identification in bearings in an active machine [1].

Generally, there are four types of defined bearing faults, which are the roller fault, inner
fault, outer fault, and cage fault. These faults cause different behaviors, and consequently,
they have different signal profiles. To diagnose faults in bearings, first, data collection must
be performed [2]. For condition monitoring, depending on the type of work or project,
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vibration sensors, acoustic emission sensors, or current sensors can be used. In this work,
vibration signals are used for bearing state detection and diagnosis [3].

Different techniques, such as data-driven algorithms [3] and model-based methods [4],
have been introduced to diagnose faults in bearings. The high resolution the optical flow
approach with total generalized variation (TGV)-based optical approach for crack detection
is introduced in [5,6]. The most important challenges of model-based methods are the
increased complexity and decreased modeling accuracy in unknown conditions. The com-
bination of ensemble empirical mode decomposition (EEMD), correlation coefficient (CC),
and singular value decomposition (SVD) technique is introduced in [7]. The combination of
convolutional neural network (CNN) model and a deep forest (gcForest) model is used to
fault diagnosis of bearing and proposed in [8]. On the other hand, data-driven techniques
have the challenges of unreliability, especially for accurately characterizing nonlinear and
non-stationary signals, as well as high dependences on the type and accuracy of the data [9].
Therefore, the proposed method in this research is a combination between a model-based
approach and a data-driven algorithm.

In designing model-based methods, signal estimation is of great importance. To
estimate the signals, the first step is to model the system. Various linear and nonlinear
techniques for systems modeling have been introduced that can be divided into two cat-
egories: mathematically based modeling and modeling based on system identification
techniques [3,10]. Mathematically based techniques, based on extracting the dynamic rela-
tionships between different parts of the system, are able to extract the dynamic equations
of the system. The complexity of the modeling, especially in nonlinear systems, and the
reduction of accuracy in unknown conditions are the most important challenges of the
modeling-based technique [10]. Moreover, the multi-dimensional mathematical models
can be used for evaluating the impact of selected factors on the vibration rolling ball bear-
ings [11]. System identification-based methods are very close to data-driven algorithms.
In these methods, the system behavior is modeled according to the signals extracted from
the systems in different conditions [12]. Different methods, such as autoregressive [12],
autoregressive with external inputs [12], Gaussian process regression [13], neuro-fuzzy [14],
nonlinear autoregressive [15], and neural networks [16], are among the methods of system
identification. The main challenge in all of these methods is their reliability due to the strong
dependence on data [12]. In this research, the focus is on the simultaneous combination of
mathematically based and system identification methods for bearing modeling.

The second part is designing model-based approaches for the signal estimation. Es-
timators are used to enhance the power of modeling unknown conditions and more
accurately detect the system performance in different conditions [3]. Although different
estimation techniques have been used in research articles, they can be divided into two
main groups: linear estimation and nonlinear estimation techniques [17]. Linear estima-
tion techniques, such as Proportional Integral (PI) [12] and Proportional Multi-Integral
observers [18], can provide a good response in less-complex systems. The most important
positive point of linear estimators is their simple implementation. Estimation accuracy
and robustness are introduced as the most important limitations of linear observers [18].
However, in complex and nonlinear systems, nonlinear estimation techniques, such as
feedback linearization [17], sliding mode [10], backstepping [19], Lyapunov-based [20],
fuzzy [21], and neural network [22] observers, are suggested. High accuracy and robust-
ness can be the most important positive attributes of the nonlinear compensators [22].
However, the complexity of designing these techniques is recognized as their most im-
portant limitation [4,10]. The digital twins are a relatively novel way to model physical
systems. In these methods, physical systems are reliably modeled, and even the system’s
model can be used to generate data. Digital twin technology is becoming more popular.
The digital twins are anticipated to grow by about 38% and reach $16 billion by 2023.
Digital twins are changing the style of work is achieved in various industries with diverse
applications such as manufacturing, healthcare, supply chain, predictive maintenance,
automotive, self-driving car development, and retail [23]. Therefore, in this research, the
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linear estimation technique is used, which has its robustness and accuracy improved by the
application of nonlinear and intelligent techniques. Thus, a combination of the proposed
modeling and estimation algorithms is used to design a proposed digital twin for the fault
diagnosis of bearings.

After processing data using the model-based or/and data-driven approaches, the next
step is to use classical [7,17] or learning algorithms [24,25] to perform signal classification.
Classical techniques, such as the sliding mode method, have been used in various articles
to determine the best value for the threshold employed in this method [10,17]. Similarly,
deep learning [24] and machine learning approaches [25] have been widely used in various
research works to perform state classification. In this work, a machine learning-based
technique, a support vector machine (SVM) [26], is used for signal classification.

This research makes the following contributions:

• The first contribution is about bearing vibration signal modeling. The combination
of mathematical vibration bearing signal modeling, Gaussian Process Regression
(GPR), input-output Laguerre filter, and fuzzy approach, MGPRLF, is used for bearing
vibration signal modeling.

• The second contribution is proposed to adaptive digital twin. A combination of
MGPRLF and proposed observer (hence is a combination of PI observer, Lyapunov
robust technique, and adaptive fuzzy algorithm) is recommended to design proposed
adaptive digital twin. This proposed technique is suggested to prepare the vibration
signals for easier and higher-accuracy classification.

• A combination of the resulting adaptive digital twin and a machine learning (SVM)
algorithm is recommended for signal classification and crack size identification.

This research article has the following parts. The dataset is described in Section 2. The
proposed scheme, which includes the adaptive digital twin, residual signal computation,
and signal classification, is described in Section 3. The results are analyzed and discussed
in the Section 4. The conclusion is presented and explained in Section 5.

2. Dataset

To test the power of the proposed adaptive digital twin algorithm, Bearing Case
Western Reverse University Bearing Dataset (CWRUBD) is suggested in this work. Figure 1
illustrates the experimental setup for CWRUBD.
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Figure 1. The testbed of CWRUBD to collect the data [27].

