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ABSTRACT
Objectives  To evaluate the ability of a commercially 
available comprehensive chest radiography deep 
convolutional neural network (DCNN) to detect simple 
and tension pneumothorax, as stratified by the following 
subgroups: the presence of an intercostal drain; rib, 
clavicular, scapular or humeral fractures or rib resections; 
subcutaneous emphysema and erect versus non-erect 
positioning. The hypothesis was that performance would 
not differ significantly in each of these subgroups when 
compared with the overall test dataset.
Design  A retrospective case–control study was undertaken.
Setting  Community radiology clinics and hospitals in 
Australia and the USA.
Participants  A test dataset of 2557 chest radiography 
studies was ground-truthed by three subspecialty 
thoracic radiologists for the presence of simple or tension 
pneumothorax as well as each subgroup other than 
positioning. Radiograph positioning was derived from 
radiographer annotations on the images.
Outcome measures  DCNN performance for detecting 
simple and tension pneumothorax was evaluated over 
the entire test set, as well as within each subgroup, 
using the area under the receiver operating characteristic 
curve (AUC). A difference in AUC of more than 0.05 was 
considered clinically significant.
Results  When compared with the overall test set, 
performance of the DCNN for detecting simple and 
tension pneumothorax was statistically non-inferior in all 
subgroups. The DCNN had an AUC of 0.981 (0.976–0.986) 
for detecting simple pneumothorax and 0.997 (0.995–
0.999) for detecting tension pneumothorax.
Conclusions  Hidden stratification has significant 
implications for potential failures of deep learning when 
applied in clinical practice. This study demonstrated that a 
comprehensively trained DCNN can be resilient to hidden 
stratification in several clinically meaningful subgroups in 
detecting pneumothorax.

INTRODUCTION
Deep convolutional neural networks 
(DCNNs) are state-of-the-art for various 

image classification and processing tasks1 2 
In the medical imaging and artificial intelli-
gence (AI) literature, these have frequently 
claimed to have near-human or even super-
human performance in a variety of classifi-
cation tasks performed by radiologists.3 4 
However, recent concerns have been raised 
about the translation of such results to clin-
ical practice.5 Most deep learning models 
in medical imaging are developed to detect 
specific findings or a group of similar find-
ings, and as such performance is typically 
reported using a summary metric such as the 
area under the receiver operating character-
istic curve (AUC). This can hide the perfor-
mance of the models on clinically distinct and 
meaningful subgroups within these single 
findings, a phenomenon described as hidden 
stratification by Oakden-Rayner et al.6 This 
work has shown that the algorithms trained 
to detect pneumothorax on chest X-ray are 

Strengths and limitations of this study

►► This study analysed a comprehensively trained deep 
learning algorithm that can detect up to 124 clinical 
findings on a chest radiograph.

►► Strengths are that it not only evaluated the algo-
rithm’s ability to detect pneumothorax but also the 
clinically significant groups of pneumothorax—sim-
ple and tension pneumothorax.

►► Additionally, the study evaluated the algorithm’s 
ability to detect pneumothorax in specific, clinically 
salient subgroups.

►► A large dataset of 2557 chest radiographs with a 
robust ground truth was evaluated.

►► The study was limited by its retrospective nature, 
which necessitates further prospective, external val-
idation studies.
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often affected by hidden stratification, performing well 
in summary across an entire test dataset but performing 
worse in the subset of pneumothorax patients without 
the presence of an accompanying intercostal drain. As 
a pneumothorax is frequently treated with the inser-
tion of an intercostal drain,7 many chest radiography 
training datasets labelled for pneumothorax, including 
well-known public datasets such as the National Institutes 
of Health CXR14 dataset8 demonstrate a strong correla-
tion between pneumothorax and intercostal drains. 
Due to this correlation and the absence of explicit 
labels that distinguish intercostal drains as a separate 
finding, DCNNs trained on these datasets frequently 
erroneously rely on the presence of intercostal drains 
to identify pneumothoraces, a process which has been 
called ‘shortcut learning’ or ‘unintended cue learning’.9 
Reliance on these unintended cues can lead to reduced 
performance when the model is evaluated on the subset 
of cases without intercostal drains. This example is partic-
ularly dangerous as intercostal drain insertion usually 
indicates that the pneumothorax has already been iden-
tified and treated. As such, an algorithm demonstrating 
good performance for pneumothorax detection overall 
may be masking poor performance within the most clin-
ically relevant subgroups, namely those yet to be treated 
and who would most benefit from prompt diagnosis.

