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The remarkable advances in biotechnology and health sciences have led to a significant production of data, such
as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs).
To this end, application ofmachine learning and dataminingmethods in biosciences is presently,more than ever
before, vital and indispensable in efforts to transform intelligently all available information into valuable knowl-
edge. Diabetesmellitus (DM) is defined as a group ofmetabolic disorders exerting significant pressure on human
healthworldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has
led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of
the applications of machine learning, data mining techniques and tools in the field of diabetes research with re-
spect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and
e) Health Care and Management with the first category appearing to be the most popular. A wide range of ma-
chine learning algorithms were employed. In general, 85% of those used were characterized by supervised learn-
ing approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines
(SVM) arise as themost successful andwidely used algorithm. Concerning the type of data, clinical datasets were
mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge
leading to new hypotheses targeting deeper understanding and further investigation in DM.
© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.

0/).
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1. Introduction

Significant advances in biotechnology and more specifically high-
throughput sequencing result incessantly in an easy and inexpensive
data production, thereby ushering the science of applied biology into
the area of big data [1,2].

To date, besides high performance sequencing methods, there is a
plethora of digital machines and sensors from various research fields
generating data, including super-resolution digital microscopy, mass
spectrometry, Magnetic Resonance Imagery (MRI), etc. Although these
technologies produce a wealth of data, they do not provide any kind
of analysis, interpretation or extraction of knowledge. To this end, the
area of Biological Data Mining or otherwise Knowledge Discovery in Bi-
ological Data, is more than ever necessary and important. The primary
objective is to delve into the rapidly accruing body of biological data
and set the basis potentiating answers to fundamental questions in biol-
ogy and medicine.

The power and effectiveness of these approaches are derived from
the ability of commensurate methods to extract patterns and create
models from data. The aforementioned fact is particularly significant
in the big data era, especially when the dataset can reach terabytes or
petabytes of data. Consequently, the abundance of data has strength-
ened considerably data-oriented research in biology. In such a hybrid
field, one of the most important research applications is prognosis and
diagnosis related to human-threatening and/or life quality reducing dis-
eases. One such disease is diabetes mellitus (DM).

Applying machine learning and data mining methods in DM re-
search is a key approach to utilizing large volumes of available
diabetes-related data for extracting knowledge. The severe social
impact of the specific disease renders DM one of the main priorities
in medical science research, which inevitably generates huge
amounts of data. Undoubtedly, therefore, machine learning and
data mining approaches in DM are of great concern when it comes
to diagnosis, management and other related clinical administration
aspects. Hence, in the framework of this study, efforts were made
to review the current literature onmachine learning and datamining
approaches in diabetes research.

The review is organized as follows: Section 2 provides the necessary
background knowledge on machine learning (ML) and knowledge dis-
covery in databases (KDD). Section 3 presents a concise presentation
of the DM disease. Section 4 provides the methodological approach
adopted, and Section 5, divided in five subsections, presents publica-
tions reviewed in the study. Section 6 presents a discussion, with
Section 7 providing conclusions.
2. Machine Learning and Knowledge Discovery

Machine learning is the scientific field dealing with the ways in
which machines learn from experience. For many scientists, the term
“machine learning” is identical to the term “artificial intelligence”,
given that the possibility of learning is the main characteristic of an en-
tity called intelligent in the broadest sense of the word. The purpose of
machine learning is the construction of computer systems that can
adapt and learn from their experience [3]. A more detailed and formal
definition of machine learning is given by Mitchel [4]: A computer
program is said to learn from experience E with respect to some class of
tasks T and performancemeasure P, if its performance at tasks in T, asmea-
sured by P, improves with experience E.

Knowledge discovery in databases (KDD) is a field encompassing
theories, methods and techniques, trying to make sense of data and ex-
tract useful knowledge from them. It is considered to be amultistep pro-
cess (selection, preprocess, transformation, datamining, interpretation-
evaluation) depicted in Fig. 1 [5]. The most important step in the entire
KDD process is data mining, exemplifying the application of machine
learning algorithms in analyzing data. A complete definition of KDD is
given by Fayyad et al. [5]: KDD is the nontrivial process identifying valid,
novel, potentially useful, and ultimately understandable patterns in data.

2.1. Categories of Machine Learning Tasks

Machine learning tasks are typically classified into three broad cate-
gories [6]. These are: a) supervised learning, in which the system infers
a function from labeled training data, b) unsupervised learning, in
which the learning system tries to infer the structure of unlabeled
data, and c) reinforcement learning, in which the system interacts
with a dynamic environment.

2.1.1. Supervised Learning
In supervised learning, the system must “learn” inductively a func-

tion called target function, which is an expression of amodel describing
the data. The objective function is used to predict the value of a variable,
called dependent variable or output variable, from a set of variables,
called independent variables or input variables or characteristics or fea-
tures. The set of possible input values of the function, i.e. its domain, are
called instances. Each case is described by a set of characteristics (attri-
butes or features). A subset of all cases, for which the output variable
value is known, is called training data or examples. In order to infer
the best target function, the learning system, given a training set,
takes into consideration alternative functions, called hypothesis and de-
noted by h. In supervised learning, there are two kinds of learning tasks:
classification and regression. Classificationmodels try to predict distinct
classes, such as e.g. blood groups, while regression models predict nu-
merical values. Some of the most common techniques are Decision
Trees (DT), Rule Learning, and Instance Based Learning (IBL), such as
k-Nearest Neighbors (k-NN), Genetic Algorithms (GA), Artificial Neural
Networks (ANN), and Support Vector Machines (SVM).

2.1.2. Unsupervised Learning
In unsupervised learning, the system tries to discover the hidden

structure of data or associations between variables. In that case, training
data consists of instances without any corresponding labels.

2.1.2.1. Association Rule Learning. Association RuleMining appearedmuch
later than machine learning and is subject to greater influence from the
research area of databases. It was proposed in the early 1990s by Rakesh
Agrawal [7] as a market basket analysis, in which the aim was to find
correlations in the objects of a database. Based on the shopping cart ex-
ample, association rules are of the form {X1, …, Xn} → Y, which means
that if you find all of X1, …, Xn in a cart it is possible to find Y. The
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most well-known association rule discovery algorithm is Apriori, pro-
posed in 1994 by Rakesh Agrawal [8].

Although, association rule mining was first introduced as a market
basket analysis tool, it has since become one of the most valuable
tools for performing unsupervised exploratory data analysis over a
wide range of research and commercial areas, including biology and
bioinformatics. Some of the most well-known applications in biology
and bioinformatics include biological sequence analysis, analysis of
gene expression data and others. A thorough review of discovering fre-
quent patterns and association rules from biological data, including al-
gorithms and applications, can be found in [9].

2.1.2.2. Clustering. Clusters are informative patterns occurring through
clustering, i.e. the separation of a whole dataset into groups of data, so
that instances belonging to the same group are as similar as possible
and instances belonging to different groups differ as much as possible
[10].

2.1.3. Reinforcement Learning
The term Reinforcement Learning is a general term given to a family

of techniques, in which the system attempts to learn through direct in-
teraction with the environment so as to maximize some notion of cu-
mulative reward [11]. It is important to mention that the system has
no prior knowledge about the behavior of the environment and the
only way to find out is through trial and failure (trial and error). Rein-
forcement learning is mainly applied to autonomous systems, due to
its independence in relation to its environment.

2.2. Feature Selection

Feature selection is oneof themost important processes of theKDD's
data transformation step. It is defined as the process of selecting a subset
of features from the feature space, which is more relevant to and infor-
mative for the construction of a model. The advantages of feature selec-
tion are many and relate to different aspects of data analysis, such as
better visualization and understanding of data, reduction of computa-
tional time and duration of analysis, and better prediction accuracy
[12,13].

There are two main different approaches in the feature selection
process. The first one is to make an independent assessment, based on
general characteristics of data. Methods belonging to this approach are
called filter methods, because the feature set is filtered out before
model construction. The second approach is to use a machine learning
algorithm to evaluate different subsets of features and finally select
the one with the best performance on classification accuracy. The latter
algorithm will be used in the end to build a predictive model. Methods
in this category are called wrapper methods, because the arising algo-
rithm wraps the whole feature selection process.
3. Diabetes Mellitus

Diabetes Mellitus (DM) is defined as a group of metabolic disorders
mainly caused by abnormal insulin secretion and/or action [14]. Insulin
deficiency results in elevated blood glucose levels (hyperglycemia) and
impaired metabolism of carbohydrates, fat and proteins. DM is one of
themost common endocrine disorders, affectingmore than 200million
peopleworldwide. The onset of diabetes is estimated to rise dramatical-
ly in the upcoming years. DM can be divided into several distinct types.
However, there are two major clinical types, type 1 diabetes (T1D) and
type 2 diabetes (T2D), according to the etiopathology of the disorder.
T2D appears to be themost common form of diabetes (90% of all diabet-
ic patients), mainly characterized by insulin resistance. Themain causes
of T2D include lifestyle, physical activity, dietary habits and heredity,
whereas T1D is thought to be due to autoimmunological destruction
of the Langerhans islets hosting pancreatic-β cells. T1D affects almost
10% of all diabetic patients worldwide, with 10% of them ultimately de-
veloping idiopathic diabetes. Other forms of DM, classified on the basis
of insulin secretion profile and/or onset, include Gestational Diabetes,
endocrinopathies, MODY (Maturity Onset Diabetes of the Young), neo-
natal, mitochondrial, and pregnancy diabetes. The symptoms of DM in-
clude polyurea, polydipsia, and significant weight loss among others.
Diagnosis depends on blood glucose levels (fasting plasma glucose =
7.0 mmol/L) [15].