In the CWRUBD, an electric motor with 2-horsepower (hp) is used. This motor is
used to simulant a shaft that a transducer and encoder are mounted. The electric torque
is transferred from the shaft to the control system using a dynamometer. This electric
motor is provided with 4-different speeds to rotate the roller bearings 6205-2RS JEM SKF
including 1797-rotation per minute (RPM), 1772-RPM, 1750-RPM, and 1730-RPM [27,28].
To collect the data, the vibration sensor is suggested. Vibration data were collected using
accelerometers that were placed at the 12 o’clock position at both the drive end and fan
end of the motor housing. The 16-channel data acquisition module is used to collect the
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data and transfer them to the MATLAB environment. The vibration signals were collected
via installed-on-bearing housing. Single-point faults with three different crack sizes (i.e.,
severity levels) of 0.007, 0.014, and 0.021 inches in diameter were seeded on the drive-end
bearings at different bearing locations as the outer fault (OF), inner fault (IF), and the roller
fault (RF), respectively. Data were collected for the three fault conditions and bearings in
normal conditions (NC). The data were recorded at a 48 kHz sampling rate under four
different motor loads from 0 to 3 hp. The basic information about the CWRUBD is listed in
Table 1 [27,28].

Table 1. The CWRUBD experimental information.

Information Detail

Power of the induction motor 2 [hp]
Bearing rotating speeds 1730 [RPM]; 1750 [RPM]; 1772 [RPM]; 1797 [RPM]

Crack sizes 0.007 [inches]; 0.014 [inches]; 0.021 [inch]
Sampling rate frequency 48 [KHz]

Type of bearing 6205-2RS JEM SKF
Number of rollers 9
Roller’s stiffness 5.96 × 107

(
N
m

)
Outer’s stiffness 1.31 × 105

(
N
m

)
Shaft’s stiffness 23.3 × 106

(
N
m

)
Outer’s Mass 2.7 (Kg)
Shaft’s Mass 1.36 (Kg)
Defect depth 2 (mm)

Pitch diameter 39.04 (mm)
Roller diameter 7.940 (mm)

Furthermore, Table 2 shows the CWRUBD signal condition test information.

Table 2. The CWRUBD experimental information.

Classes Motor Torque Load [hp] Crack Sizes [Inch]

NC 0,1,2,3 -
RF 0,1,2,3 0.007; 0.014; 0.021
IF 0,1,2,3 0.007; 0.014; 0.021
OF 0,1,2,3 0.007; 0.014; 0.021

3. Proposed Scheme

Figure 2 illustrates the block diagram of the proposed algorithm. The proposed
scheme has three main parts: (a) an adaptive digital twin to model and estimate the bearing
signals, (b) residual signal computation to evaluate the new feature for signal classification,
and (c) crack detection and size identification using SVM.

The adaptive digital twin (ADT) has two main parts: normal signal modeling and estimation
units. The adaptive digital twin is suggested for bearing signal modeling and estimation.
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size identification.

To estimate the bearing signals using ADT, the first step is vibration bearing signal
modeling in normal conditions. The bearing signal modeling is used to extract the state-
space function. To extract the state-space function from the bearing vibration signal, two
techniques are used in parallel: the signal identification part and the mathematical vibration
bearing signal modeling section. First, the vibration bearing signal in normal conditions is
modeled using the mathematical-based vibration signal technique. However, this technique
is reliable in certain conditions, but it has limitations in uncertainties (e.g., variation in
motor torque load and motor speed). To address this issue, the signal identification
technique is recommended. The Gaussian Process Regression (GPR) technique is a data-
driven algorithm for function approximation. The GPR algorithm is a nonlinear regression
technique used to model nonlinear and non-stationary signals using nonlinear functions
(kernels), but it is not accurate and reliable for vibration signal modeling. Thus, to increase
the robustness, the GPR technique is integrated with an input-output Laguerre filter, which,
from now on, is called the GPRL. The state estimation function in GPR technique is filtered
using the feedback of the state of the bearing signal modeling to the modeled signal. Next,
to improve the accuracy of the signal modeling, the combination of the GPRL and two
inputs (error and integral of error) fuzzy technique, hence called the GPRLF, is suggested.
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The fuzzy algorithm is a rule-based nonlinear technique that can be used for modeling,
control, and prediction.

Regarding the fuzzy algorithm, the fuzzy technique tries to reduce the error and
integral of error of the system/signal modeling. It means that the fuzzy algorithm is
used to improve the accuracy and flexibility (rule-based technique) of the system/signal
modeling. Finally, the mathematical vibration signal modeling is integrated with the
GPRLF to form the MGPRLF. Therefore, the normal signal (e.g., when the torque load is
0-hp) is selected for tuning the signal modeling.

After modeling and extracting the state-space equation from the normal signal, the
proposed observer is suggested for vibration signal estimation and reduce the effect of
uncertainties. Therefore, first, the Proportional Integral (PI) observer that is modeled by the
MGPRLF, hence called the MGPRLF-PI, is proposed. In this technique, the integral function
is selected to reducing the effect of the unknown condition in the vibration signal. Apart
from the simplicity of the MGPRLF-PI technique, robustness and reliability are two main
limitations of this approach. The Lyapunov technique is integrated with the MGPRLF-PI
observer to improve the robustness (hence is called MGPRLF-RPI). In this approach, the
Lyapunov technique is selected to improve the robustness of signal estimation against the
unknown condition in the vibration signal. Next, to increase the reliability of the MGPRLF-
RPI, the adaptive approach is integrated with the MGPRLF-RPI algorithm, which, from
now on, is called MGPRLF-ARPI (ADT). The adaptive approach is used to auto-tune the
coefficient to estimate the unknown condition. In this step, the normal signal (e.g., when
the torque load is 0-hp) is selected to tuning the estimator. The other signals in normal and
abnormal conditions are used as real-time vibration data and used for tests. It is clear that,
in normal conditions, the power of signal estimation is better than the others.