Other clinically meaningful pneumothorax subgroups 
include patients with subcutaneous emphysema; patients 
with acute rib, clavicular, scapular or humeral fractures 
or rib resections and patients with semierect or supine 
(referred to as non-erect) positioning. While not an 
exhaustive list, these subgroups contain features that 
correlate with pneumothorax that a DCNN may errone-
ously rely on. For instance, subcutaneous emphysema 
may be benign but is often associated with pneumome-
diastinum and pneumothorax.10 Patients with trauma 
with rib and other skeletal fractures often have associated 
pneumothorax or haemopneumothorax.11 Additionally, 
trauma bay patients are often imaged in the supine or 
semierect position due to the acute nature of their inju-
ries. The positioning of the patient also alters the visi-
bility of pneumothoraces as well as their radiological 
appearances.12 Pneumothorax is a common postopera-
tive complication following thoracic surgery, of which rib 
resection is a common indicator.13

Labelling these subgroups and evaluating the perfor-
mance of a DCNN on each one has been described as 
schema completion.6 Evaluating the performance of 
DCNNs in such a way can help answer critical questions 
about the true clinical utility of such AI-driven computer-
aided diagnosis tools.

We hypothesised that a DCNN trained comprehen-
sively to detect multiple findings, including some of these 
subgroups, would demonstrate non-inferior performance 
as measured by AUC for both simple and tension pneu-
mothorax in these subgroups when compared with the 
overall test dataset.

METHODS
DCNN software
A commercially available DCNN-based computer-aided 
diagnosis algorithm (Annalise CXR V.1.2, ​annalise.​ai, 
Sydney, Australia) was evaluated. This algorithm has 
been trained to detect 124 clinical findings on chest radi-
ography14 and is publicly available at https://​cxrdemo.​
annalise.​ai. This algorithm indicates if each of the find-
ings are present, as well as provides a numerical score 
indicating its confidence that the finding is present. 
This algorithm consists of several convolutional neural 
networks based on the EfficientNet architecture using the 
Keras library with Tensorflow V.2.1.

Patient and public involvement
Patients and public were not involved in the design, 
conduct or reporting of this study.

Study design and dataset
This project’s test dataset was obtained retrospectively 
from a more extensive study by (Seah et al) titled ‘Radiol-
ogist chest X-ray diagnostic accuracy performance when 
augmented by a comprehensive deep learning model: 
a multireader multicase study’, previously undertaken 
to validate the DCNN algorithm, which describes the 
case selection and participant flow. A reanalysis of the 
performance data from that study was conducted to test 
the hypothesis that the DCNN algorithm is resilient to 
hidden stratification. The chest radiographs for the test 
dataset were retrospectively obtained from two sources: 
a large dataset from a private radiology clinic in Australia 
and the publicly available Medical Information Mart for 
Intensive Care CXR (MIMIC-CXR) dataset.15 These radio-
graphs were not used in the DCNN training dataset, and 
there was no overlap between patients in the training and 
testing cohorts. Each study comprised multiple images 
from a single patient. The test dataset’s inclusion criteria 
were age  >16 years; and studies that contained at least 
one frontal image. Additional frontal or lateral images 
acquired within each study were also used. Studies were 
in DICOM format and were deidentified. The original 
resolution and bit-depth was preserved. For the original 
study, cases were selected to comprise a wide variety of 
pathology that included each of the subgroups analysed 
in this investigation, as well as non-pneumothorax related 
pathologies such as lung nodules or airspace opacities. 
Table 1 presents the breakdown of the number of cases 
with and without simple and tension pneumothorax in 
the overall dataset and in each subgroup.

