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Preoperative localization of functionally eloquent cortex (functional cortical mapping)

is common clinical practice in order to avoid or reduce postoperative morbidity. This

review aims at providing a general overview of magnetoencephalography (MEG) and

high-density electroencephalography (hdEEG) based methods and their clinical role

as compared to common alternatives for functional cortical mapping of (1) verbal

language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory

cortex. We highlight strengths, weaknesses and limitations of these functional cortical

mapping modalities based on findings in the recent literature. We also compare their

performance relative to other non-invasive functional cortical mapping methods, such

as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation

(TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or

intracranial investigations.
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INTRODUCTION

Functional cortical mapping (FCM) aims at localizing eloquent functional cortex using a
range of invasive and non-invasive methods (1). Its main indication is to characterize the
anatomical relationship between functionally eloquent cortex and the extent of a planned surgical
resection, e.g., of an intracranial tumor or the putative epileptogenic zone in patients with
pharmacoresistant focal epilepsy. In the latter patient group, results of FCM are usually interpreted
in conjunction with structural magnetic resonance imaging (MRI), neuropsychological findings,
positron emission tomography (PET), single photon emission computed tomography (SPECT) and
video-electroencephalography (EEG) monitoring (1).

The advent of non-invasive FCMmethods has substantially influenced the care of neurosurgical
candidates. Indeed, the availability of FCM results based on non-invasive approaches before surgery
allows for a better estimation of the risk-benefit ratio of the planned neurosurgical procedure with
better patients’ counsel, optimized neurosurgical strategies, as well as tailored resection extents.
Overlap between functionally eloquent cortex as identified by non-invasive FCM and lesional or
epileptogenic zones may even argue against surgery or for alternative therapeutic strategies.
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This paper reviews currently available FCM methods with a
special emphasis on electromagnetic source imaging. Strengths,
weaknesses and limitations of electromagnetic source imaging
in relation to other modalities commonly used for mapping
of verbal language, sensorimotor, memory, visual, and auditory
functions are also presented.

Functional Cortical Mapping Methods
Non-invasive Methods

Anatomical Landmarks
Identification of anatomical landmarks in structural cerebral
imaging represents an easy and fast approach to localize
functionally eloquent cortex. However, inter-rater reliability is
significantly lower than with FCM results, even within the same
subject and across successive analyses over several days (2).
Furthermore, anatomic variability, lesion-induced plasticity, and
displacement considerably limit accuracy and viability of this
approach [for references, see, e.g., (3, 4)].

Functional Magnetic Resonance Imaging (fMRI)
Among the various non-invasive FCM techniques that can be
used in humans, fMRI is by far the most commonly used (5).
Active brain areas are detected indirectly by relying mostly
on task-related changes in regional brain perfusion. Blood
oxygenation level dependent (BOLD) signal changes can then
be detected by fMRI. The resulting spatial resolution of fMRI
is excellent (∼1mm, including deep locations). However, the
dependence on the comparably slow hemodynamic response
limits its temporal resolution (∼1 s) (6). Furthermore, the
neurovascular coupling may be altered by lesional processes
in the vicinity, potentially leading to spurious fMRI results (7,
8). Moreover, activation patterns of single patients with brain
disorders can be more difficult to interpret than those obtained
in individuals or groups of healthy subjects (8, 9).

Electric Source Imaging (ESI) and Magnetic Source Imaging

(MSI)
Magnetoencephalography (MEG) and EEG are non-invasive
methods that record magnetic and electric fields, respectively.
These are generated by excitatory or inhibitory postsynaptic
potentials at the apical dendrites of neocortical pyramidal
cells. Determination of the anatomical location of the sources
generating the measured signal is known as magnetic and electric
source imaging (MSI and ESI, respectively). This is achieved
by combining MEG or EEG data with structural MRI. For the
purpose of clarity, we will henceforth only use MEG and EEG to
refer to MSI- or ESI-based FCM.

In contrast to EEG, MEG is sensitive mainly to tangential
neocortical source components. Consequently, it detects activity
mainly from the sulcal walls, while small areas at the crown or
in the sulcal depth barely contribute to detectable signals (10).
Sensitivity of both EEG and MEG decreases with increasing
cortical depth. The number of sensors, amplitude of background
activity and, in EEG, smearing of the field distribution due to
variations in skull resistivity, account for differences in recorded
signals (11). For a comprehensive review on mechanisms of
MEG and EEG signal generation, see (12). Data from EEG and

MEG are complementary and combined analysis has been shown
to outperform the single modalities alone in the presurgical
evaluation of patients with epilepsy in the context of source
localization (13). Still, this combined approach is rarely used for
FCM and comparable studies for simultaneous FCM inMEG and
EEG are, to the best of our knowledge, lacking.

Transcranial Magnetic Stimulation (TMS)
TMS is a non-invasive form of neurostimulation. Magnetic
fields applied focally are used to induce or inhibit electric
activity of targeted neurons via electromagnetic induction.
Neuronavigation using the patient’s individual structural MRI
(and eventually results from other FCM modalities) allows for
better targeted stimulation (nTMS). In the context of FCM, it
is used primarily for verbal language and primary motor (M1)
cortex localization (14–17) in specialized centers.