After designing an adaptive digital twin using the proposed MGPRLF-ARPI (ADT)
technique, the residual signal that is a difference between the original bearing raw signals
and estimated signals using the ADT is computed.

Finally, a support vector machine (SVM) is suggested for fault pattern identification
and crack size identification. Thus, the combination of the ADT and SVM is suggested for
fault pattern recognition and crack size identification.

3.1. Adaptive Digital Twin

Figure 2 describes using GRP to design the ADT. The GPR technique is a nonlinear
regression technique used to model nonlinear and non-stationary signals using nonlinear
functions (kernels). The state-space of the GPR algorithm is introduced by the following
definition [29]. 

XGPR(k + 1) = [CGPRXGPR(k) + δiXi(k)] + eGPR(k)

YGPR(k) = (δo)
T(xn)CGPR

−1 × XGPR(k)
. (1)

Here, XGPR(k), Xi(k), eGPR(k), YGPR(k), CGPR, and (δi,
((

δo)T(xn)
))

are the state of
the bearing signal modeling using the GPR technique, the measurable vibration signal, the
error of signal modeling using the GPR algorithm, the signal modeled by the GPR technique,
the covariance matrix using the GPR technique, and the coefficient of signal modeling
using the GPR algorithm, respectively. The covariance matrix, CGPR,, is represented in the
following definition.

CGPR = α2e(−0.5XGPR
T H−1XGPR) + ε. (2)

H = diag(k)2 (3)

Here, α, ε, and k, respectively, correspond to the signal variance, noise variance, and
the kernel width.

δo(xn) = C(xn, Xi)
T (4)
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Error of signal modeling using the GPR algorithm, eGPR(k), is represented as the
following equation.

eGPR(k) = YGPR(k)− YGPR(k − 1) (5)

However, the GPR algorithm is a nonlinear regression technique used to model
nonlinear and non-stationary signals; it is not accurate and reliable for vibration signal
modeling. To improve the robustness, the GPR method is integrated with the Laguerre
filter, which, from now on, is called the GPRL. Thus, the combination of the GPR and
Laguerre filter can be represented by the following definition.

XGPRL(k + 1) = [CGPRLXGPRL(k) + δiXi(k) + δoYGPRL(k)] + eGPRL(k)

YGPRL(k) = (δo)
T(xn)CGPR

−1 × XGPRL(k)
, (6)

Here, XGPRL(k), eGPRL(k), YGPRL(k), and CGPRL are the state of the bearing signal
modeling using the GPRL technique, the error of signal modeling using the GPRL algo-
rithm, the modeled signal by the GPRL method, and the covariance matrix using the GPRL
algorithm, respectively. According to (6), the state estimation function in GPR technique is
filtered using the feedback of the state of the bearing signal modeling to the modeled signal.

CGPRL = α2e(−0.5XGPRL
T H−1XGPRL) + ε (7)

Moreover, the error of signal modeling using the GPRL algorithm, eGPRL(k), is repre-
sented as the following equation.

eGPRL(k) = YGPRL(k)− YGPRL(k − 1) (8)

Next, to improve the accuracy of the signal modeling, the combination of the GPRL
and fuzzy technique, hence called the GPRLF, is suggested. The fuzzy algorithm is a
rule-based nonlinear technique that can be used for modeling, control, and prediction. To
design and implement the fuzzy algorithm, the following steps are used.

Inputs/outputs: The Proportional Integral fuzzy-like technique is recommended in
this work.

Linguistic variables/Rule base/Membership function: Three linguistic variables are
recommended for inputs and output. Moreover, the AND operator is used in the input and
nine rule-bases are defined. The triangular membership function is suggested in this work.

Fuzzy Inference Engine (FIE): The Mamdani FIM is used for modeling the vibration signal.
Aggregation: The Max-Min aggregation technique is used for the vibration signal modeling.
Defuzzification: The last step is defuzzification. The Center of Gravity (CoG) technique

is recommended for defuzzification in this work. Regarding the fuzzy algorithm, the fuzzy
technique tries to reduce the error and integral of error of the system/signal modeling. It
means that the fuzzy algorithm is used to improve the accuracy and flexibility (rule-based
technique) of the system/signal modeling.

Thus, the combination of the GPRL and fuzzy logic algorithm (GPRLF) is represented
by the following definition.


XGPRLF(k + 1) =

[
CGPRLFXGPRLF(k) + δiXi(k) + δoYGPRLF(k) + δ f Yf (k)

]
+ eGPRLF(k)

YGPRLF(k) = (δo)
T(xn)CGPRLF

−1 × XGPRLF(k)
, (9)

Here, XGPRLF(k), eGPRLF(k), YGPRLF(k), Yf (k), CGPRLF, and δ f are the state of the bear-
ing signal modeling using the GPRLF technique, the error of signal modeling using the
GPRLF algorithm, the modeled signal by the GPRLF method, the modeled signal us-
ing the fuzzy algorithm to improve the accuracy and flexibility, the covariance matrix
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using the GPRLF algorithm, and the coefficient of the modeled signal using the fuzzy
algorithm, respectively.

CGPRLF = α2e(−0.5XGPRLF
T H−1XGPRLF) + ε (10)

Furthermore, the error of signal modeling using the GPRLF algorithm, eGPRLF(k), is
represented as the following equation.

eGPRLF(k) = YGPRLF(k)− YGPRLF(k − 1) (11)

After modeling the normal vibration signal using the data-driven GPRLF algorithm,
mathematical signal modeling is recommended to increase the reliability. Thus, the mathe-
matical technique for modeling the vibration bearing signal is represented as the following
equation.