DM progression is strongly linked to several complications, mainly
due to chronic hyperglycemia. It is well-known that DM covers a wide
range of heterogeneous pathophysiological conditions. The most
common complications are divided intomicro- andmacro-vascular dis-
orders, including diabetic nephropathy, retinopathy, neuropathy, dia-
betic coma and cardiovascular disease. Due to high DM mortality and
morbidity as well as related disorders, prevention and treatment at-
tracts broad and significant interest. Insulin administration is the main
treatment for T1D, although insulin is also provided in certain cases of
T2D patients, when hyperglycemia cannot be controlled through diet,
weight loss, exercise and oral medication. Current medication targets
primarily a) saving one's life and alleviating the disease symptoms,
and b) prevention of long term diabetic complications and/or elimina-
tion of several risk factors, thereby increasing longevity. Themost com-
mon anti-diabetic agents include sulfonylurea, metformin, alpha-
glucosidase inhibitor, peptide analogs, non-sulfonylurea secretagogues,
etc. [16]. The majority of the present anti-diabetic agents, however, ex-
hibit numerous side-effects. In addition, insulin therapy is related to
weight gain and hypoglycemic events. Hence, anti-diabetic drug design
and discovery is of great concern and concurrently a research challenge
[17–20].

Although extensive research in DM has provided significant knowl-
edge, over the past decades, on the a) etiopathology (genetic or
environmental factors and cellular mechanisms), b) treatment, and
c) screening and management of the disease, there is still much to be
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discovered, unraveled, clarified anddelineated. Through such processes,
diagnosis, prognostic evaluation of appropriate treatment and clinical
administration could gain significant ground toward medical handling
of the disease. In such an effort, reliance on a large and fast increasing
body of research and clinical data serves to establish a significant basis
for safe diagnosis and follow-up treatment. Thus, data mining and
machine learning emerge as key processes, contributing decisively to
the decision-making clinician. The aspiration, therefore, is to link data
assessment to diagnosis and appropriate decision-making in drug
administration.

4. Methods

Extensive efforts were made to identify articles employing machine
learning and datamining techniques on diabetes research. Two databases
were searched (15 July 2016): the one extensively used in biomedical sci-
ences, PubMed and the DBLP Computer Science Bibliography, containing
more than 3.4 million journal articles, conference papers, and other pub-
lications on computer science (July 2016) [21]. The main reason behind
the utilization of DBLPwas that there are certain high impact internation-
al scientific journals in the computer science field that are not indexed by
PubMed, although in some cases, the proposed published methods are
applied on biomedical datasets.

As mentioned previously, there is a close relationship between the
terms machine learning and data mining, with the latter being more ge-
neric. Thus, often, in scientific literature, machine learning methods are
called data mining methods. To overcome that and be more accurate in
finding all related articles, two searches were performed in PubMed,
based on the following queries: a) “Machine Learning” AND “Diabetes”
(QUERY_1), and b) “Data Mining” AND “Diabetes” (QUERY_2). Although
PubMed launches searches on the title, abstracts and keywords of an arti-
cle, DBLP conducts searches only on the title. In view of this fact, searches
in DBLPwere limited only to “Diabetes” query (QUERY_3), sincemachine
learning and data mining are too broad terms to be found on a computer
science article title.

Due to the vast amount of articles returned from the three queries
(QUERY_1: 139, QUERY_2: 268, and QUERY_3: 880), our search was
limited to articles published over the past five years (automatically in
Fig. 2. Literature selection an
PubMed and manually in DBLP), thereby narrowing down significantly
the retrieved collection (QUERY_1: 110, QUERY_2: 184, and QUERY_3:
248). It is important to mention that the huge collection of articles, re-
trieved through DBLP, was due to the fact that articles were not only
limited to themachine learning and data mining fields but also covered
the broader computer science field in general.

The next step was manual inspection of all recovered articles. The
common purpose of this manual inspection for all three queries was
to initially assess their relationship to Diabetes research. Moreover, for
QUERY_2, manual inspection was performed to exclude articles that
didn't contain machine learning methods; for instance, articles with
simple statistical analyses. Lastly, concerning QUERY_3, the purpose of
manual inspectionwas twofold. Firstly, to find all articles related to ma-
chine learning and secondly to identify and merge overlaps among
queries, i.e. articles already indexed by PubMed, which included the
vast majority of them. Manual inspection narrowed down even more
the collection (QUERY_1: 54, QUERY_2: 36, and QUERY_3: 13), thereby
resulting in a final collection of 103 articles. These articles were classi-
fied into the following five categories: Biomarker Prediction and Diag-
nosis in DM; Diabetic Complications; Drugs and Therapies; Genetic
Background and Environment, andHealth CareManagement. The entire
article selection process is illustrated in a workflow (Fig. 2), with the
number of publications per year being depicted in Fig. 3.

Since the area of datamining andmachine learning applied toDiabe-
tes is very wide, it is hard to include every single research study. The se-
lectedmethodologywas employed in an effort to present only the latest
research efforts in DM. In this term, the current collection consists of re-
search work conducted the last five years. Moreover, in the present
study, specific keywords were used such as “machine learning” and
“data mining”. However, there are several additional keywords that
could possibly be used concerning specific algorithms, e.g. neural net-
works or specific tasks (i.e. predictive modeling), that belong to the
field of machine learning and data mining without mentioning the cur-
rent terms. In that sense, the results of this research are not exhaustive.

5. DM Through Machine Learning and Data Mining

This section presents key papers of the study.
d classification process.
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5.1. Biomarker Identification and Prediction of DM

A large number of factors are known to be important in the develop-
ment and progression of DM. Obesity stands as amajor risk factor, espe-
cially in T2D, given the strong causal relationship between that and the
onset of DM [22]. DM diagnosis is carried out through several tests [α-
glycate hemoglobin (A1C) test, random blood sugar test, fasting sugar
test or oral glucose tolerance test]. There is evidence that in both T1D
and T2D, early diagnosis and prediction of the onset of the disease are
vital to the a) retardation of the progression of the disease, b) targeted
selection of the medication, c) prolonging life expectancy, symptom al-
leviation, and d) onset of related complications.

Biomarkers (e.g. biological molecules) are measurable indicators of a
certain condition representing health and disease states. Typically,
biomarkers are a) measured in body fluids (blood, saliva or urine),
b) encountered and thus determined independent of their etiopathogenic
mechanistic pathway, and c) used to monitor clinical and subclinical dis-
ease burden and response to treatments. Biomarkers can be direct ending
points of the disease itself or indirect indexes of other complications. Cur-
rent technologies, such as metabolomics, proteomics, and genomics con-
tribute to the development of a plethora of newbiomarkers. In the case of
DM, biomarkers may reflect the presence and severity of hyperglycemia
or presence and severity of the related complications in diabetes [23].

The current section is divided into two main categories, which in-
clude cases where a) diagnostic and predictive markers are employed
or new biomarkers are introduced, and b) disease prediction takes
place, although this task is always performed to evaluate the predictive
accuracy of the identified biomarkers.
5.1.1. Diagnostic and Predictive Markers
The first category deals with biomarker discovery, which is a task

mainly performed through feature selection techniques [24–34]. Fol-
lowing a feature selection step, a classification algorithm is employed
to assess the prediction accuracy of the selected features.

Firstly, establishedmethods have been used in the biomarker evalu-
ation issue. In [25], the authors used a clinical dataset comprised of 803
prediabetic females with 55 features and compared several common
feature selection algorithms (both wrapper and filter methods) to pre-
dict DM. They concluded that the best overall performance had been
achieved through wrapper methods. Moreover, among the filter
methods used, symmetrical uncertainty achieved thebest prediction ac-
curacy. In another work, using established methods, Georga et al. [28]
applied Random Forest (RF) [35] and RReliefF [36] to evaluate a number
of features, with respect to their ability to predict the short-term subcu-
taneous glucose concentrations. In [31], authors combined gas chroma-
tography–mass spectrometry (GC/MS) profilingwith Random Forest, in
an effort to explore relationships between 5′-AMP-activated protein ki-
nase AMPK and DM. Jelinek et al. [24] investigated whether additional
biomarkers could be used together with HbA1c to improve diagnostic
accuracy in T2D, in case HbA1c levels are below or equal to the current
cut-off of 6.5%. They concluded that both 8-hydroxy-2-deoxyguanosine
(8-OhdG), an oxidative stress marker, and interleukin-6 (IL-6) im-
proved classification accuracy.