Invasive Methods

Intracarotid Amobarbital Test (IAT)
Wada and Rasmussen described in 1960 the intracarotid
injection of amobarbital for the lateralization of cerebral
speech dominance (18). Sodium amobarbital is injected into
a single internal carotid artery via transfemoral arterial
catheterization. This procedure transiently suppresses neuronal
function of the corresponding brain hemisphere depending on
the respective vascular supply, mainly the ipsilateral anterior
and middle cerebral arteries. Patients then undergo verbal
language and neuropsychological testing during the transient
unilateral hemispheric anesthesia, evaluating language and
memory functions. The procedure is then repeated for the
contralateral hemisphere. The IAT or “Wada-Test” allows for
lateralization but not localization of brain areas involved in
verbal language and memory functions (19). Limitations and
shortcomings include risks of stroke, hemorrhage, infection
(morbidity around 3–5%) and the possibility of arterial crossflow
to the contralateral hemisphere via the circle of Willis—for
reviews or discussions, see, e.g., (20, 21).

Direct Current Stimulation
Direct current stimulation (DCS) is used in awake craniotomy
for language-, motor- and memory mapping. For a review, see
(22). Intracranial EEG electrodes record local field potentials
and can also be used for stimulation purposes. Cortex areas are
labeled as eloquent either via gain/loss of the specific function,
i.e., motor jerks, speech arrest, memory deficits, or via alterations
of simultaneously recorded local field potentials or targeted
electromyography (22).

EEG/MEG FUNCTIONAL CORTICAL

MAPPING COMPARED TO OTHER

METHODS

Verbal Language Function
Presurgical and potentially intraoperative investigation of verbal
language function is mandatory to avoid postoperative language
deficits if surgery involves resection near (presumed) language
eloquent cortex.
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Language related cortex is extensive and bilateral, although
one hemisphere is usually dominant. Two broad processing
streams can be distinguished: a ventral stream for speech
comprehension (bilateral, temporal lobes) and a dorsal stream
for sensory-motor integration (asymmetric, temporo-parietal
junction, and frontal lobe). For comprehensive reviews, see,
e.g., (23, 24). In a healthy population, ∼95% of right-handers
and ∼76% of left-handers have left—hemisphere language
dominance (25, 26). In patients with epilepsy, the rate of left—
hemisphere language dominance drops significantly, with rates
of 63−96% (right-handers) and 48−75% (left-handers) (26, 27).

Assessment of hemispheric dominance and intra-hemispheric
cortical representation of speech processing and production
are the main objectives of language FCM (5). IAT has been
considered the gold standard for the evaluation of language
hemispheric dominance. However, this role has been challenged
by non-invasive methods (21). fMRI is the most widely used
modality for assessment of language function, but EEG/MEG
allow for characterization of temporal, spectral and also spatial
dynamics of receptive and expressive language processing (5, 28).

Assessment of Hemispheric Dominance of Receptive

Verbal Language Function
A frequently used approach for assessment of hemispheric
receptive verbal language dominance was proposed by
Papanicolaou et al. (29). It evaluates late (about 200 and 800ms
post stimulus) event related fields by use of an equivalent current
dipole model. This approach showed consistent concordance of
86–92% betweenMEG and IAT results (29–33) and with findings
from intracranial cortical stimulation (34).

Other strategies apply beamforming (35) and evaluate the
spatial distribution of oscillatory changes related to silent
reading. Lateralization of desynchronized/suppressed beta- (13–
25Hz) and gamma-activity (25–50Hz) in regions of interest is
analyzed and used to calculate a laterality index. This method
showed concordance with IAT results in 95% of patients.
Wilenius et al. (36) found a sensitivity of 67% and a specificity
of 100% of stronger MEG responses to vowels than tones in the
left hemisphere.

Furthermore, distributed source models, such as e.g., MR-
FOCUSS have been successfully used for verbal language
lateralization, as demonstrated by Bowyer et al. (37). Their
approach of laterality index determination for multiple time
intervals showed agreement with IAT results in 89%.

Active participation for the assessment of verbal language
dominance using MEG may not be needed, as passive (listening)
paradigms have also been described (38, 39).

Intrahemispheric Representation of Speech

Processing and Language Production
IAT does not allow for an arterial injection of amobarbital that is
selective enough to discriminate the sublobar structures involved
in verbal language processing. Therefore, in clinical practice,
intrahemispheric verbal language localization is primarily
evaluated using fMRI or MEG preoperatively, or using direct
current stimulation (DCS) intraoperatively.

Various protocols for the assessment of areas involved in
verbal language comprehension (29, 40–42) and production (43,
44) are in routine clinical and research use. Using fMRI or MEG
results as starting and end points for tractography further allows
estimation of functional white matter pathways for planning of
surgery or targeted intraopearative DCS testing (45).

Most studies suggest a high inter-subject variability of
language-related activations, as well as high degrees of cortical
plasticity in patients with brain disorders (28, 46, 47). Even DCS
results have been shown to provide an incomplete representation
of verbal language function with consecutive postoperative
functional deficits (48).