FD(q) = ZD(q)
[ ..
q
]
+ND

(
q,

.
q
)
+ θD (12)

where FD(q),ZD(q),
..
q,ND

(
q,

.
q
)
, and θD are the external source forces, the mass of bearing

matrices, the acceleration vibration signal that is measured by a vibration sensor, a nonlinear
term for modeling the bearing, and the unknown condition (hence called uncertainty),
respectively. The uncertainty can be modeled using the following definition.

θD = θRF + θIF + θOF (13)

Here, θRF, θIF, and θOF are the effect of the roller fault, the effect of the inner fault,
and the effect of the outer fault, respectively. Moreover, the effect of the roller fault, θRF, is
represented as the following equation.

θRF = Max(θIOFCos(θu) + θIOFSin(θu)− ϕα − θ f (14)

Furthermore, the effect of the inner fault, θRF, and outer fault, θOF, are represented as
the following equations, respectively.

θIF = Max(θIOFCos(θu)− θIOFSin(θu)− 2
(

ϕα − θ f

)
(15)

θOF = Max(θIOFCos(θu) + 1.5(θIOFSin(θu))− ϕα + θ f (16)

and
θIOF = θIF − θOF (17)

θu =
2π(j − 1)

NRC
+ ϕα + θOF (18)

Here, ϕα, NRC, and θ f are the angular velocity of rotor, the number of rollers in the
bearing, and the difference between two reference angular positions, respectively. Thus,
the state-space definition for the mathematical modeling of the bearing is introduced using
the following equation.

XM(k + 1) = δXD(XD(k), XDi(k)) + χXD(XD(k), XDi(k))

YM(k) = (δYD)
TXM(k)

, (19)

Here, δXD(XD(k), XDi(k)), χXD(XD(k), XDi(k)), XM, YM(k), and δYD are the nonlin-
ear term of the bearing using mathematically-based vibration modeling, the uncertainty
term of the bearing using mathematically-based vibration modeling, the state of the vibra-
tion signal modeling using the mathematical approach, the modeled vibration signal using
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the mathematical technique, and the coefficient, respectively. Thus, based on Equations (9)
and (19), the proposed MGPRLF technique is represented as the following equation.

XMGPRLF(k + 1) = XM(k) + XGPRLF(k)

YMGPRLF(k) = YM(k) + YGPRLF(k)
. (20)

Here, XGPRLF(k) and YGPRLF(k) are the state of the bearing signal modeling using the
MGPRLF technique and the modeled signal by the GPRLF method, respectively. After mod-
eling and extracting the state-space equation from the normal signal, the proposed observer
is suggested for vibration signal estimation and reduce the effect of uncertainties. Thus, the
PI observer procedure is recommended for signal estimation. Thus, the PI observer that is
modeled by MGPRLF, MGPRLF-PI, is represented by the following definition:

XMGPRLF−PI(k + 1) = [CGPRLFXMGPRLF−PI(k) + δiXi(k) + δoYMGPRLF−PI(k)
+δ f Yf (k)] + eGPRLF(k) + φMGPRLF−PI

YMGPRLF−PI(k) = (δo)
T(xn)CGPRLF

−1 × XMGPRLF−PI(k)

, (21)

Here, XMGPRLF−PI(k), YMGPRLF−PI(k), and φMGPRLF−PI are the state of the bearing
signal estimation using the MGPRLF-PI technique, the estimated signal by the MGPRLF-PI
method, and the uncertainty estimation using the MGPRLF-PI algorithm, respectively. In
this technique, the integral function is selected to reducing the effect of the unknown con-
dition in the vibration signal. The uncertainty estimation using the MGPRLF-PI algorithm,
φMGPRLF−PI , is represented as the following technique.

φMGPRLF−PI(k + 1) = φMGPRLF−PI(k) + δPI(Yraw(k)− YMGPRLF−PI(k)) (22)

Here, Yraw(k) and δPI are the original raw signals that are collected by the vibration
sensor and the coefficient, respectively. The MGPRLF-PI algorithm is a linear-based estima-
tor. Apart from the simplicity of the MGPRLF-PI technique, robustness and reliability are
two main limitations of this approach. To address the robustness, the Lyapunov algorithm
is recommended in this research. The Lyapunov technique is integrated with the MGPRLF-
PI observer to improve the robustness (hence is called MGPRLF-RPI). Thus, the Lyapunov
function, υγ(e, X(k), φ(k)), is denoted by the subsequent equivalence.

υγ(e, X(k), φ(k)) = Rγ(e, X(k)) + ηγ(e)φ(k) (23)

Here, Rγ(e, X(k)) and ηγ(e)φ(k) are, respectively, the Hamilton–Jacobi discrimina-
tion and differentiable function of the uncertainty (unknown) condition. The Lyapunov
procedure is robust and stable. Thus, the MGPRLF-RPI procedure is represented as the
following definition.

XMGPRLF−RPI(k + 1) = [CGPRLFXMGPRLF−RPI(k) + δiXi(k) + δoYMGPRLF−RPI(k)
+δ f Yf (k)] + eGPRLF(k) + φMGPRLF−RPI

YMGPRLF−RPI(k) = (δo)
T(xn)CGPRLF

−1 × XMGPRLF−RPI(k)

, (24)

Here, XMGPRLF−RPI(k), YMGPRLF−RPI(k), and φMGPRLF−RPI are the state of the bear-
ing signal estimation using the MGPRLF-RPI technique, the estimated signal by the
MGPRLF-RPI method, and the uncertainty estimation using the MGPRLF-RPI algorithm,
respectively. The uncertainty estimation using the MGPRLF-PI algorithm, φMGPRLF−RPI , is
represented as the following equation.