Novel methods have also been proposed to deal with features in di-
abetic patient data. Improved electromagnetism-like mechanism (IEM)
algorithm [26] was proposed for feature selection. It combines
electromagnetism-like mechanism (EM) algorithm with the nearest
neighbor classifier [37] and opposite sign test (OST) [38] as the local
search. A completely different approach, dealing with features in a dia-
betic clinical dataset, is proposed in [33]. Authors used genetic program-
ming to generate new features from existing ones, without prior
knowledge of the probability distribution. Sideris et al. proposed a
novel, clustering-based (hierarchical clustering) feature extraction
framework, using disease diagnostic information [34]. Their methodol-
ogy produced clusters to be used as features for patient severity of con-
dition and patient readmission risk prediction.

Finally, work on high-dimensional data was presented in [27]. Fea-
ture selection is a very challenging task, when performed in high-
dimensional data such as genomic data. Cai et al. applied a feature selec-
tionmethod, called iterative sure independence screening (ISIS) [39] for
gene profiles obtained from metagenome sequencing in Chinese/
European cohorts, achieving 0.97/0.99 accuracy following selection of
48/24 meta-markers.

5.1.2. Prediction of DM
The second category deals with disease prediction and diagnosis

[40–76]. Numerous algorithms and different approaches have been ap-
plied, such as traditional machine learning algorithms, ensemble learn-
ing approaches and association rule learning in order to achieve the best
classification accuracy. Most noted among the aforementioned ones are
the following:

Calisir and Dogantekin proposed LDA–MWSVM, a system for diabe-
tes diagnosis [66]. The system performs feature extraction and reduc-
tion using the Linear Discriminant Analysis (LDA) method, followed
by classification using the Morlet Wavelet Support Vector Machine
(MWSVM) classifier. Gangji and Abadeh [65] proposed an Ant Colony-
based classification system to extract a set of fuzzy rules, named FCS-
ANTMINER, for diabetes diagnosis. In [68], authors dealt with glucose
prediction as amultivariate regression problem utilizing Support Vector
Regression (SVR). Agarwal et al. [48] utilized semi-automatically la-
beled training sets to create phenotype models via machine learning
methods. In [76], authors proposed a fuzzy ontology-based Case-based
reasoning (CBR) framework, mimicking expert thinking, further tested
on diabetes diagnosis problems. In [58], authors performed an evalua-
tion of StreamMining Classifiers for Real-time Clinical Decision Support
Systems.

With respect to high dimensional datasets, Razavian et al. [44] used a
dataset containing 4.1 million individuals and 42K variables from ad-
ministrative claims, pharmacy records, healthcare utilization, and labo-
ratory results between 2005 and 2009, to build predictive models
(based on logistic regression) for different onsets of T2D prediction.

A completely different study is presented in [40]. Authors built dis-
ease progression models, taking into account trajectories, i.e. the se-
quence of events leading to a state. When applied to Diabetes data,
they identified a typical trajectory fromhyperlipidemia (HLD) to hyper-
tension (HTN), impaired fasting glucose (IFG), and T2D.

Ensemble approaches, which usemultiple learning algorithms, have
proven to be an effective way of improving classification accuracy. The
specific approaches have also been used in DM prediction [50,52,53,
69]. Anderson et al. used a Bayesian scoring algorithm to explore the
model space [50]. In [52], authors proposed an ensemble framework
with multi-layer classification, using enhanced bagging and optimized
weighting, combining seven heterogeneous classifiers. In [53], authors
used Rotation Forest (RF), a newly proposed ensemble algorithm, to
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combine 30 machine learning algorithms. Finally, Han et al. presented
an ensemble learning approach, which turns the “black box” of SVMde-
cisions into comprehensible and transparent rules [69].

Association Rules are mainly employed to identify associations be-
tween risk factors in an interpretable form [71–74]. In [71], authors ap-
plied association rules to detect combinations of variables or predictors
frequently occurring together in diabetic patients. Simon et al. proposed
Survival Association Rule (SAR)Mining [72], an extension to traditional
Association RuleMining, which can handle survival outcomes,make ad-
justment for confounders and incorporate dosage effects. In [73], au-
thors reviewed four association rule set summarization techniques
and proposed extensions, in order to deal with the large number of
rules, mined from ARM applied to high dimensional EMR data. Finally,
Batal et al. utilized temporal pattern mining for discovering predictive
patterns in complex multivariate time series data, to improve perfor-
mance of current classifiers [74].

5.2. Diabetic Complications

As mentioned above, the main pathophysiological feature in DM is
hyperglycemia. In addition to normal glucose metabolism, prevention
of complications due to elevated glucose levels is of great concern.
Generally, the harmful effects of hyperglycemia are divided into
a) macrovascular complications, such as coronary artery disease, pe-
ripheral arterial disease, and stroke and, b)microvascular complications
that include diabetic neuropathy, nephropathy, and retinopathy [77].
The direct and indirect effects of hyperglycemia are the main source of
morbidity andmortality in both T1D and T2D. Large prospective clinical
studies show a strong relationship between glycemia and diabetic mi-
crovascular complications in both T1D and T2D. Diabetic complications
can also be classified according to their severity and time of onset. In
these terms, acute diabetic complications include: diabetic ketoacidosis,
hypoglycemia, diabetic coma, erectile dysfunction, respiratory infec-
tions and periodontal disease. Chronic diabetic complications include:
heart failure, diabetic neuropathy, nephropathy, retinopathy, and
diabetic foot. Moreover, both insulin resistance and hyperglycemia
have been implicated in the pathogenesis of diabetic dyslipidemia. It is
worth noting that DM complications are far less common and severe
in peoplewithwell-controlled blood glucose levels.Many of those com-
plications have been studied throughmachine learning and datamining
applications [78–85,87–90,92,94–97].

In a more general aspect, Lagani et al. targeted several diabetic
complications, such as cardiovascular diseases (CVD), hypoglycemia,
ketoacidosis, microalbuminuria, proteinuria, neuropathy, and reti-
nopathy [78,79]. In [78], in an effort to identify the smallest set of
clinical parameters with the best predictive accuracy, involving the
aforementioned diabetic complications, a set of predictive models
was used that had been developed through datamining andmachine
learning approaches. In [80], authors used two distinct data sources
(drug purchase and administrative information) to exploit temporal
data mining techniques and improve risk stratification of diabetic
complications.

In the case of nephropathy, Huang et al. employed a Decision Tree-
based prediction tool that combines both genetic and clinical features
in order to identify diabetic nephropathy in patients with T2D [81].
Leung et al. compared several machine learning methods that include
partial least square regression, classification and regression tree, the
C5.0 Decision Tree, Random Forest, naïve Bayes, neural networks and
support vector machines [82]. The dataset used consists of both genetic
(Single Nucleotide Polymorphisms— SNPs) and clinical data. Age, age of
diagnosis, systolic blood pressure and genetic polymorphisms of
uteroglobin and lipid metabolism arose as themost efficient predictors.

Similarly, in the case of neuropathy, DuBrava et al. used RandomFor-
est (RF) in order to select specific features targetingprediction of diabet-
ic peripheral neuropathy (DPN) [83]. Based on relevance, the features
chosen were Charlson Comorbidity Index score (100%), age (37.1%),
number of pre-index procedures and services (29.7%), number of pre-
index outpatient prescriptions (24.2%), number of pre-index outpatient
visits (18.3%), number of pre-index laboratory visits (16.9%), number of
pre-index outpatient office visits (12.1%), number of inpatient prescrip-
tions (5.9%), and number of pain-related medication prescriptions
(4.4%). The overall accuracy of the model reached 89%. The Database
of the diabetes screening research initiative (DiScRi) [113] was used in
[84,85] to predict Cardiovascular Autonomic Neuropathy (CAN).
Staniery et al., used decision tree and optimal decision path finder
(ODPF) to find the optimal sequences of Ewing tests to predict CAN,
whereas Abawajy et al. used regression and meta-regression, in combi-
nationwith the Ewing formula, to identify the classes in CAN, thus over-
coming the problem of missing data.

Although Alzheimer's disease is a chronic neurodegenerative dis-
ease, seemingly not related to DM, several studies support the fact DM
and AD have a strong causal relationship [86]. Alzheimer's disease is
often referred to as “type 3” diabetes. In [87], authors delved into the re-
lationship betweenDMand AD via semantic datamining. Following ex-
tensive analysis of several paper abstracts, they managed to identify
genes related to both diseases. Efforts were also made to construct an
interaction network in order to identify existing links (genes and mole-
cules) in the network.

In [88], authors developed a predictive model exploiting data from
two safety-net clinical trials that target comorbid depression, which
could be considered as a diabetic complication, among patients with
DM. In addition, in [89], authors tried to investigate the effectiveness
of e-nose technology, using common classifiers, to predict single- and
poly-microbial species targeted for diabetic foot infection. Rau et al.
[90], also, developed amodel to predict liver cancer within six years fol-
lowing T2D diagnosis. A dataset comprised of 2060 cases, was divided
into two groups, encompassing patients a) diagnosed with liver cancer
after diabetes, and b) with diabetes, but no liver cancer.