Furthermore, nTMS, as well as nTMS-based DTI fiber
tracking, have been applied successfully (49) but are, to the best
of our knowledge, not currently in widespread clinical use.

Validation and Comparison
fMRI possibly provides better prediction of postoperative verbal
language and memory deficits compared to IAT (50, 51), and
shows concordance with IAT results in about 80–90% of cases
(8). fMRI holds the potential to replace IAT for determination of
hemispheric language dominance inmany cases (5, 52). However,
sites of fMRI activation do not necessarily reflect cortex essential
for verbal language function and conversely, areas not activated
by the fMRI paradigm under use may prove to be relevant
(5). The precise intra-hemispheric localization of essential verbal
language areas, especially in patients, remains suboptimal (5, 7,
8). Sensitivity of fMRI for DCS sites ranges from 59 to 100%,
specificity from 0 to 97% (53).

Multiple approaches have been evaluated and validated for
MEG verbal language lateralization. Stimulation paradigms
usually test for language comprehension or language production.
Agreement with IAT is about 86–92% for word recognition tasks
(31, 32), and 78–82% for language production, depending on the
specific experimental design (28).

Data on the comparison of localization accuracy of MEG
mapping and DCS are sparse (54). Hirata et al. (42) reported
distances between MEG activation maxima and DCS positive
sites of 6.0 ± 7.1mm, Simos et al. (34) described concordant
results in a case report. Babajani-Feremi et al. (55) showed
that the combination of fMRI, high-gamma electrocorticography
(ECoG) and MEG predicted postoperative language decline best,
while integrating fMRI and MEG provided the best trade-off
between model complexity and prediction accuracy. Tarapore
et al. (56) compared TMS, DCS, and MEG for language mapping
in the same patients and found high sensitivity and specificity
(90 and 98%) of TMS for DCS results in a population of 12
patients with lesions around cortical language areas, while MEG
results correlated with TMS sites only in 5 subjects and DCS
sites in 2 subjects. Other studies support the high sensitivity of
TMS for DCS positive sites, but find reduced specificity, e.g., 90.2
and 23.8% by Picht et al. (57). Ille et al. (58) report a sensitivity
of 100% and a specificity of 8%. In a separate study (59), the
same group could achieve a sensitivity of 98% and a specificity
of 83% by combining the results of TMS and fMRI. Comparative
EEG, DCS, and/or invasive EEG data for language mapping is
not available.
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Clinical MEG societies regard MEG as a validated tool for
presurgical evaluation of patients in respect to the assessment
of verbal language-dominant hemisphere and consider it as a
potential replacement for IAT in most patients (60). However,
MEG should not be considered as a replacement for DCS
or awake surgery to spare eloquent language areas close to
resection borders (60). However, the predictive value of DCS
itself is debated and limits its value as a gold standard
(21). Ilmberger et al. (61) describe DCS positive sites within
the resected lesion as significant risk factor for postoperative
language disturbances. However, only 53% of patients with such
findings developed a new language-related deficit. Furthermore,
postoperative language deficits are often only transient although
DCS positive sites have been at least partially resected (62).
Additionally, Cervenka et al. (63) reported postoperative deficits
in 7 of 11 operated patients which were not anticipated by DCS.
This may in part be caused by temporal and financial limitations
leading to “incomplete mapping,” as the authors point out.

Sensorimotor Function
In patients with lesions or epileptogenic zones located at the
central region, mapping of sensorimotor cortex is utilized
to locate primary somatosensory (S1) and motor (M1) areas
(64). While structural landmarks enable the identification of
anatomical primary sensorimotor (SM1) cortex, space-occupying
lesions may result in considerable displacement and structural
alterations. Furthermore, motor areas are especially capable
of functional reorganization to neighboring or possibly even
remote areas (65). Sensorimotor mapping enables localization
of functionally eloquent cortex in the individual patient, and
thus the tailoring of resective neurosurgery. Alongside fMRI,
DCS and nTMS, MEG has been applied successfully for this
indication—for reviews, see (66–68). Studies reporting on EEG–
based sensorimotor FCM and its clinical value are however sparse
(69, 70) or are evaluated as part of simultaneous EEG/MEG
recordings (71, 72).

Somatosensory Functional Cortex Mapping
Clinical MEG/EEG mapping of S1 cortex typically utilizes
either electrical or mechanical stimulation. The former follows
principles of, e.g., median or tibial nerve electrical stimulation
as frequently applied in neurological and neurosurgical practice
(3, 6, 73–79). Stimulation sites are chosen according to the
location of the lesion and the estimated relation to functional
cortex. As the duration of the procedure amounts to only
a few minutes, multiple stimulation targets can be evaluated,
e.g., for comparison with contralateral cortex. Furthermore,
stimulation of several sites can be combined into a single
measurement run with only slightly extended duration. One
study performed in 325 consecutive patients with various brain
disorders demonstrated that the success rate of somatosensory
mapping based on electrical median and tibial nerve stimulations
was significantly lower for the feet than for the hands (95.3%
for the hands vs. 76% for the feet) (77). Electrical stimulation
however is rather uncomfortable and associated with high-
amplitude stimulation artifacts. Stimulation of the face, as well as
investigations of children or pain-sensitive patients are therefore