φMGPRLF−RPI(k + 1) = φMGPRLF−RPI(k) + δRPI(Yraw(k)− YMGPRLF−RPI(k))
+υγ(eMGPRLF, XMGPRLF−RPI(k), φMGPRLF−RPI(k))

(25)
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Here, υγ(eMGPRLF, XMGPRLF−RPI(k), φMGPRLF−RPI(k)), and δRPI are the Lyapunov
function to increase the robustness of the proposed algorithm and the coefficient, respec-
tively. In this approach, the Lyapunov technique is selected to improve the robustness
of signal estimation against the unknown condition in the vibration signal. The main
challenge of nonlinear and non-stationary signals is uncertainty. To address this issue and
increase the reliability in the MGPRLF-RPI, the combination of the adaptive technique and
MGPRLF-RPI (MGPRLF-ARPI) that, henceforth, is called the adaptive digital twin (ADT)
is recommended. The ADT procedure is signified using the following description.

XADT(k + 1) =
[
CGPRLFXADT(k) + δiXi(k) + δoYADT(k) + δ f Yf (k)

]
+

eGPRLF(k) + φADT

YADT(k) = (δo)
T(xn)CGPRLF

−1XADT(k)

, (26)

The uncertainty estimation using the ADT algorithm, φADT , is represented as the
following equation.

φADT(k + 1) = φADT(k) + δADT−New(Yraw(k)− YADT(k))
+υγ(eMGPRLF, XADT(k), φADT(k))

(27)

Here, XADT(k), YADT(k), φADT , υγ(eMGPRLF, XADT(k), φADT(k)), and δADT−New are
the state of the bearing signal estimation using the proposed ADT technique, the estimated
signal by the proposed ADT method, the uncertainty estimation using the proposed
ADT algorithm, the effect of the Lyapunov function to improve the robustness in the
proposed ADT algorithm, and the adaptive (update) coefficient for tuning the proposed
ADT estimator, respectively. The adaptive approach is used to auto-tune the coefficient to
estimate the unknown condition. The adaptive (update) coefficient, δADT−New, is calculated
using the following definition.

δADT−New = δRPI × δ f Yf (28)

3.2. Residual Signal Computation

Based on the previous section, the signals are modeled, and estimation is performed
using the ADT technique. In this part, the residual signals are computed using the dif-
ference between the original raw signals, Yraw(k), and estimated raw signals using the
proposed ADT algorithm, YADT(k). The residual signals array, RADT(k), is computed using
the following technique:

RADT(k) = Yraw(k)− YADT(k) (29)

Based on (27), the residual signal is a new feature that is more separable than the
original signals. Thus, based on the power of signal estimation using adaptive digital
twin, the normal and abnormal residual signals are distinguishable (hence is called fault
detection). In addition, based on the above technique, abnormal signals in different types
of faults allow for facile fault pattern recognition and crack size identification.

3.3. Signal Classification

To classify the residual signals, first, the residual signals are resampled, and the root
means square (RMS) features are extracted from the resampled residual signals. The RMS
resampled residual signal, RADT(k)rms, is represented as the following equation.

RADT(k)rms =

√√√√ 1
T

T

∑
j=1

(RADT(k))
2 (30)

At this juncture, RADT(k)rms and T symbolize the resampled RMS value for the resid-
ual signal that is determined using the ADT technique, and the number of windows in this
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work, respectively. For the normal and each abnormal condition, the residual signals have
120,000 samples. Based on the induction motor and the CWRUBD conditions, the residual
signal was segmented into 100 windows. Therefore, each window contains 1200 samples.
To perform signal classification, the resampled RMS residual signals are determined for
100 windows. A support vector machine (SVM) is used for classification [27,30]. Addi-
tionally, 75% of the resampled RMS signals are used for training and 25% are selected for
testing in the SVM. Table 3 shows the details of the training and testing dataset for the
normal and abnormal conditions. Moreover, Table 4 illustrates the proposed algorithm
steps for fault diagnosis of the bearing.

Table 3. Information regarding the training and testing for classification using the SVM.

Conditions Number of Training Samples Number of Testing Samples

Crack Identification

NC 900 300
RF 900 300
IF 900 300
OF 900 300

Size Identification for RF

0.007-inch 300 100
0.014-inch 300 100
0.021-inch 300 100

Size Identification for IF

0.007-inch 300 100
0.014-inch 300 100
0.021-inch 300 100

Size Identification for OF

0.007-inch 300 100
0.014-inch 300 100
0.021-inch 300 100

Table 4. The proposed algorithm uses a combination of the adaptive digital twin (ADT) and SVM for
fault diagnosis of the bearing.

1: Adaptive Digital Twin Design
Implement the state-space GPR algorithm, Equation (1).

2: Improve the robustness of autoregressive technique by combining autoregressive algorithm
with the Laguerre filter. Equations (3) and (4)

3: Improve the accuracy and flexibility of GPRL using the GPRLF algorithm, Equation (9).
4: Mathematical modeling of the bearing, Equation (19).

5: Improve the performance of modeling in the digital twin using the MGPRLF algorithm,
Equation (20).

6: Implement the combination of PI observer and MGPRLF for signal estimation, Equations (21)
and (22).

7: Improve the robustness of MGPRLF-PI for signal estimation using MGPRLF-RPI, Equations
(24) and (25).

8: signal estimation using the proposed ADT, Equations (26) and (27).

9: Residual Signal Computation
Compute the residual signals, Equation (29).
Residual Signals Fault Classification

10: Compute the resampled RMS residual signals, Equation (30).
11: Perform classification of the resampled RMS residual signals using the SVM [20,23].