Ground truthing
Each study was evaluated by three subspecialist thoracic 
radiologists, including one of the authors (CMJ), who had 
each undertaken dedicated chest imaging fellowships. 
Each of these radiologists was trained on a specific set 
of definitions for simple and tension pneumothorax, as 
well as each of the subgroups, as defined in online supple-
mental appendix A. In particular, tension pneumothorax 
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was defined as pneumothorax with mediastinal shift 
towards the contralateral lung. For the ‘no fractures’ 
subgroup, specialist radiologists were instructed to label 
acute rib, humerus, clavicular, spinal and scapular frac-
tures, as well as the presence of any rib resections. The 
presence of any of these fractures or rib resection disqual-
ified the study from the ‘no fractures’ subgroup. Radiol-
ogists independently assessed each study, with access to 
the patient’s past and future imaging, clinical reports, as 
well as any CT chest reports if available, and identified if 
each finding was absent or present within that study. The 
consensus for each finding for each triple-read study was 
obtained using the Dawid-Skene consensus algorithm,16 
which considers the relative accuracies of each labeller 
for each finding. This was performed to mitigate vari-
ability and resolve discrepancies. Additionally, a radiology 
registrar (JS) reviewed the radiographer annotations on 
each image to identify if it was erect, semierect or supine. 
Studies with an accompanying lateral were considered 
erect. Where such annotations were not present, the posi-
tioning of the patient was estimated by considering indi-
cators on the image such as the presence of air fluid levels 
or arm positioning. All annotations were performed on 
an in-house web-browser-based labelling tool capable of 
displaying DICOM images.

Statistical analysis
For both simple and tension pneumothorax, the AUC was 
calculated, which is a commonly used metric of interest 
in the assessment of diagnostic classification tests.17 To 
obtain the performance in a subgroup, the sample was 
filtered to retain only patients from that subgroup before 
recalculating the AUC. The difference in AUC between 
the full test set and each subgroup was bootstrapped to 
obtain a Bonferroni adjusted 95% CI. A difference of 
greater than 0.05 in AUC was considered clinically signif-
icant, therefore, if the lower bound of the CI of the delta 
exceeded −0.05, the performance in that subgroup was 
considered statistically non-inferior. This is a commonly 

chosen non-inferiority margin in diagnostic radiology 
AUC analysis.18 A p<0.00625, adjusted for eight hypoth-
eses tested, was considered statistically significant. Anal-
yses were conducted using Excel 2016 as well as custom 
Python scripts and the scipy,19 scikitlearn,20 nltk,21 
gensim22 and keras23 packages.

RESULTS
Population characteristics
A total of 2568 studies from 2286 patients were included, 
comprising 4568 images. Forty-three per cent of cases 
from the test dataset were drawn from the MIMIC-CXR 
dataset and 57% were drawn from the private Australian 
radiology practice dataset. Table  1 presents the demo-
graphic and imaging characteristics of the test dataset. 
MIMIC-CXR does not provide age and sex data.

Eleven studies were deemed unsuitable by the DCNN 
and hence were excluded from analysis. None of these 
11 studies were labelled by the ground-truthers as posi-
tive for simple or tension pneumothorax. There were 162 
cases of simple pneumothorax and 49 cases of tension 
pneumothorax. Most cases of pneumothorax were found 
on erect chest radiographs. Sixty simple pneumotho-
races and 11 tension pneumothoraces were seen on non-
erect chest radiographs. Table  2 presents the number 
of cases with simple or tension pneumothorax in the 
entire test dataset, as well as within each subgroup. The 
complete co-occurrence matrix of each of the subgroups 
is presented in online supplemental appendix B.

AUC performance
Figures 1 and 2 present the difference in AUC within each 
subgroup as compared with the overall test dataset. For 
simple pneumothorax, the lower bound of the adjusted 
95% CI of the AUC delta exceeds −0.05 and the upper 
bound exceeds 0 in all subgroups, indicating that perfor-
mance in those subgroups was statistically non-inferior 
to the overall test dataset. For tension pneumothorax, 
the ‘no fractures’ and ‘non-erect’ subgroups were statis-
tically non-inferior to the overall test dataset, however 
the ‘no subcutaneous emphysema’ and ‘no intercostal 
drain’ subgroups both demonstrated lower bounds of the 

Table 1  Demographics of the test dataset

Patients 2286

Studies 2568

Images 4568

Sex 29% male
28% female
43% unknown*

Age 74 years (SD 15 years)*

View position 28% Posteroanterior 
(PA)
33% Anteroposterior 
(AP)
31% Lateral (LAT)
8% other

*MIMIC-CXR does not provide sex or age information and hence 
data for this is incomplete.