usually performed using pneumatic stimulation (80, 81). This
procedure utilizes pneumatic stimulation devices with balloon
diaphragms, which are moved using pressurized air. Due to
the longer latency and higher variability of pressurization, the
onset of the evoked activity occurs later and is less sharp.
Somatosensory and motor mapping can be combined into
a single recording session to limit the overall measurement
duration (82). Presurgical somatosensory FCM in patients with
brain lesion located close to the central sulcus is, in most
instances, used to properly locate the central sulcus and assess
likely functional (i.e., motor function) risks associated with
resective surgery [see, e.g., (6)]. Still, this approach provides
indirect information about the location of motor function, and
might therefore be misleading in certain circumstances (e.g.,
brain lesion inducing substantial anatomical displacement).

Motor Cortex Mapping
The spectrum of FCM paradigms and analytical techniques to
locate M1 cortex mainly rely on motor evoked fields/potentials
(MEF/MEP) and on the suppression of rolandic (alpha and)
beta rhythm(s). Additional methods can also be used such as
cortico-muscular (CMC) or cortico-kinematic (CKC) coherence.

Motor evoked field/potential or readiness paradigms
(73, 77, 83–85) utilize either externally cued or self-paced
movements or muscle contractions. Most common are finger
tapping and hand closing/opening. Simultaneous recording of
EMG (electromyography) enables the exact determination of
movement onset. Analysis of the averaged signal then evaluates
activity approximately 30–40ms before movement (60).

Motor activity is accompanied by event-related
desynchronization (ERD) or suppression of oscillatory activity
in the alpha and beta frequency bands (86). This mu-rhythm,
alpha- and beta-band suppression can be localized using, e.g.,
beamforming (3, 77, 87–89). Paradigms include, e.g., hand
grasping (88) and finger extension (3), or ankle flexion/extension
(77). Importantly, the beta-band movement-related suppression
is organized in a somatotopic manner along the precentral gyrus,
while this is less clear for the alpha-band suppression, which
has been shown to mainly occur close to the hand region of the
postcentral gyrus regardless of the body part moved (90). This
explains why beta-band suppression is usually preferred over
alpha-band suppression for M1 cortex mapping. The success
rate of motor mapping based on movement-related beta-band
suppression has been shown to be lower for the feet than for the
hands (94.6% for the hands vs. 81.8% for the feet (77).

Coherence approaches (3,88) evaluate the functional coupling
of neuronal activity with either muscular activity [as measured by
electromyography (EMG)] or movement kinematics. Statistical
approaches localize cortical areas of significant coupling with
these external reference signals. Stimulation paradigms typically
utilize isometric contractions for CMC and recording of (active
or passive) movement kinematics with, e.g., accelerometers for
CKC (4, 91–93). CMC is considered to reflect mainly the efferent
flow of motor commands from M1 cortex to the periphery [for
a detailed discussion, see, e.g., (94)] while CKC mainly reflects
movement-related somatosensory proprioceptive afferent input
to the contralateral SM1 cortex (91, 95).
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Of note, MEG and fMRI activations may also be used to
support identification of the corticospinal tract (83). Aoyama
et al. (96) have combined MEG and tractography for planning
of stereotactic irradiation of arteriovenous malformations.

Validation and Comparison
MEG-based localization of the SM1 cortex shows high agreement
with DCS and fMRI—for a review, see, e.g., (67). Validation
based on DCS has been mainly obtained for somatosensory
evoked fields (67), to a smaller extent for motor evoked fields
(85) or movement-related beta-band suppression (87), and on a
few patients for CMC (67). To the best of our knowledge, such
validation has not been reported for CKC. Discrepancies between
MEG and DCS amount to about 10mm (81). The comparison
of DCS and MEG may however be limited by the spread of
the stimulation electrical current, which is largely unknown in
the individual case (67), as well as the sensitivity of MEG to
sulcal rather than gyral-apical sources. Of note, the intersession
reliability of MEG S1 cortex mapping based on electrical median
nerve stimulation has been showed to be about 8mm confidence
interval around the estimated location of S1 cortex (79), which
is not far from the reported average discrepancy between MEG
and DCS.

In comparison to fMRI, MEG shows comparable, and in
some patients even superior results (6, 73, 80, 97–102). Mean
differences between somatosensory fMRI and MEG results are
reported in the range from about 15mm (73) to 23mm (70),
and for M1 cortex, localizations from 10mm (73) to 27.9mm
(70). The comparably large variation may be caused by different
experimental setups and analysis techniques. Klamer et al. (70),
for example, used a distributed source model, whereas, Kober
et al. (73) used single equivalent current dipole modeling. In
addition, it should be noted that the accuracy of fMRI is also
limited by noise, especially in suboptimal recording conditions,
which are frequently encountered in clinical practice. High
variability may therefore also originate from limited signal-to-
noise ratio.