4. Experimental Result

The CWRUBD is suggested to test the proposed algorithm. Figure 3 illustrates the
original raw bearing signals in normal and abnormal conditions. Based on this figure, the
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classification using original signals is difficult and the accuracy of classification is very
low. Regarding this figure, the signals in various conditions substantially overlap. The
experimental results have three sub-parts: signal modeling and estimation using the ADT
results, residual signal tests and results, and the classification results.
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4.1. Signal Modeling and Estimation Using the ADT Results

To test the power of the proposed MGPRLF technique for vibration signal modeling in
the normal condition, it is compared with the GPR and GPRLF techniques. Figure 4 shows
the error of signal modeling to extract the state-space function from the original raw signal
in the normal condition.
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Based on Figure 4, the error of signal modeling for the proposed MGPRLF algorithm
is less than the other two methods. This means the proposed MGPRLF technique is more
robust and stable than the GPRLF and GPR techniques. The combination of the math-
ematical approach and data-driven technique increases the modeling resistance against
uncertain conditions.

The error of signal estimation using the proposed ADT is illustrated in Figure 5. Based
on this figure, it is clear that the power of signal estimation for the normal condition (NC)
is better than RF, IF, and OF. The reason for this level difference is that the modeling and
estimation technique is tuned in the NC. This property of the estimation technique is used
to amplify the difference of the error of the signal estimation in different conditions.
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The reason for different error levels in each RF, IF, or OF region is the existence of
different crack sizes.

4.2. Fault Pattern Recognition (Crack Identification)

To test the fault pattern recognition and crack size identification using the CWRUBD,
three techniques are compared in this part, the proposed ADT, the MGPRLF-RPI method,
and the MGPRLF-PI approach. Figure 6, Figures 8 and 10 show the residual signals for
the proposed ADT approach, the MGPRLF-RPI method, and the MGPRLF-PI technique,
respectively. Based on Figures 3 and 6, it is clear that the accuracy of the condition
classification using the proposed ADT is better than that using the original RAW signal.
Figure 7 demonstrates the confusion matrix to test the crack identification accuracy using
the ADT + SVM. Based on Figure 7, the average accuracy for fault pattern recognition
based on the proposed ADT+SVM is 95.75%. Moreover, Figure 8 shows the residual signals
for the MGPRLF-RPI method. Based on the comparison of Figures 6 and 8, the accuracy of
fault pattern recognition (especially for IF and OF) using proposed ADT approach is better
than MGPRLF-RPI method.
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Figure 8. The RMS resampled residual signals using the MGPRLF-RPI technique for NC, RF, IF,
and OF.

Figure 9 demonstrates the confusion matrix to test the crack identification accu-
racy using the MGPRLF-RPI+SVM. Based on Figure 9, the average accuracy for fault
pattern recognition based on the MGPRLF-RPI+SVM is 90.25%. Based on the com-
parison of Figures 7 and 9, the accuracy of IF and OF fault pattern recognition using
proposed ADT+SVM approach and the MGPRLF-RPI + SVM are 92%, 93%, 83%, and
88%, respectively.
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Figure 9. The average accuracies of crack identification using the MGPRLF-RPI+SVM technique.

Figure 10 shows the residual signal for the MGPRLF-PI technique. Based on the com-
parison of Figures 6, 8 and 10, the accuracy of fault pattern recognition (especially for IF and
OF) using proposed ADT approach is better than MGPRLF-RPI and MGPRLF-PI methods.
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Figure 10. Resampled residual RMS signal using the MGPRLF-PI technique for the NC, RF, IF,
and OF.

Figure 11 validates the confusion matrix to test the crack identification accuracy using
the MGPRLF-PI + SVM.
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Based on the comparison of Figures 7, 9 and 11, the average sensitivities of the proposed
ADT+SVM, MGPRLF-RPI+SVM, and MGPRLF-PI+SVM techniques are 95.75%, 90.25%, and
80%, respectively. Therefore, the proposed method has improved the crack identification by
5.5% compared to MGPRLF-RPI+SVM and 25.75% compared to MGPRLF-PI+SVM. The
challenging areas in these figures are the overlap between the OF and IF residuals and the
overlap between the RF and IF in some areas. Comparing Figures 6–11, it can be seen that
the proposed ADT algorithm, Figures 6 and 7, has a lower overlap between conditions than
the other two techniques shown in Figures 8–11. The overlap and misclassification in the
MGPRLF-PI technique, in Figures 10 and 11, are higher than those using the MGPRLF-RPI
method, in Figures 8 and 9.

Based on the above figures, the main challenge using the MGPRLF-PI+SVM and
MGPRLF-RPI+SVM techniques is the classification of inner and outer faults. As in
MGPRLF-PI+SVM, the misclassifications of the inner and outer faults are 37% and 25%,
respectively. Similarly, using the MGPRLF-RPI+SVM technique, this misclassification is
reduced to about 17% for the inner fault and 12% for the outer fault, but in the proposed ap-
proach, the misclassification is reduced to about 8% for the inner and 7% for the outer mode.
The crack identification accuracy is tested using the ADT + SVM, the MGPRLF-RPI + SVM,
and the MGPRLF-PI + SVM. According to Table 3 of the crack identification section, the
RMS resampled residual signals have 4800 samples, with 75% for training and 25% for test-
ing, in the NC, RF, IF, and OF states. Table 5 demonstrates the average accuracy of the crack
identification using the ADT + SVM, the MGPRLF-RPI + SVM, and the MGPRLF-PI + SVM
techniques, respectively. To evaluate the robustness and reliability of the ADT + SVM,
the MGPRLF-RPI + SVM, and the MGPRLF-PI + SVM techniques, 20 different tests were
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performed by changing the training and test data, and their average results are shown in
the following table. Therefore, the proposed method has improved the crack identification
by 5.5% compared to MGPRLF-RPI+SVM and 25.75% compared to MGPRLF-PI+SVM.

Table 5. The average accuracies of crack identification using ADT+SVM, MGPRLF-RPI+SVM, and
MGPRLF-PI+SVM techniques.