Heart-related abnormalities are considered as common diabetic com-
plications [91]. It isworth noting that there's a significant link betweendi-
abetes, heart disease, and stroke. In fact, two out of three people with
diabetes die from heart disease or stroke, also called cardiovascular dis-
ease. In [92], researchers developed a hybrid approach, partially based
on conditional random field classifier, to extract related information on
heart disease risk factors from longitudinal unstructured EHRs.

Hypoglycemia, reflecting lowblood sugar levels, arisesmainly due to
anti-diabetic treatment and has a great impact amongDMpatients [93].
Machine learning methods, such as Random Forest, support vector ma-
chines (SVM), k-nearest neighbor, and naïve Bayes, were used by
Sudharsan B et al. [94] to predict hypoglycemia among patients with
T2D, whereas support vector regression was used by Georga et al. [95]
for the same reason.Moreover, a comparison of already published algo-
rithms was reported by Jensen [96] in the same framework.

Intentional insulin treatment omission is an inappropriate compen-
satory behavior, occurring mainly in female patients with T1D, who
omit or restrict their required insulin doses in order to lose weight. Al-
though that does not occur as a diabetic complication but rather as a
compensatory behavior, diagnosis of this underlying disorder is of
great concern. In [97], authors used decision trees to analyze clinical
and laboratory data for the prediction of intentional insulin omission
for intentional weight loss.

Diabetic Retinopathy (DR) is an eye disease, occurring in people
with either T1D or T2D. The longer a patient has diabetes the higher
the risk of developing the specific pathophysiological condition. DR usu-
ally exhibits earlywarning signs and is characterized as amajor diabetic
complication [98]. DR can be divided into two main stages: a) NPDR
(non-proliferative DR), and b) PDR (proliferative DR). Given the consid-
erable impact of the current complication on patient lifestyle as well as
society, numerous efforts have targeted accurate prediction of the dis-
ease onset in an effort to prevent progression.

Consideringdatamining andmachine learning approaches, DR is the
most studied field, mainly based on image processing techniques
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[100–112]. A comprehensive review on computational methods for di-
abetic retinopathy was published in 2013 [99]. Interestingly, in [100,
101], data acquisition was also based on proteomic analyses. Specifical-
ly, Torok et al. developed amethod, in which different types of data (re-
sults from tear fluid proteomics analysis and digital micro aneurysm
detection on fundus images) were used as input in a Gradient Boosting
Machine for DR screening, whereas Jin et al. performed comprehensive
proteomics analysis to identify biomarkers for DR, concluding that a
four protein biomarker panel (APO4, C7, CLU, and ITIH2) is capable of
detecting early stages of the disease. Oh et al. [102] reported the first at-
tempt in predicting DR using least absolute shrinkage and selection op-
erator (LASSO) exploiting health record data. Moreover, Ibrahim et al.
[103] used a data adaptive neuro fuzzy inference classifier to predict di-
abetes maculopathy. Roychowdhury et al. [104] targeted the degree of
severity in DR, using a computer-aided screening system (DREAM)
that analyzes fundus images with varying illumination and fields of
view via machine learning approaches. A two phase method, Diabetic
Fundus Image Recuperation (DFIR), was used in [105] for DR prediction.
The first phase performs feature selection on digital retinal fundus im-
ages. The second phase employs a support vector machine for the pre-
diction. A different aspect to the DR problem was investigated by Pires
et al. [106]. In that case, a method for assessing the need for referral
was developed, based on the identification of DR-related lesions in
retinal images. Finally, Giancardo et al. proposed a methodology for
Diabetic macular edema prediction, which is a common vision-
threatening complication of DR [107]. Zhang et al. proposed a method
for detecting DM and Non proliferative DR (early event) using tongue
color, texture, and geometry features [110].

5.3. Drugs and Therapies

Peoplewith both types of diabetes needmedication to helpmaintain
normal blood sugar levels. The type of medication clearly depends on
the type of diabetes. Insulin is the most common type of medication
employed in T1D treatment and also used to treat T2D in some cases,
depending on the severity of insulin depletion. At present, the majority
of current therapies for T2D rely mainly on a number of approaches
intending to reduce hyperglycemia. Such factors include sulfonylureas,
metformins, PPAR-γ agonists (peroxisome proliferator-activated
receptor-γ), α-glucosidase inhibitors, and others. Although diabetes
constitutes a worldwide epidemic, with significant efforts targeting ef-
fective drug design and therapeutic protocols, most current therapies
for this disease were developed in the absence of defined molecular
targets or full delineation of the disease pathogenesis. Given the
a) numerous side-effects of the present therapeutic protocols, and
b) rapidly accruing knowledge on pathophysiological mechanisms,
drug design and discovery stand as a great challenge in current research
οn diabetes. Intensive study of the mechanisms of action of older drugs
has provided further validation of several recently identified drug tar-
gets. Further efforts in this direction are likely to be fruitful. In the era
of post-genomic drug development, extracting and applying knowledge
from biochemical, chemical, biological, and clinical data is one of the
most interesting challenges facing the pharmaceutical industry. By the
same token, data mining techniques can help a) recommend and im-
prove effective medication, b) predict and suggest more personalized
medications, c) design more effective blood glucose lowering factors,
d) improve insulin planning and dosage, and e) implement drug admin-
istration in a more specific manner.

Sequential pattern mining techniques are used to mine patterns
from data, where values are delivered in a sequence. Thus, such tech-
niques are suitable in predicting the sequence of medications to be pre-
scribed for a patient. Wright et al. used sequential pattern mining
(CSPADE algorithm) to identify temporal relationships among medica-
tion prescriptions and finally predict the follow-up medication to be
prescribed for a patient [114]. Also, Deja et al. used differential sequence
patterns to imprint deviations observed in patient blood glucose levels
and the amount of insulin dose to improve physician therapy recom-
mendations [115].

In addition, to improve dosage planning, case-based reasoning was
used to optimize the appropriate and effective dose of insulin in T1D
[116]. By the same token, Karahoca and Tunga [117] used High Dimen-
sional Model Representation (HDMR) to manage the drug dosage plan-
ning process in T2D. Moreover, taking into consideration patient
behavior in relation to patient care, Namayanja and Janeja used cluster-
ing techniques to improve insulin treatment in T2D patients [118].

To search for novel anti-diabetic agents, the potency of inhibiting
DPP4 was employed in [119], through decision tree classifier based on
thirteen physicochemical properties, including molecular weight, total
energy of a molecule, and topological polar surface area. A QSAR
model was also used to assess flavonoid inhibitory effects on AR activity
as a potent treatment for diabetes, using artificial neural networks
[120]. In [121], a novel method was proposed, based on association
rule mining, to discover relationships between statin (reductase inhibi-
tors, medication for cardiovascular disease) use and diabetes. In addi-
tion, in [122], the study aimed at determining whether data mining
methodologies could identify reproducible predictors of dapagliflozin-
specific treatment response in the phase 3 clinical program dataset.

Liu et al. performed feature selection using wrapper and filter ap-
proaches on a 258 feature set in order to improve classification accuracy
for medication recommendation in T2D using K-Nearest Neighbor
[123].

Gastrointestinal surgery is considered as an alternative beneficial
treatment for morbidly obese T2D patients. Authors in [124,125]
targeted selection ofmarkers for the prediction of successful T2D remis-
sion, following gastrointestinal surgery via artificial neural networks.

Postprandial hyperglycemia is considered as a global threat for both
prediabetes and T2D. However, the current dietarymethods for manag-
ing blood glucose levels exhibit limited efficacy. Zeevi et al. developed a
machine learning algorithm that takes into account blood parameters,
dietary habits, anthropometrics, physical activity, and gut microbiota
to predict personalized postprandial glycemic response to real-life
meals [126].