In patients with tumors or vascular lesions in the vicinity
of the SM1 cortex, localization of SM1 cortex using fMRI
may be difficult due to lesion-induced alterations of regional
cerebral blood flow and susceptibility artifacts (103, 104). In these
patients, MEG may provide superior results, due to the direct
measurement of neuronal activity (105).

MEG also presents an additional key strength over fMRI,
which is the ability to investigate in one single MEG session
different neurophysiological processes (i.e., evoked magnetic
responses, induced magnetic responses, and coupling between
peripheral and cortical signals) that can be altered or affected
differently by brain lesions or patients’ clinical status. Thus,
MEG provides the unique opportunity to acquire several MEG
“functional localizers” of the SM1 cortex in a reasonable time
for the patients (3). “Functional localizer” here refers to a
given MEG mapping method to localize the SM1 cortex (see
Somatosensory functional cortex mapping and Motor cortex
mapping), regardless of the source reconstruction methods
used (i.e., equivalent current dipole modeling, minimum
norm estimate, spatial filtering approaches). The anatomical

convergence of the different MEG functional localizers at the
central sulcus has been demonstrated in healthy subjects for
hand sensorimotor functional mapping and contributes to the
assessment of the confidence level in non-invasive functional
mapping results (compared with a uni- or bimodal approach)
and to determine the clinical need to undergo further intracranial
mapping procedures (3). It also represents a nice way to indirectly
validate the localization accuracy of MEG mapping methods not
validated by DCS (e.g., CKC) by comparing them with validated
methods (e.g., somatosensory evoked fields, motor evoked fields,
beta-band suppression). Such approach also increases the yield of
MEG in case of failure, inaccurate or atypical localization of one
MEG functional localizer or fMRI mapping (3, 67).

Navigated transcranial magnetic stimulation (nTMS) is
increasingly applied for presurgical mapping of SM1 cortex (106).
A number of studies have shown clinical value for resections
of lesions in motor eloquent areas (107–109), as well as a good
concordance with DCS (110–113) with, in some cases, smaller
distances between nTMS and DCS vs. fMRI and DCS (110).
Tarapore et al. (56) evaluated TMS, MEG and DCS for motor
mapping in the same population and report distances of 2.13 ±

0.29mm between TMS and DCSmotor sites and 4.71± 1.08mm
between MEG and DCS.

Studies evaluating EEG for FCM of SM1 cortex are limited.
Klamer et al. (70) compared high-density EEG (hdEEG) and
MEG with a similar channel number with fMRI as reference
standard. They reported, that, using volume conductor models
based on the individual anatomy, source imaging relying on
hdEEG may provide localizations that are closer to fMRI than
MEG. Mean Euclidean distances were 21.7mm between EEG
and fMRI, and 27.9mm between MEG and fMRI for motor
activity. However, the comparably large deviations of both EEG
and MEG suggest that both electromagnetic modalities may be
sensitive to different aspects of neural activity than fMRI. This
is further supported by deviations of fMRI itself from DCS
localizations. Korvenoja et al. (6), for example, reported that
fMRI was concordant with intraoperative findings in only 11
of 15 patients. Lascano et al. (69) found good concordance of
source imaging relying on hdEEG and fMRI with distances of
only 3 to 8mm. Both, however, deviated from DCS by 13–
14mm. This study further supports the clinical value of EEG
especially with a high number of channels. It also highlights
the different perspectives of M/EEG, fMRI, and DCS mapping
and illustrates the importance of the choice of a gold or, better,
reference standard.

Memory Function
Due to the overlap in declarative memory function and lesions
associated with mesial temporal lobe epilepsy (MTLE), memory
impairment is common in this group of patients. Verbal
memory decline can be observed in 30–85% of patients who
undergo left temporal resection, whereas non-verbal memory
deterioration after right (- or left) temporal resection affects
30–50% (51, 114–116).

IAT is considered the gold standard for the assessment of
declarative memory function. Impaired memory performance is
usually found in about 20–30 % of cases injected ipsilateral to
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the seizure onset zone and in 60–80% after contralateral injection
(117–119). Based on these results, several authors consider IAT
results as a prognostic tool to predict postsurgical declarative
memory, although results on the predictive value of IAT are
contradictory and controversial (120–123), and memory results
on repeated IAT are much less robust than those of verbal
language testing (15).

In addition to the methodological drawbacks of IAT, there is
no guarantee that amobarbital can be sufficiently delivered to the
targeted hippocampal formation (124, 125).

fMRI, MEG, PET, and TMS, as well as several
combined/integrated methods are non-invasive alternatives
evaluated for declarative memory functional mapping (126).

In this context, fMRI is by far the most popular and widely
used solution. For a comprehensive review, see e.g., (122).

To the best of our knowledge, MEG (or EEG) are not
in (routine or validated) clinical use for declarative memory
FCM. The most important obstacle might be the detection of
hippocampal activation due to the limited sensitivity of MEG to
deep sources—a problem that has been addressed, leading to the
implementation of research protocols including the evaluation of
deep structures via MEG (127–130). Clinical research in this area
remains sparse. Maestú et al. (131) investigated verbal episodic
memory in 9 patients with left MTLE in comparison to 9 healthy
controls. MEG showed a left-hemisphere-dominant activation
pattern in healthy controls, whereas patients’ activation patterns
showed mainly right-hemispheric dominance. Three patients
underwent left anterior temporal lobectomy. They showed no
significant postoperative memory loss and Engel class 1A/B
outcome. These data suggest, that MEG has the potential to be
used for memory FCM, but further studies are clearly needed.