Classes ADT
+SVM (%)

MGPRLF-RPI
+SVM (%)

MGPRLF-RPI
+SVM (%)

NC 100 100 100
RF 98 90 82
IF 92 83 63
OF 93 88 75

Average 95.75 90.25 80

Figure 12 shows the repeatability and robustness of the three techniques when 20
different tests were performed by changing the training and test data. According to
Figure 12, the amount of distortion using the proposed algorithm is less than the other two
methods. This means that the proposed technique is more robust and reliable than the
other two methods.
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ness with 20 tests.

4.3. Crack Size Identification

To test the crack size identification using the CWRUBD, three techniques are compared
in this part, the proposed ADT, the MGPRLF-RPI method, and the MGPRLF-PI approach.
Figures 13–15 show the roller, inner, and outer crack residual signals for the proposed
ADT approach, respectively. Moreover, Table 6 demonstrates the identifications of the
sizes of the cracks for the RF using the proposed ADT+SVM, MGPRLF-RPI+SVM, and
MGPRLF-PI+SVM techniques, respectively.
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Table 6. The average accuracies of the roller crack size identification using the ADT+SVM, MGPRLF-
RPI+SVM, and MGPRLF-PI+SVM techniques.

Size (inch) ADT
+SVM (%)

MGPRLF-RPI
+SVM (%)

MGPRLF-RPI
+SVM (%)

0.007 98 90 80
0.014 96 88 82
0.021 98 89 80

Average 97.33 89 80.67

According to the above table, the average accuracy of classification by the suggested
scheme (ADT+SVM) is better than those of the other two methods. Moreover, the proposed
scheme has improved the size recognition for the RF by 8.33% and 16.66% compared
to the MGPRLF-RPI+SVM and MGPRLF-PI+SVM techniques, respectively. In addition,
Figure 14 illustrates the inner crack residual signal for the proposed ADT style.
Table 7 shows the average accuracies of the inner fault size identification using the pro-
posed ADT+SVM, MGPRLF-RPI+SVM, and MGPRLF-PI+SVM techniques. Furthermore,
according to Table 7, the average accuracy of crack size classification by the proposed
scheme (ADT+SVM) for the IF is better than the other two methods. Moreover, the pro-
posed scheme has improved the size recognition of the IF by 9.66% and 16% compared to
the MGPRLF-RPI+SVM and MGPRLF-PI+SVM techniques, respectively.

Table 7. The average accuracies of the inner crack size identification using the ADT+SVM, MGPRLF-
RPI+SVM, and MGPRLF-PI+SVM techniques.

Size (inch) ADT
+SVM (%)

MGPRLF-RPI
+SVM (%)

MGPRLF-RPI
+SVM (%)

0.007 98 90 82
0.014 98 86 81
0.021 99 90 84

Average 98.33 88.67 82.33

Moreover, Figure 15 shows the outer crack residual signal for the proposed ADT
scheme. The average accuracies of the outer crack size identification using the pro-
posed ADT+SVM, MGPRLF-RPI+SVM, and MGPRLF-PI+SVM methods are illustrated in
Table 8. Additionally, based on Table 8, the average accuracy of crack size classification is
improved by the proposed scheme (ADT+SVM) for the OF. The ADT+SVM improved the
size recognition for the OF by 9.33% and 16.33% compared to the MGPRLF-RPI+SVM, and
MGPRLF-PI+SVM techniques, respectively.

Table 8. The average accuracies of outer crack size identification using the ADT+SVM, MGPRLF-
RPI+SVM, and MGPRLF-PI+SVM techniques.

Size (inch) ADT
+SVM (%)

MGPRLF-RPI
+SVM (%)

MGPRLF-RPI
+SVM (%)

0.007 97 91 80
0.014 99 88 80
0.021 99 88 86

Average 98.33 89 82

Figures 16–18 display the confusion matrices to test the average crack size identifi-
cation accuracies for the RF, IF, and OF using the ADT + SVM, the MGPRLF-RPI + SVM,
and the MGPRLF-PI + SVM approaches, respectively. Based on these figures, the average
crack size identification accuracies for the proposed ADT+SVM, MGPRLF-RPI+SVM, and
MGPRLF-PI+SVM schemes are, respectively, 98%, 88.89%, and 81.67%. Therefore, the
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proposed ADT+SVM had improved the average accuracy of crack (RF, IF, and OF) size
identification by 9.11% and 16.33% compared to the MGPRLF-RPI+SVM and MGPRLF-
PI+SVM techniques, respectively. Regarding these figures, the misclassifications between
0.007-inch, 0.014-inch, and 0.021-inch cracks using the proposed ADT+SVM are lower than
the other two techniques.
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MGPRLF-PI+SVM scheme.

Figure 19 shows the repeatability and robustness of the three techniques when 20
different tests were performed by changing the training and test data for the crack (RF,
IF, and OF) size identification. According to Figure 19, the amount of distortion in the
proposed algorithm is less than the other two approaches. Thus, the proposed ADT+SVM
is more robust and reliable than the other two procedures.
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Figure 19. The average boxplots of crack size identification fluctuation (RF, IF, and OF) of the
ADT+SVM, MGPRLF-RPI+SVM, and MGPRLF-PI+SVM to test the reliability and robustness of tests
conducted 20 times.

5. Conclusions

In this work, the adaptive digital twin (ADT) was recommended for the bearing fault
diagnosis and crack size identification tasks. Two steps were performed to design the
ADT. In the first step, the normal signals collected by the vibration sensors were modeled,
and their state-space function was extracted. To do this, a combination of mathematical
and data-driven methods is proposed. The core of the data-driven method was the GPR
algorithm, which had its robustness and accuracy of signal modeling improved in two
stages by Laguerre algorithms and the fuzzy logic algorithm, respectively.