5.4. Genetic Background and Environment

Both type 1 and 2 diabetes as well as other rare forms of diabetes
that are directly inherited, including MODY and diabetes due to muta-
tions in mitochondrial DNA, are caused by a combination of genetic
and environmental risk factors. Unlike some traits, diabetes does not
seem to be inherited in a simple pattern. Undoubtedly, however, some
people are born prone to developing diabetes more so than others.
Several epidemiological patterns suggest that environmental factors
contribute to the etiology of T1D. Interestingly, the recent elevated
number of T1D incidents projects a changing global environment,
which acts either as initiator and/or accelerator of beta cell autoimmu-
nity rather than variation in the gene pool. Several genetic factors are in-
volved in the development of the disease [127]. There is evidence that
more than twenty regions of the genome are involved in the genetic
susceptibility to T1D. The genes most strongly associated with T1D are
located in the HLA region of chromosome 6 [128]. Similar to T1D, T2D
has a strong genetic component. To date, more than 50 candidate
genes for T2Dhave been investigated in various populationsworldwide.
Candidate genes are selected due to their interference with pancreatic
beta cell function, insulin mode of action, glucose metabolism and/or
other risk factors. It is a fact that advances in genotyping technology,
over the past few years, have facilitated rapid progress in large-scale ge-
netic studies. Identification of a large number of novel genetic variants
increasing susceptibility diabetes and related traits opened up opportu-
nities, not existing thus far, to associate this genetic information with
clinical practice and possibly improve risk prediction. However, avail-
able data to date do not yet provide convincing evidence supporting
use of genetic screening in the prediction of diabetes.
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The human leukocyte antigen (HLA) system is a gene complex
encoding the major histocompatibility complex (MHC) proteins in
humans. HLA types are inherited and some of them are linked to auto-
immune disorders and/or other diseases, including T1D diabetes. This
fact has also been emphasized by recent genome-wide association stud-
ies. Zhao et al. attempted to reduce genetic association to practice
through an HLA-based disease predictive model [129]. The authors
managed to overcome the burden of low-predicting accuracy by using
highly polymorphic genes as predictors. They proposed a methodology,
which treats complex HLA genotypes as “objects”, and built predictive
models for T1D using eight HLA genes (HLA-DRB1, HLA-DRB3, HLA-
DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1).
By the same token, authors in [130] analyzed 19,035 SNPs of 10,579
subjects and selected as few as three SNPs to predict HLA-DR/DQ
types relevant to T1D.

Even pleiotropic genes have a strong impact on DM onset and pro-
gression. It's a fact that pleiotropic genes cannot be easily associated
with important diseases. To this end, Park et al. developed an associa-
tion rule mining-based method to discover patterns of multiple pheno-
typic associations over 52 anthropometric and biochemical traits [131].
The discovered patternswere then used to identify geneticmarkers that
can be associated with multivariate phenotypes.

It is worth mentioning that in [132], a meta-analysis study was
conducted, where a collection of gene expression datasets of pancre-
atic beta-cells, conditioned in an environment resembling T1D in-
duced apoptosis, such as exposure to pro-inflammatory cytokines,
in order to identify relevant and differentially expressed genes. The
specific genes were then characterized according to their function
and prior literature-based information to build temporal regulatory
networks. Moreover, biological experiments were carried out reveal-
ing that inhibition of two of the most relevant genes (RIPK2 and
ELF3), previously unknown in T1D literature, have a certain impact
on apoptosis.

On the other hand, Lee et al. used various classification algorithms,
such as SVM and logistic regression, to predict T2D by employing 499
known SNPs from 87 T2D-related genes [133]. Finally, in [134], authors
used support vectormachines to predict tyrosine kinase ligand-receptor
pairs from their amino acid sequences. More specifically, authors initial-
ly collected tyrosine kinase ligand-receptor pairs from the Database of
Interacting Proteins (DIP) and UniProtKB, and after a filtering process,
used them as a dataset for the assessment of predictive performance.
Identification of the interacting partner of tyrosine kinase ligand-
receptor, provides a deeper delineation of cellular-combined processes.

5.5. Health Care Management Systems

As mentioned above, the prevalence of diabetes for all age groups
worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030 [135].
The total number of people diagnosed with diabetes is projected to
rise from 171 million in 2000 to 366 million by 2030. It is a grim fact
that themajority of healthcare institutions inmany countries spend bil-
lions of dollars on Diabetes health care. Given the impact of the disease,
efforts are presently made to assess existing data in order to manage
public health issues, such as hospitalization cost or medication.

In [136], authors presented amethod to predict health care spending
in ambulatory diabetes patients. In their method, authors used patterns
extracted from health-related quality of life (HRQOL) inventories and
electronic medical records and developed a hybrid approach based on
Natural Language Processing and machine learning for the prediction
models.

Nimmagadda et al. [137] developed a robust back-end application
for web-based patient–doctor consultations and e-Health care, based
on ontology-based multidimensional data warehousing and mining
methodologies, while Renard et al. [138] developed DIABECOLUX, an al-
gorithm for the prediction of treated T2D patients via health insurance
claims, when no diagnosis code is available. Similarly, in [139], data
from electronic health records and financial billing systems were used
to produce integrated patient-based datasets. Mining of such data
through probabilistic clustering methodologies allows assessment of
thehealth andfinancial risk status, subsequently aiding in taking the ap-
propriate proactive actions. Ultimately, Lee and Giaraud-Carrier [140]
aimed at mining a huge collection of data, through association rules
and clustering techniques, to support evidence-based medicine. Data
were obtained from The National Health and Nutrition Examination
Survey (NHANES), which is a program trying to assess health and nutri-
tional status of adults and children in the United States.

6. Discussion

In the present study, the recent literaturewas reviewedwith respect
to applications of machine learning and data mining methods in Diabe-
tes research. The first sections describe briefly the two main research
fields involved (machine learning, knowledge discovery in databases
and Diabetes), pointing out the necessity of intelligent applications in
improving the quality and effectiveness of decision making in DM.

Following creation of the assembled article collection (formethodol-
ogy details vide supra), each article was categorized accordingly in one
of the title groups (descending number of papers), thus covering to a
great extent significant diabetes research fields, i.e. Biomarker Predic-
tion and Diagnosis in DM, Diabetic Complications, Drugs and Therapies,
Genetic Background and Environment, and Health Care Management.
The current articles were published in several scientific journals that
deal with distinct and wide fields of interest, including bioinformatics,
biomedical engineering and diabetes. In Fig. 4, the scientific journals
are presented in line with their appearance in the present collection,
whereas Fig. 3 depicts the number of articles published per year.

The specific article categorization was carried out based on the con-
tent of the retrieved articles. The most popular category was the Bio-
marker Prediction and Diagnosis of DM, thematically revolving around
efforts to discover and suggest novel biomarkers and finally predict
key aspects of the disease, such as its onset. Since the undertaken re-
search reflects a data-driven process, the arising gaps and limitations
inmachine learning research in DMare closely related to the availability
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of data. Clinical, diagnostic data and EHR are plentiful due to low cost of
their retrieval, in contrast to other types of data, such as biological,
which are more difficult and expensive to generate and therefore less
available to the scientific community. That partially justifies the exten-
sive research effort on specific topics, such as retinopathy. Moreover,
there is complete lack of data concerning a) lifestyle and behavior,
b) inheritance, and c) linkage with other pathophysiological conditions
e.g. Alzheimer's disease.

6.1. Computational Insight Into Diabetes Research

When it comes to machine learning and data mining, significant
conclusions are drawn through the present detailed account. It is
worth mentioning that the vast majority of the reported articles en-
hanced classification accuracy, above 80%, in the prediction of DM.
With regard to the prediction task itself, almost all of the common
known classification algorithms have been employed. However, the
most commonly used ones are SVM, ANN, and DT. It should be men-
tioned that SVM rises as the most successful algorithm in both biologi-
cal and clinical datasets in DM. A great deal of articles (~85%) used the
supervised learning approaches, i.e. in classification and regression
tasks. In the remaining 15%, association rules were employed mainly to
study associations between biomarkers. More specifically, concerning
the part dealingwith the evaluation task, in all reported research reports,
the identified subsets of biomarkers (features) were evaluated through
appropriate procedures, such as splitting the dataset into train and test
set or via cross-validation. By analogy, the same approaches have been
followed in DM prediction.

Worth emphasizing is the fact that in many studies, after the fea-
ture/biomarker selection, researchers have performed comparative
analysis on different machine learning algorithms in order to assess
their predictive performance and finally choose the most efficient
one(s). To this end, this should be the baseline of practice in every
study to be carried out, taking into account that several characteristics
of the dataset, such as dimensionality, low number of instances
compared to number of features or even the type of the dataset itself
(genetic or clinical), can affect significantly the performance of the al-
gorithm. Hence, an algorithmwith the best performance in one dataset
could easily have lower prediction accuracy compared to other algo-
rithms in different datasets. Table 1 represents studies that compare
more than five machine learning algorithms in various biological and
clinical datasets. SVM exhibited the best performance with regard to
classification accuracy or the Area Under the Curve (AUC). Moreover,
many times in KDD, algorithms that produce interpretable results, are
preferably used, although they are not necessarily state-of-the-art.
The aforementioned fact explains, at least partially, the wide use of de-
cision trees in the literature. The overall results project that a wide va-
riety of algorithms and techniques are used in DM research. Obviously,
different machine learning tasks are used in different scientific ques-
tions, such as prediction on DM or association among biomarkers. To
this end, classification and regression techniques are used for predic-
tion tasks, such as prediction of glucose levels and association rules in
the case of dependencies between biomarkers. Interestingly, for each
machine learning task, a variety of algorithms have been used in the lit-
erature. The reason behind that is likely the fact that the accuracy of an
algorithm depends heavily on the type of data (dimensionality, origin
and kind). Accordingly, a great effort in research relies on the prepro-
cessing of data, such as feature selection and then various algorithms
are applied to the processed data in order to identify the most success-
ful one for the particular dataset.