Validation and Comparison
Even though it is considered the gold standard, the role of IAT
in the prediction of postoperative declarative memory outcome
remains controversial. Rathore et al. (123) reported memory
outcome data on 116 patients after left anterior temporal lobe
resection. Approximately one third of patients had “failed”
IAT, meaning that test results indicated ipsilateral memory
representation. After resection (operation was performed
regardless of IAT-results), no difference was found between the
group who failed and those who passed the IAT.

fMRI results show good concordance with IAT, which is also
the basis for most validation studies. Throughout the literature,
there is a great heterogeneity regarding the experimental
paradigms used, but verbal memory tasks show the most
consistent and clinically useful results (132).

To the best of our knowledge no validated method of
declarative memory functional mapping relying on MEG or
EEG exists.

Visual Cortex
Damage to the visual cortex or optic radiations may result in
partial or complete anopia, whereas congenital defects or lesions
might result in functional reorganization (133, 134). Presurgical
FCM provides localization information of potentially displaced
primary visual (V1) cortex either using EEG, MEG, or fMRI

and thus helps to avoid such damage. Due to the fact that
partial anopia is rather accepted by doctors and patients in
certain circumstances, visual FCM is of limited clinical value.
Therefore, functional mapping of V1 cortex is rarely applied
in comparison to, e.g., FCM of verbal language or SM1 areas.
Correspondingly, literature on application in clinical settings is
sparse, in comparison to studies focusing on basic neuroscientific
research of the visual system.

Early components of visual evoked activity in EEG and MEG
(visual evoked potentials—VEP and visual evoked fields—VEF)
localize to V1 cortex. Paradigms apply pattern reversal stimuli,
such as checkerboards, presented to a hemifield or a single
quadrant (135–137). Sources of early evoked activity occurring
approximately 100ms after stimulus onset (135, 138), i.e., pattern
reversal, can be modeled using single equivalent current dipolar
models (135). Presence of a lesion may result in prolonged
latencies (139). Robustness of the method is critically dependent
on stimulation quality, which is substantially influenced by
the projection equipment and the variability of stimulus onset.
Similar to approaches in language and motor systems (45, 83),
MEG activations have been combined with tractography to
support identification of V1 and the optic radiation (140).

Validation and Comparison
EEG-based visual evoked potentials are used for intraoperative
neurophysiological monitoring, which evaluates response
latencies and amplitudes rather than localization (141). Studies
on presurgical EEG-based FCM of V1 cortex are lacking.

DCS, e.g., during invasive Video-EEG monitoring for
presurgical evaluation of refractory focal epilepsy, provides high
accuracy and selectivity for different aspects of the visual system
(142). A comparison of MEG mapping with DCS has not been
performed. In principle, TMS can stimulate and thus localize V1
cortex (143), however, clinical evidence is lacking. Consequently,
there are no data available relating M/EEG to TMS.

fMRI has shown the ability to accurately localize V1 cortex
and differentiate correlates of different stimulus aspects, such
as visual field eccentricity and angular position by sophisticated
paradigm design (144). Localization accuracy has been evaluated
in comparison to DCS in a handful of studies (145, 146), which
nevertheless show very high concordance rates. Comparisons
between EEG and MEG V1 cortex FCM are not available.

Auditory Cortex
Auditory mapping is clinically applied in patients with
lesions or structural alterations within or near Heschl’s gyrus
(147). Lesional growth may lead to displacement and also
reorganization of primary auditory areas. Identification by using
anatomical landmarks alone may be challenging in few cases.
Cortical deafness as a result of a lesion or surgical procedure
is, however, a rare complication due to the redundant bilateral
representation (148). This explains why auditory FCM is actually
of limited clinical usefulness. Latencies and amplitudes of, e.g.,
the N100 response or its magnetic counterpartM100 (or N100m)
may be changed in patients with autism (149, 150), dyslexia
(151), corticobasal degeneration (152), ischemic lesions (153),
and tumors (147).
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Auditory stimulation in EEG/MEG recordings typically use
monaural presentation of brief sine or click tones with white
noise masking of the contralateral ear (60). Averages of 200–
500 trials are then analyzed regarding amplitudes and latencies.
Localization analysis usually focuses on the N/M100 response
and relies on equivalent current dipolemodeling. Early brainstem
auditory evoked potentials are not well-recorded with MEG (60),
but are detectable when using a considerably larger number of
averages (154).

Uni- and bilateral auditory stimulation results in bilateral
activation of auditory cortices, reflected by bilateral dipolar
generators. In EEG, this leads to merging potentials with a
maximum negativity over the vertex and positivity over the
basal temporal lobes. Due to the different sensitivity and rotated
orientation of magnetic fields, the two components are easier to
separate in MEG. Furthermore, generators of auditory activity
have a predominantly tangential orientation, which improves
SNR in MEG (155).