In the second step, an estimator is designed for the normal signal and, after tuning,
it is tested for all signals. The main principles of the proposed estimator are based on
the combination of the proposed modeling technique and the PI observer. Lyapunov and
adaptive algorithms were proposed in this work to strengthen the resistance and increase
the reliability of the digital twin. After designing the proposed ADT to strengthen the
power of fault classification, two steps were performed. First, the residual signal, which
is the result of the difference between the original and estimated signals, is calculated.
Then, the residual signals are resampled, and the RMS features are extracted. Next,
the new signals were sent to check the classification accuracy by the SVM algorithm
in two stages: fault diagnosis and crack size identification. The proposed technique
was tested using the CWRUBD. In general, the classification accuracy of the proposed
scheme (ADT+SVM) is 97.5%, which improved the accuracy of MGPRLF-RPI+SVM and
MGPRLF-PI+SVM by 8.2% and 18.7%, respectively. The simplicity, reliability, and high
accuracy in modeling are the main advantages of this adaptive technique. To improve
the classification accuracy for multi-crack faults, in future research, our goal is to improve
the performance response of this algorithm by combining machine/deep learning and
observation techniques. Thus, it will be possible to improve the classification by designing
noise reduction in the preprocessing section.
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Nomenclature

ADT Adaptive Digital Twin
SVM Support Vector Machine
GPR Gaussian Process Regression
PI Proportional Integral
NC Normal Condition
IF Inner Fault
hp horsepower
GPRLF The combination of GPRL and fuzzy approach
MGPRLF-PI PI observer with MGPRLF modeling
MGPRLF-ARPI (ADT) The combination of MGPRLF-RPI observer

and adaptive approach that is called adaptive
digital twin

Xi(k) The measurable vibration signal
YGPR(k) The signal modeled by the GPR technique
(δi,

((
δo)T(xn)

))
The coefficient of signal modeling using the
GPR algorithm

α Signal variance
k Kernel width
YGPRL(k) The modeled signal by the GPRL method
CoG Center of Gravity
eGPRLF(k) The error of signal modeling using the GPRLF

algorithm
Yf (k) The modeled signal using the fuzzy algorithm

to improve the accuracy and flexibility
δ f The coefficient of the modeled signal using the

fuzzy algorithm
ZD(q) The mass of bearing matrices
ND
(
q,

.
q
)

A nonlinear term for modeling the bearing
θRF The effect of the roller fault
θOF The effect of the outer fault

The number of rollers in the bearing
δXD(XD(k), XDi(k)) The nonlinear term of the bearing

using mathematically based vibration
modeling

XM The state of the vibration signal modeling
using the mathematical approach

δYD The coefficient
YGPRLF(k) The modeled signal by the GPRLF method
XMGPRLF−PI(k) The state of the bearing signal estimation using

the MGPRLF-PI technique
Yraw(k) The original raw signals that are collected by

the vibration sensor
υγ(e, X(k), φ(k)) The Lyapunov function
ηγ(e)φ(k) Differentiable function of the uncertainty

(unknown) condition
XMGPRLF−RPI(k) The state of the bearing signal estimation using

the MGPRLF-RPI technique
υγ(eMGPRLF, XMGPRLF−RPI(k) , The Lyapunov function to increase the
φMGPRLF−RPI(k)) robustness of the proposed algorithm
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XADT(k) The state of the bearing signal estimation
using the proposed ADT technique

φADT The uncertainty estimation using the proposed ADT algorithm
δADT−New The adaptive (update) coefficient for tuning the proposed

ADT estimator
RADT(k) Residual signal using proposed ADT method
ADT + SVM The combination of ADT and SVM
MGPRLF-PI + SVM The combination of MGPRLF-PI and SVM
RMS Root Means Square
CWRUBD Case Western Reserve University Bearing Dataset
FIE Fuzzy Inference Engine
RPM Rotation Per Minute
RF Roller Fault
OF Outer Fault
GPRL The combination of GPR and Laguerre technique
MGPRLF The combination of mathematical modeling and GPRLF
MGPRLF-RPI The combination of MGPRLF-PI observer and Lyapunov

approach
XGPR(k) The state of the bearing signal modeling using the GPR

technique
eGPR(k) The error of signal modeling using the GPR algorithm
CGPR The covariance matrix using the GPR technique
ε Noise variance
eGPRL(k) The error of signal modeling using the GPRL algorithm
XGPRL(k) State of the bearing signal modeling using the GPRL

technique
CGPRL The covariance matrix using the GPRL algorithm
XGPRLF(k) The state of the bearing signal modeling using the

GPRLF technique
YGPRLF(k) The modeled signal by the GPRLF method
CGPRLF The covariance matrix using the GPRLF algorithm
FD(q) The external source forces
..
q The acceleration vibration signal that is measured by a

vibration sensor
θD And the unknown condition (hence is called uncertainty)
θIF The effect of the inner fault
ϕα The angular velocity of rotor
θ f The difference between two reference angular positions
χXD(XD(k), XDi(k)) The uncertainty term of the bearing using mathematically

based vibration modeling
YM(k) The modeled vibration signal using the mathematical technique
XGPRLF(k) The state of the bearing signal modeling using the

MGPRLF technique
YMGPRLF−PI(k) The estimated signal by the MGPRLF-PI method
φMGPRLF−PI The uncertainty estimation using the MGPRLF-PI algorithm
δPI The coefficient of PI observer
Rγ(e, X(k)) The Hamilton–Jacobi discrimination
YMGPRLF−RPI(k) The estimated signal by the MGPRLF-RPI method
φMGPRLF−RPI The uncertainty estimation using the MGPRLF-RPI algorithm
δRPI The coefficient of the RPI technique
YADT(k) The estimated signal by the proposed ADT method
υγ(eMGPRLF, XADT(k), φADT(k)) The effect of the Lyapunov function to improve the robustness

in the proposed ADT algorithm
RADT(k)rms The RMS resampled residual signal using proposed ADT
T The number of windows
MGPRLF-RPI + SVM The combination of MGPRLF-RPI and SVM
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