Furthermore, it is imperative for machine learning studies that a
dataset be sufficiently large for the algorithm to be trained appropriate-
ly. Although biomedical sciences have entered the era of big data for
several reasons, such as low cost of next generation sequencing or uni-
fied EHRs, datasetswith great variability in size are very common inDM
research. In that respect, what should be stressed out is the danger of



113I. Kavakiotis et al. / Computational and Structural Biotechnology Journal 15 (2017) 104–116
a) producing lowquality results, and b) concomitantly having the entire
KDD process finally extract low quality of knowledge, when a small
amount of data is employed.
6.2. Computational Interfacing With Diabetes Mellitus

Potential gains of early detection of a disease, in this case DM, in ad-
dition to the assessment of possible risk factors, include a) significant
prolongation and quality of life, pertaining to the reduction of severity
and frequency of a disease state and/or prevention and delay of its com-
plications, and b) reduction of health care cost, as a consequence of re-
duced care linked to hospitalization of patients. In this context, data
mining and machine learning arise as a key process providing insight
into possible relationships among molecules and conditions such as
gene–gene, protein–protein, drug–drug, drug–disease or gene–disease,
etc.

From the perspective of DM, although there are several types of dia-
betes, the overall results suggest that the articles reviewed refer to T1D
and T2D, with T2D representing the majority of the articles. A few arti-
cles refer to prediabetes and only one pertains to the metabolic syn-
drome, which is a term for metabolism-related pathophysiology. The
types of data used in each case of the present collectionwere either clin-
ical, genetic, electrochemical, chemical or medical. Only a few articles
used clinical data in combination with genetic data. In addition, it is
worth mentioning that the vast majority of the articles reviewed han-
dled only clinical datasets. When it comes to prediction, the main bio-
markers used involve anthropometric parameters, demographic
characteristics, known risk factors, medical and drug history data, labo-
ratorymeasurements, and epidemiological data. Themost commonbio-
marker seems to be blood glucose levels (HbA1c), as expected, since its
detection is the basic step toward diagnosis and classification of a candi-
date diabetic patient.

With regard to DM treatment, the articles associated with drugs and
therapy cover several fields of interest that include a) medication pre-
scriptions, b) dosage planningwith emphasis on insulin administration,
c) potential side-effects of medications non-related to the disease (e.g.
statins), and d) prediction of personalized glycemic response following
anti-diabetic medication. Only Shoombautong et al., in [119], deal with
the discovery of novel anti-diabetic agents. Therefore, to our knowledge
there is much work ahead to be done on drug and therapeutic protocol
design as far as evaluation anddatamining on already knownblood glu-
cose lowering factors, such as metformin.

Concerning the genetic background in DM and environmental fac-
tors affecting the onset and progression of the disease, it is worth noting
that the present account presents an evident gap in research on diabetes
with respect to datamining andmachine learning. The articles reviewed
employ the HLA gene complex, in relation to T1D, whereas the rest of
them attempt to predict associations of pleiotropic genes with DM. In-
terestingly, Lopes et al. tried to associate two known geneswith DM, fol-
lowing wet lab validation of the extracted information [132]. Finally,
although SNPs are one of the most common genetic markers in various
research fields, in the present study only two articles utilized SNPs to
predict DM. As more genes involved in the pathogenesis of diabetes
are gradually identified, it will become easier to gain deeper under-
standing of the mechanisms responsible for the disease development
and progression. That can lead to new insights into the genetic epidemi-
ology of diabetes and nature of gene–gene and gene–environment
interactions.

Finally, Diabetic complications covered in the present study in-
clude nephropathy, Alzheimer's disease, diabetic foot, liver cancer,
hypoglycemic events, heart disease, depression, and retinopathy.
The majority of the articles deal with retinopathy. One plausible ex-
planation, apart from the impact of the disease, could be the avail-
ability of data resources from routine clinical practice that allow
information extraction.
7. Conclusions

In this study, a systematic effort was made to identify and review
machine learning and data mining approaches applied on DM research.
DM is rapidly emerging as one of the greatest global health challenges of
the 21st century. To date, there is a significant work carried out in al-
most all aspects of DM research and especially biomarker identification
and prediction-diagnosis. The advent of biotechnology, with the vast
amount of data produced, along with the increasing amount of EHRs is
expected to give rise to further in-depth exploration toward diagnosis,
etiopathophysiology and treatment of DM through employment of ma-
chine learning and data mining techniques in enriched datasets that in-
clude clinical and biological information.
Acknowledgements

This work has been partially supported by Horizon 2020 Framework
Programme of the European Union under grant agreement 644906, the
AEGLE project.

References

[1] Marx V. Biology: the big challenges of big data. Nature Jun 13 2013;498(7453):
255–60. http://dx.doi.org/10.1038/498255a.

[2] Mattmann CA. Computing: a vision for data science. Nature Jan 24 2013;
493(7433):473–5. http://dx.doi.org/10.1038/493473a.

[3] Wilson RA, Keil FC. The MIT encyclopaedia of the cognitive sciences. MIT Press;
1999.

[4] Mitchell T. Machine learning. McGraw Hill0-07-042807-7; 1997 2.
[5] Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery

in databases. AI Mag 1996;17:37–54.
[6] Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Ap-

proach (2nd Ed.). Prentice Hall. ISBN 978-0137903955.
[7] Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in

large databases. Proceedings of the ACM SIGMOD conference on management of
data; 1993. p. 207–16.

[8] Agrawal R, Srikant R. Fast algorithms for mining association rules in large data-
bases. Proceedings of the 20th International Conference on Very Large Databases;
1994. p. 478–99.

[9] Kavakiotis I, Tzanis G, Vlahavas I. Mining frequent patterns and association rules
from biological data. In: Elloumi M, Zomaya AY, editors. Biological knowledge dis-
covery handbook: preprocessing, mining and postprocessing of biological data.
Wiley Book series on bioinformatics: computational techniques and
engineeringNew Jersey, USA: Wiley-Blackwell, John Wiley & Sons Ltd.; 2014
[Publish.].

[10] Han J, Kamber M, Pei J. Data mining: concepts and techniques. The Morgan
Kaufmann series in data management systems; 2011.

[11] Alpaydin E. Introduction to machine learning. Cambridge Massachusetts London
England: The MIT Press; 2004.

[12] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn
Res 2003;3:1157–82.

[13] Witten IH, Frank E, Hall MA. Data mining: practical machine learning tools and
techniques. 3rd ed. Burlington, MA: Morgan Kaufmann; 2011.

[14] American Diabetes Association. Diagnosis and classification of diabetes mellitus.
Diabetes Care 2009;32(Suppl. 1):S62–7.

[15] Cox EM, Elelman D. Test for screening and diagnosis of type 2 diabetes. Clin Diabe-
tes 2009;4(27):132–8.

[16] Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes
mellitus. Drugs 2005;65(3):385–411.

[17] Tsave O, Halevas E, Yavropoulou MP, Kosmidis Papadimitriou A, Yovos JG,
Hatzidimitriou A, et al. Structure-specific adipogenic capacity of novel, well-
defined ternary Zn(II)-Schiff base materials. Biomolecular correlations in zinc-
induced differentiation of 3T3-L1 pre-adipocytes to adipocytes. J Inorg Biochem
Nov 2015;152:123–37. http://dx.doi.org/10.1016/j.jinorgbio.2015.08.014 [Epub
2015 Aug 11].

[18] Halevas E, Tsave O, Yavropoulou MP, Hatzidimitriou A, Yovos JG, Psycharis V, et al.
Design, synthesis and characterization of novel binary V(V)-Schiff base materials
linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibro-
blasts to adipocytes. Structure–function correlations at the molecular level. J
Inorg Biochem Jun 2015;147:99–115. http://dx.doi.org/10.1016/j.jinorgbio.2015.
03.009 [Epub 2015 Mar 26].

[19] Tsave O, Yavropoulou MP, Kafantari M, Gabriel C, Yovos JG, Salifoglou A. The
adipogenic potential of Cr(III). A molecular approach exemplifying metal-
induced enhancement of insulin mimesis in diabetes mellitus II. J Inorg Biochem
Oct 2016;163:323–31.

[20] Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H. Antidiabetic vanadium(IV)
and zinc(II) complexes review article coordination. Chem Rev March 2002;
226(1–2):187–98.

[21] “Records in DBLP”. Statistics. DBLP. Retrieved 2016–07-16; 2016.

http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1038/493473a
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0015
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0015
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0020
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0025
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0025
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0030
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0030
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0030
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0035
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0035
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0035
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0040
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0045
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0045
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0050
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0050
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0055
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0055
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0060
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0060
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0065
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0065
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0070
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0070
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0075
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0075
http://dx.doi.org/10.1016/j.jinorgbio.2015.08.014
http://dx.doi.org/10.1016/j.jinorgbio.2015.03.009
http://dx.doi.org/10.1016/j.jinorgbio.2015.03.009
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0090
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0090
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0090
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0090
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0095
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0095
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0095


114 I. Kavakiotis et al. / Computational and Structural Biotechnology Journal 15 (2017) 104–116
[22] Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature De-
cember 14 2006;444:881–7 [Published online 13 December 2006].