Table 2  Number of studies with simple or tension 
pneumothorax within the testing set as well as throughout 
each subgroup

Subgroup
Simple 
pneumothorax

Tension 
pneumothorax Total

Total 166 49 2557

Non-erect 64 19 595

No subcutaneous 
emphysema

96 44 2409

No intercostal 
drain

65 39 2277

No fractures 130 45 2017
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adjusted 95% CIs of the AUC delta exceeding 0, meaning 
these two subgroups demonstrated significantly superior 
performance. Table 3 presents the raw AUC values for the 
DCNN’s performance and table 4 presents AUC deltas.

DISCUSSION
We evaluated the clinical performance of a commercially 
available DCNN algorithm for the detection of simple and 
tension pneumothorax in a retrospective study with a large 
test dataset, representative of real-world clinical condi-
tions. Of note, 33% of images in the test dataset were AP 
images, reflecting the inpatient and emergent nature of 
the studies. The test dataset was obtained from a wide range 
of Australian radiology sites as well as the MIMIC-CXR 
dataset, improving the generalisability of the results. 
When compared with existing algorithms24 25 the DCNN 
algorithm demonstrated comparable or higher AUC for 
the detection of pneumothorax. The DCNN algorithm 
performed better in detecting tension pneumothorax 
when compared with simple pneumothorax, presumably 
due to the larger size and conspicuity of this type of pneu-
mothorax, along with other associated features like medi-
astinal shift. The DCNN algorithm appeared to be resilient 
to hidden stratification for the four tested subgroups, 
with statistically non-inferior performance in six of the 

eight subgroups tested, with the remaining two demon-
strating borderline statistically superior performance. 
The superior performance of the tension pneumothorax 
subgroups with no intercostal drain or no subcutaneous 
emphysema was likely due to limitations with the testing 
dataset itself, which contained 49 tension pneumothoraces 
in total. Because of the relatively low number of cases, a 
small number of strongly confidently positive or negative 
cases unique to any one of these subgroups would likely 
influence the distribution of AUC deltas and may explain 
the counterintuitive result observed. Out of all subgroups, 
the DCNN algorithm demonstrated the greatest decrease 
in AUC when tested on the non-erect subgroup, although 
the result remained statistically non-inferior.

This DCNN algorithm appears to be resilient to hidden 
stratification as it has been trained on a comprehensively 
labelled dataset with 124 findings, including subgroups. 
The fact that the non-erect subgroup demonstrates the 
greatest decrease in AUC is circumstantial evidence that 
comprehensive labelling is beneficial as ‘non-erect’ was 
the only subgroup examined in this study that was not 
part of the 124 findings explicitly labelled during model 
training. Another likely contributing factor is that non-
erect pneumothoraxes are less conspicuous and indeed 
may not be visible on supine chest radiographs at all.

Figure 1  Difference in AUC for detecting simple pneumothorax in the test dataset versus each specific subgroup with adjusted 
95% CI. AUC, area under the receiver operating characteristic curve.

Figure 2  Difference in AUC for detecting tension pneumothorax in the test dataset versus each specific subgroup with 
adjusted 95% CI. AUC, area under the receiver operating characteristic curve.
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As computer-aided diagnosis and clinical decision 
support software becomes more prevalent in clinical 
practice,26 it is likely that clinically meaningful failures 
will stem from hidden stratification, or more specifically, 
the lack of evaluation of clinically relevant subclasses6 
Therefore, explicit evaluation of such clinically rele-
vant subclasses is critical to responsible clinical decision 
support research, and that it is the domain of clinicians 
to define these subclasses and resist the temptation of 
oversimplifying performance into a single metric such as 
AUC for broad disease categories. While recent literature 
has highlighted this problem, it has been identified and 
cautioned against for years,27 and unfortunately ignored 
in most clinical deep learning research. This is one of the 

risks to be mitigated when implementing computer-aided 
diagnosis tools at the bedside.28