Validation and Comparison
Early studies have shown the accuracy of MEG (156, 157) and
EEG (158) to localize auditory evoked activity (159). Scarff et al.
(160) conducted EEG-fMRI measurements of auditory evoked
activity. They reported good concordance of both methods in the
horizontal plane. However, EEG dipoles localized more cranially
than fMRI. Increasing the number of electrodes from 64 to 128
improved the concordance. Shahin et al. (161) evaluated auditory
activity with simultaneous recordings of MEG and EEG and
reported a good concordance regarding localization, although
source amplitudes differed depending on the orientation of
generators. Between-subject-variability of localizations was lower
in MEG compared to EEG. Studies comparing accuracy of MEG,
EEG and DCS or nTMS for identification of the auditory cortex
in a clinical context are not available.

New Approaches
The evaluation of functional connectivity has gained considerable
interest in the last years, partially due to methodological
and technical advances. Going beyond the absolute activation
and focusing on functional integration patterns between brain
areas has opened new opportunities for FCM. These new
approaches enable identification of functional networks, rather
than task-based individual activated areas. The main hypothesis
assumes that this provides a more complete and realistic
view of human brain function. While most studies currently
focus on physiological activity in healthy subjects, there are
promising findings with potential for novel clinical application
(162). For example, Doesburg et al. (163) showed functional
connectivity and cross-frequency modulation in the gamma and
theta frequency bands during a verb generation paradigm in
expressive language networks. These findings did not necessarily
coincide with the localization of, e.g., task-based gamma
power modulations. Although they observed this functional
connectivity structure in left- and right-sided regions, cross-
frequency modulations were more pronounced in the left frontal
cortex and particularly in the inferior frontal gyrus. Such features
of neuronal communication may therefore represent candidates

for potentially more specific FCM of, e.g., verbal language-related
brain areas.

Evaluation of functional connectivity patterns in the resting
brain (i.e., in the absence of any explicit task) potentially also
provides relevant information for localization of functionally
eloquent cortices in fMRI (164) and MEG (165). Martino et al.
(164) evaluated such resting state functional connectivity (rsFC)
in the vicinity of tumors and compared the results with DCS.
Decreased rsFC in the tumor vicinity was associated with absence
of eloquent cortex (via DCS) in all cases, while increased rsFC
indicated the presence of eloquent cortex (via DCS) in 64% of
patients. Tarapore et al. (165) utilized the rsFCmethod inMEG to
predict postoperative functional deficits in patients undergoing
glioma surgery. They showed that patients with increased rsFC
in the tumor area presented with new neurological deficits in
25% of cases at 6 months after surgery vs. 0% in patients
with decreased rsFC. These findings are corroborated by similar
results using resting state fMRI data (166). The main limitation
of such approaches is currently the limited availability of clinical
studies. In addition, analysis methodology is complex and
diverse, with little standardization at this point. Furthermore,
the specific functional significance of individual resting state and
connectivity measures remains largely unclear (166) and requires
further investigation.

Machine learning algorithms are transforming multiple
medical fields. Clinical applications are already in use in various
domains—predominantly in image processing, classification and
segmentation (167). Roland et al. (168) used a machine learning
approach on resting state fMRI for sensorimotor cortex mapping
and compared results with DCS in 16 pediatric patients with
epilepsy. The authors report comparable functional localization
between the two methods.

In the future, machine learning might find further application
in FCM, e.g., based on methods and findings in the field
of brain-computer interfaces (169). However, specific analysis
protocols, thorough evaluation of the applied algorithms and
clinical validation are lacking at this time.

Finally, studies demonstrated that FCM based on
the investigation of event related enhancement of high
gamma activity as recorded by invasive recordings or
electrocorticography during awake craniotomy might be of
high interest for the mapping of verbal language and motor
eloquent cortex (170–173). Still, this approach is mainly used
in some specialized centers and further validation studies
are needed.

DISCUSSION

For any validation of FCM methods, the choice of the reference
standard used to validate the methods is crucial. DCS either
intraoperatively or during invasive monitoring with subdural or
depth electrodes is considered as one gold standard. However,
data on current flow from the electrodes through the cortex
is sparse in addition to how such currents interact with the
neuronal architecture beyond single cell responses. In addition,
different methods might be sensitive to different aspects of neural
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activity. Lascano et al. (69) described a systematic difference
between hdEEG and fMRI regarding S1 cortex localization, with
fMRI showing more lateral activation. The authors argued that
this discrepancy may be caused by EEG detecting early activity
in Brodmann area 3b, while fMRI would reflect more integrative
processes in the more lateral Brodmann area 1.