[23] Caveney EJ, Cohen OJ. Diabetes and biomarkers. J Diabetes Sci Technol Jan 2011;
5(1):192–7.

[24] Jelinek HF, Stranieri A, Yatsko A, Venkatraman S. Data analytics identify glycated
haemoglobin co-markers for type 2 diabetes mellitus diagnosis. Comput Biol Med
Aug 1 2016;75:90–7. http://dx.doi.org/10.1016/j.compbiomed.2016.05.005 [Epub
2016 May 13].

[25] Bagherzadeh-Khiabani F, Ramezankhani A, Azizi F, Hadaegh F, Steyerberg EW,
Khalili D. A tutorial on variable selection for clinical prediction models: feature se-
lection methods in data mining could improve the results. J Clin Epidemiol 2016
Mar;71:76–85. http://dx.doi.org/10.1016/j.jclinepi.2015.10.002 [Epub 2015 Oct
22].

[26] Wang KJ, Adrian AM, Chen KH, Wang KM. An improved electromagnetism-like
mechanism algorithm and its application to the prediction of diabetes mellitus. J
Biomed Inform Apr 2015;54:220–9. http://dx.doi.org/10.1016/j.jbi.2015.02.001
[Epub 2015 Feb 10].

[27] Cai L, Wu H, Li D, Zhou K, Zou F. Type 2 diabetes biomarkers of human gut micro-
biota selected via iterative sure independent screening method. PLoS One Oct 19
2015;10(10):e0140827. http://dx.doi.org/10.1371/journal.pone.0140827
[eCollection 2015].

[28] Georga EI, Protopappas VC, Polyzos D, Fotiadis DI. Evaluation of short-term predic-
tors of glucose concentration in type 1 diabetes combining feature ranking with re-
gression models. Med Biol Eng Comput Dec 2015;53(12):1305–18. http://dx.doi.
org/10.1007/s11517–015–1263-1 [Epub 2015 Mar 15].

[29] Lee BJ, Kim JY, Lee BJ, Kim JY. Identification of type 2 diabetes risk factors using phe-
notypes consisting of anthropometry and triglycerides based on machine learning.
IEEE J Biomed Health Inform Jan 2016;20(1):39–46. http://dx.doi.org/10.1109/
JBHI.2015.2396520 [Epub 2015 Feb 6].

[30] Marling CR, Struble NW, Bunescu RC, Shubrook JH, Schwartz FL. A consensus per-
ceived glycemic variability metric. J Diabetes Sci Technol Jul 1 2013;7(4):871–9.

[31] Huang JH, He RH, Yi LZ, Xie HL, Cao DS, Liang YZ. Exploring the relationship be-
tween 5′AMP-activated protein kinase and markers related to type 2 diabetes
mellitus. Talanta Jun 15 2013;110:1–7. http://dx.doi.org/10.1016/j.talanta.2013.03.
039 [Epub 2013 Mar 22].

[32] Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C,
Prachayasittikul V. Quantitative population–health relationship (QPHR) for
assessing metabolic syndrome. EXCLI J Jun 26 2013;12:569–83 [eCollection 2013].

[33] Aslam MW, Zhu Z, Nandi AK. Feature generation using genetic programming with
comparative partner selection for diabetes classification. Expert Syst Appl 2013;
40(13):5402–12.

[34] Sideris C, Pourhomayoun M, Kalantarian H, Sarrafzadeh M. A flexible data-driven
comorbidity feature extraction framework. Comput Biol Med Jun 1 2016;73:
165–72. http://dx.doi.org/10.1016/j.compbiomed.2016.04.014 [Epub 2016 Apr 20].

[35] Breiman L. Random forests. Mach Learn 2001;45(1):5–32. http://dx.doi.org/10.
1023/A:1010933404324.

[36] Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and
RReliefF. Mach Learn 2003;53(1–2):23–69. http://dx.doi.org/10.1023/ A:
1025667309714.

[37] Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory
1967;IT-13(1):21–7.

[38] Chen LF, Su CT, Chen KH. An improved particle swarm optimization for feature se-
lection. Intell Data Anal 2012;16(2):167–82.

[39] Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R
Stat Soc Series B Stat Methodology 2008;70(5):849–911. http://dx.doi.org/10.
1111/j.1467-9868. 2008.00674.x.

[40] OhW, Kim E, CastroMR, Caraballo PJ, Kumar V, SteinbachMS, et al. Type 2 diabetes
mellitus trajectories and associated risks. Big Data Mar 1 2016;4(1):25–30.

[41] Worachartcheewan A, Nantasenamat C, Prasertsrithong P, Amranan J, Monnor T,
Chaisatit T, et al. Machine learning approaches for discerning intercorrelation of he-
matological parameters and glucose level for identification of diabetes mellitus.
EXCLI J Oct 21 2013;12:885–93 [eCollection 2013].

[42] Worachartcheewan A, Shoombuatong W, Pidetcha P, Nopnithipat W,
Prachayasittikul V, Nantasenamat C. Predicting metabolic syndrome using the ran-
dom forest method. ScientificWorldJournal 2015;2015:581501. http://dx.doi.org/
10.1155/2015/581501 [Epub 2015 Jul 28].

[43] Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes mellitus screening and risk factors
using decision tree: results of data mining. Glob J Health Sci Mar 18 2015;7(5):
304–10. http://dx.doi.org/10.5539/gjhs.v7n5p304.

[44] Razavian N, Blecker S, Schmidt AM, Smith-McLallen A, Nigam S, Sontag D.
Population-level prediction of type 2 diabetes from claims data and analysis of
risk factors. Big Data Dec 2015;3(4):277–87. http://dx.doi.org/10.1089/big.2015.
0020.

[45] Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining
models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med
Sci Feb 2013;29(2):93–9. http://dx.doi.org/10.1016/j.kjms.2012.08.016 [Epub
2012 Oct 16].

[46] Malik S, Khadgawat R, Anand S, Gupta S. Non-invasive detection of fasting blood
glucose level via electrochemical measurement of saliva. Springerplus May 23
2016;5(1):701. http://dx.doi.org/10.1186/s40064-016-2339-6 [eCollection 2016].

[47] Allalou A, Nalla A, Prentice KJ, Liu Y, Zhang M, Dai FF, et al. A predictive metabolic
signature for the transition from gestational diabetes to type 2 diabetes. Diabetes
Jun 23 2016 [pii: db151720. [Epub ahead of print]].

[48] Agarwal V, Podchiyska T, Banda JM, Goel V, Leung TI, Minty EP, et al. Learning sta-
tistical models of phenotypes using noisy labeled training data. J Am Med Inform
Assoc May 12 2016. http://dx.doi.org/10.1093/jamia/ocw028 [pii: ocw028 [Epub
ahead of print]].

[49] Hoyt R, Linnville S, Thaler S, Moore J. Digital family history data mining with neural
networks: a pilot study. Perspect Health Inf Manag Jan 1 2016;13:1c [eCollection
2016].

[50] Anderson JP, Parikh JR, Shenfeld DK, Ivanov V, Marks C, Church BW, et al. Reverse
engineering and evaluation of predictionmodels for progression to type 2 diabetes:
an application of machine learning using electronic health records. J Diabetes Sci
Technol Dec 20 2015;10(1):6–18. http://dx.doi.org/10.1177/1932296815620200.

[51] Anderson AE, Kerr WT, Thames A, Li T, Xiao J, Cohen MS. Electronic health record
phenotyping improves detection and screening of type 2 diabetes in the general
United States population: a cross-sectional, unselected, retrospective study. J
Biomed Inform Apr 2016;60:162–8. http://dx.doi.org/10.1016/j.jbi.2015.12.006
[Epub 2015 Dec 17].

[52] Bashir S, Qamar U, Khan FH. IntelliHealth: a medical decision support application
using a novel weighted multi-layer classifier ensemble framework. J Biomed In-
form Feb 2016;59:185–200. http://dx.doi.org/10.1016/j.jbi.2015.12.001 [Epub
2015 Dec 15].

[53] Ozcift A, Gulten A. Classifier ensemble construction with rotation forest to improve
medical diagnosis performance of machine learning algorithms. Comput Methods
Programs Biomed 2011 Dec;104(3):443–51. http://dx.doi.org/10.1016/j.cmpb.
2011.03.018 [Epub 2011 Apr 30].

[54] Ramezankhani A, Pournik O, Shahrabi J, Azizi F, Hadaegh F, Khalili D. The impact of
oversampling with SMOTE on the performance of 3 classifiers in prediction of type
2 diabetes. Med Decis Making 2016 Jan;36(1):137–44. http://dx.doi.org/10.1177/
0272989X14560647 [Epub 2014 Dec 1].

[55] Choi SB, KimWJ, Yoo TK, Park JS, Chung JW, Lee YH, et al. Screening for prediabetes
using machine learning models. Comput Math Methods Med 2014;2014:618976.
http://dx.doi.org/10.1155/2014/618976 [Epub 2014 Jul 16].