Limitations and future research
One notable limitation of this study is that the test dataset 
was drawn from the same population as the training 
dataset, and further research and external validation is 
required to verify these results. Another limitation is that 
radiologist readers may have missed subtle pneumotho-
races, especially on supine patients,12 although this was 
mitigated by the availability of future chest radiographs 
and reports as well as contemporaneous CT reports. 
Results may underestimate the true decrease in perfor-
mance in the non-erect subgroup.

Opportunities for future research include providing 
paired chest CT images and radiographs to radiologists 
engaged in the ground-truth process to ensure that the 
ground-truth truly reflects the underlying pathology, 
as well as testing for resilience to other subgroups that 
were not available in this study. Future work is required 
to define the performance of the model in subgroups of 
tension pneumothorax over a larger number of cases than 
available in the test dataset to clarify whether superior 
performance is truly indicative of model behaviour, or 
simply an artefact of the test dataset. This would require 
obtaining data from sources and populations external 
to the training dataset and ensuring sufficiently large 
numbers of tension pneumothorax cases to verify results.

Additionally, this work was conducted as a retrospec-
tive analysis, which limits the generalisability of results to 
datasets that the DCNN algorithm has not seen before. 
Furthermore, as this is a reanalysis of previously acquired 
data, it may be underpowered to detect subtle differences 
in these subgroups. Therefore, additional prospective 
studies in different geographies, with a priori power anal-
yses to determine adequate sample sizes, are required 
to see if similar performance is obtained in other popu-
lations. The resilience of the comprehensively trained 
DCNN algorithm to hidden stratification may also be due 
to additional factors, such as the already high baseline 
performance in identifying simple and tension pneumo-
thorax. Further work is needed to explore the benefits 
of comprehensive labelling and training in findings that 
the DCNN algorithm does not perform as well on. One 
hypothesis is that as such findings may be more difficult 
to identify, the DCNN algorithm may rely on associated 
features or ‘unintended cues’ more, leading to worse 
hidden stratification.

CONCLUSION
We have demonstrated that in a retrospective analysis a 
comprehensively trained DCNN algorithm can be resil-
ient to hidden stratification when detecting simple and 
tension pneumothorax in clinically relevant subgroups. 
Further external validation and prospective study is 
needed to see if the benefits of a comprehensively trained 
model are generalisable in other settings.

Table 3  AUC values with 95% CI (non-adjusted) for the 
DCNN’s performance on simple and tension pneumothorax 
in the test dataset as well as in specific subgroups

AUC

Simple pneumothorax 0.981 (0.976–0.986)

No subcutaneous emphysema 0.983 (0.977–0.989)

No fractures 0.979 (0.972–0.986)

No intercostal drain 0.986 (0.979–0.992)

Non erect 0.968 (0.954–0.980)

Tension pneumothorax 0.997 (0.995–0.999)

No subcutaneous emphysema 0.998 (0.997–0.999)

No fractures 0.997 (0.995–0.999)

No intercostal drain 0.998 (0.997–0.999)

Non erect 0.995 (0.990–0.999)

AUC, area under the receiver operating characteristic curve; 
DCNN, deep convolutional neural network.

Table 4  Difference in AUC values between each specific 
subgroup and the overall test dataset with 95% adjusted CI

Delta AUC (subpopulation—
full population)

Mean Lower Upper

Simple pneumothorax

 � No subcutaneous 
emphysema

0.002 −0.003 0.006

 � No fractures −0.001 −0.005 0.003

 � No intercostal drain 0.005 −0.002 0.011

 � Non erect −0.013 −0.030 0.001

Tension pneumothorax

 � No subcutaneous 
emphysema

0.001 0.000 0.002

 � No fractures −0.000 −0.001 0.001

 � No intercostal drain 0.001 0.000 0.002

 � Non erect −0.002 −0.009 0.003

AUC, area under the receiver operating characteristic curve.
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