In addition, the predictive value of DCS itself may be limited,
as illustrated by Ilmberger et al (61). The authors report on
the outcome of intraoperative mapping of language functions
in 149 tumor patients. One of the main risk factors for early
postoperative disturbances was a DCS language-positive site
within the tumor. However, only 53% of these patients developed
a new postoperative deficit. Furthermore, 7 months after surgery,
only pre- or postoperative aphasia, and increased age were
associated with persisting deficits. Positive stimulation sites
within the resected tumor did no longer show a significant
influence. While subtle deficits of language function may not
have been considered, the predictive value of DCS was therefore
limited to early postoperative language function in a portion of
the patients. It ultimately did not affect the outcome after this
initial phase. This overestimation of functional involvement, as
also found in the non-invasive alternatives, does not necessarily
contradict clinical utility. However, it imposes limits on the
validity of DCS as a “ground-truth” gold standard, potentially
also since it does not and potentially cannot take postoperative
reorganization phenomena into account.

In a prospective clinical study by Hermann et al. (46),
resection of presumed verbal language eloquent cortex in the
superior temporal gyrus was compared with sparing these areas.
Postoperative outcomes showed no significant difference in
visual confrontation naming. Since intraoperative DCS was not
performed, it can only be assumed but is not proven, that
language eloquent cortex was resected. As patients underwent
classical anterior temporal lobe resections it should be pointed
out, that results arguably might have been different, if more
extensive resective approaches had been applied. Furthermore,
evaluation of subtle verbal language deficits is challenging,
especially as postoperative reorganization may mask these.

Tate et al. (174) identified areas in the non-dominant
hemisphere, the stimulation of which led to speech arrest.
However, only patients with low grade glioma were evaluated,
implying that such reorganizationmay have led to a shift of verbal
language-related areas.

Especially in patients with atypical hemispheric dominance,
all non-invasive methods show limitations. Bauer et al. (175)
published a meta-analysis of fMRI vs. IAT for verbal language
lateralization. They reported a concordance rate of 91% in
patients with typical language lateralization. However, in patients
with atypical lateralization, concordance rate dropped to only
51%. Similarly, while MEG-based verbal language lateralization
was concordant with IAT in 32 of 35 patients in a study by
Tanaka et al. (176), the remaining were patients with bilateral
language representation. In addition, Picht et al. (112) reported
overestimation of areas involved in verbal language processing by
TMS, underlining that this issue does not seem to be a problem
of a single modality, e.g., due to limitation of data quality, etc.

In light of these limitations, non-invasive localizationmethods
that seek to go beyond mere lateralization can provide only a
conservative estimate of essential functional cortex. If such areas
are spared by the neurosurgical procedure, functional deficit
can thus probably be avoided in most cases. However, on the
other hand, a portion of these regions could potentially be
resected without any functional deterioration, e.g., to achieve
gross total resection in tumor surgery or to completely remove
the epileptogenic zone. In the context of epilepsy surgery, this
“conservative” perspective on functionally eloquent cortex may
be warranted, especially as quality of life is the central goal.
However, tumor surgery requires more aggressive strategies,
which would benefit from increased specificity. Focusing on
patients undergoing tumor surgery might therefore help to better
determine if this conservative approach is indeed mandatory in
all situations.

The current challenge is to identify markers, which provide
a more accurate and robust estimation of this essential,
necessary cortex.

In general, studies on the direct comparison of different
FCM methods in the same patient population are sparse.
Most publications focus on the diagnostic accuracy of a
single method vs. a mostly invasive reference standard,
i.e., DCS or IAT, etc. When postsurgical outcomes are
considered, follow-ups are frequently short. Only limited data
is available relating presurgical FCM to long-term outcomes
and functional reorganization. Results on clinical M/EEG
FCM of the auditory or visual system are generally sparse,
potentially due to the limited clinical relevance. A main
issue for validation of not only M/EEG-based FCM, but
also the prognostic value of fMRI, TMS, and even DCS
is the very limited availability of prospective, randomized
clinical studies.

While EEG and MEG register similar activity with
differences in sensitivity, EEG is rarely applied for FCM
in a clinical context. This is in stark contrast to the wide
utilization of EEG in clinical routine for diagnosis and in
neurocognitive studies (177), although these latter ones
frequently focus on group sensor-level results rather than
specific brain localizations at the individual level. HdEEG
is a promising alternative to fMRI and MEG for FCM in a
clinical setting though it requires more studies focusing on
this application.

Both MEG and EEG are sparsely used for FCM in
tumor patients in comparison to, e.g., fMRI, while most
clinical MEG centers perform functional mapping in
the context of epilepsy surgery (178, 179). Reasons for
the sparse application may be limited availability of
reimbursement in many countries and the subsequent
constrained access to MEG, but also HdEEG. Furthermore,
a wide spectrum of methodological approaches without a
clear gold-standard procedure complicates implementation
and application in clinical routine, while technical
challenges, e.g., to integrate results into neuronavigation,
have been solved (81, 180, 181). Further development
of existing clinical practice guidelines (60, 182) as well as
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comparative and prospective studies would certainly impact
practical application.

In conclusion, electromagnetic source imaging provides
additional information for functional mapping with
reasonable spatial resolution, exquisite temporal resolution
and direct information about neural activity. Due to
their non-invasive nature, these methods can be applied
early in the presurgical workup and can be utilized to
optimize the application of invasive means, such as DCS.
Further evaluation is needed to investigate their respective
clinical added-value.
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