[56] Belciug S, Gorunescu F. Error-correction learning for artificial neural networks
using the Bayesian paradigm. Application to automated medical diagnosis. J
Biomed Inform 2014 Dec;52:329–37. http://dx.doi.org/10.1016/j.jbi.2014.07.013
[Epub 2014 Jul 21].

[57] Lee BJ, Ku B, Nam J, Pham DD, Kim JY. Prediction of fasting plasma glucose status
using anthropometric measures for diagnosing type 2 diabetes. IEEE J Biomed
Health Inform Mar 2014;18(2):555–61. http://dx.doi.org/10.1109/JBHI.2013.
2264509.

[58] Fong S, Zhang Y, Fiaidhi J, Mohammed O, Mohammed S. Evaluation of streammin-
ing classifiers for real-time clinical decision support system: a case study of blood
glucose prediction in diabetes therapy. Biomed Res Int 2013;2013:274193. http://
dx.doi.org/10.1155/2013/274193 [Epub 2013 Sep 19].

[59] Ozery-Flato M, Parush N, El-Hay T, Visockienė Z, Ryliškytė L, Badarienė J, et al. Pre-
dictive models for type 2 diabetes onset in middle-aged subjects with themetabol-
ic syndrome. Diabetol Metab Syndr Jul 15 2013;5(1):36. http://dx.doi.org/10.1186/
1758–5996–5-36.

[60] Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess
risk of type 2 diabetes, hypertension and comorbidity: machine-learning algo-
rithms and validation using national health data from Kuwait—a cohort study.
BMJ Open May 14 2013;3. http://dx.doi.org/10.1136/bmjopen-2012-002457 [pii:
e002457].

[61] Mani S, Chen Y, Elasy T, ClaytonW,Denny J. Type 2 diabetes risk forecasting fromEMR
data using machine learning. AMIA Annu Symp Proc 2012;2012:606–15 [Epub 2012
Nov 3].

[62] Shankaracharya, Odedra D, Samanta S, Vidyarthi AS. Computational intelligence-
based diagnosis tool for the detection of prediabetes and type 2 diabetes in India.
Rev Diabet Stud Spring 2012;9(1):55–62. http://dx.doi.org/10.1900/RDS.2012.9.
55 [Epub 2012 May 10].

[63] Chikh MA, Saidi M, Settouti N. Diagnosis of diabetes diseases using an Artificial Im-
mune Recognition System2 (AIRS2) with fuzzy K-nearest neighbor. J Med Syst Oct
2012;36(5):2721–9. http://dx.doi.org/10.1007/s10916-011-9748-4 [Epub 2011
Jun 22].

[64] Malley JD, Kruppa J, Dasgupta A,Malley KG, Ziegler A. Probabilitymachines: consis-
tent probability estimation using nonparametric learning machines. Methods Inf
Med 2012;51(1):74–81. http://dx.doi.org/10.3414/ME00–01-0052 [Epub 2011
Sep 14].

[65] Ganji MF, Abadeh MS. A fuzzy classification system based on ant colony optimiza-
tion for diabetes disease diagnosis. Expert Syst Appl 2011;38(12):14650–9.

[66] Çalisir D, Dogantekin E. An automatic diabetes diagnosis system based on LDA-
Wavelet Support Vector Machine Classifier. Expert Syst Appl 2011;38(7):8311–5.

[67] Robertson G, Lehmann ED, Sandham WA, Hamilton DJ. Blood glucose prediction
using artificial neural networks trained with the AIDA diabetes simulator: a
proof-of-concept pilot study. J Electr Comput Eng 2011;2011:
681786:1–681786:11.

[68] Georga EI, Protopappas VC, Ardigò D, Marina M, Zavaroni I, Polyzos D, et al. Multi-
variate prediction of subcutaneous glucose concentration in type 1 diabetes pa-
tients based on support vector regression. IEEE J Biomed Health Inform 2013;
17(1):71–81.

[69] Han L, Luo S, Yu J, Pan L, Chen S. Rule extraction from support vector machines
using ensemble learning approach: an application for diagnosis of diabetes. IEEE J
Biomed Health Inform 2015;19(2):728–34.

[70] Gregori D, Petrinco M, Bo S, Rosato R, Pagano E, Berchialla P, et al. Using data mining
techniques in monitoring diabetes care. The simpler the better? J Med Syst 2011;
35(2):277–81.

[71] Ramezankhani A, Pournik O, Shahrabi J, Azizi F, Hadaegh F. An application of asso-
ciation rulemining to extract risk pattern for type 2 diabetes using Tehran lipid and

http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0100
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0100
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0105
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0105
http://dx.doi.org/10.1016/j.compbiomed.2016.05.005
http://dx.doi.org/10.1016/j.jclinepi.2015.10.002
http://dx.doi.org/10.1016/j.jbi.2015.02.001
http://dx.doi.org/10.1371/journal.pone.0140827
http://dx.doi.org/10.1007/s11517�015�1263-1
http://dx.doi.org/10.1007/s11517�015�1263-1
http://dx.doi.org/10.1109/JBHI.2015.2396520
http://dx.doi.org/10.1109/JBHI.2015.2396520
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0140
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0140
http://dx.doi.org/10.1016/j.talanta.2013.03.039
http://dx.doi.org/10.1016/j.talanta.2013.03.039
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0150
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0150
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0150
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0155
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0155
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0155
http://dx.doi.org/10.1016/j.compbiomed.2016.04.014
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/ A:1025667309714
http://dx.doi.org/10.1023/ A:1025667309714
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0175
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0175
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0180
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0180
http://dx.doi.org/10.1111/j.1467-9868. 2008.00674.x
http://dx.doi.org/10.1111/j.1467-9868. 2008.00674.x
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0190
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0190
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0195
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0195
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0195
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0195
http://dx.doi.org/10.1155/2015/581501
http://dx.doi.org/10.1155/2015/581501
http://dx.doi.org/10.5539/gjhs.v7n5p304
http://dx.doi.org/10.1089/big.2015.0020
http://dx.doi.org/10.1089/big.2015.0020
http://dx.doi.org/10.1016/j.kjms.2012.08.016
http://dx.doi.org/10.1186/s40064-016-2339-6
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0225
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0225
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0225
http://dx.doi.org/10.1093/jamia/ocw028
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0235
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0235
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0235
http://dx.doi.org/10.1177/1932296815620200
http://dx.doi.org/10.1016/j.jbi.2015.12.006
http://dx.doi.org/10.1016/j.jbi.2015.12.001
http://dx.doi.org/10.1016/j.cmpb.2011.03.018
http://dx.doi.org/10.1016/j.cmpb.2011.03.018
http://dx.doi.org/10.1177/0272989X14560647
http://dx.doi.org/10.1177/0272989X14560647
http://dx.doi.org/10.1155/2014/618976
http://dx.doi.org/10.1016/j.jbi.2014.07.013
http://dx.doi.org/10.1109/JBHI.2013.2264509
http://dx.doi.org/10.1109/JBHI.2013.2264509
http://dx.doi.org/10.1155/2013/274193
http://dx.doi.org/10.1155/2013/274193
http://dx.doi.org/10.1186/1758�5996�5-36
http://dx.doi.org/10.1186/1758�5996�5-36
http://dx.doi.org/10.1136/bmjopen-2012-002457
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0295
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0295
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0295
http://dx.doi.org/10.1900/RDS.2012.9.55
http://dx.doi.org/10.1900/RDS.2012.9.55
http://dx.doi.org/10.1007/s10916-011-9748-4
http://dx.doi.org/10.3414/ME00�01-0052
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0315
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0315
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0320
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0320
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0325
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0325
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0325
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0325
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0330
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0330
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0330
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0330
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0335
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0335
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0335
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0340
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0340
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0340


115I. Kavakiotis et al. / Computational and Structural Biotechnology Journal 15 (2017) 104–116
glucose study database. Int J Endocrinol Metab Apr 30 2015;13(2):e25389. http://
dx.doi.org/10.5812/ijem.25389 [eCollection 2015].

[72] Simon GJ, Schrom J, CastroMR, Li PW, Caraballo PJ. Survival association rulemining
towards type 2 diabetes risk assessment. AMIA Annu Symp Proc Nov 16 2013;
2013:1293–302 [eCollection 2013].

[73] Simon GJ, Caraballo PJ, Therneau TM, Cha SS, Castro MR, Li PW. Extending associa-
tion rule summarization techniques to assess risk of diabetes mellitus. IEEE Trans
Knowl Data Eng 2015;27(1):130–41.

[74] Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M. Mining recent temporal
patterns for event detection in multivariate time series data. KDD. 2012; 2012.
p. 280–8.

[75] Beloufa F, Chikh MA. Design of fuzzy classifier for diabetes disease using modified
artificial bee colony algorithm. Comput Methods Programs Biomed Oct 2013;
112(1):92–103. http://dx.doi.org/10.1016/j.cmpb.2013.07.009 [Epub 2013 Aug 7].

[76] El-Sappagh S, ElmogyM, Riad AM. A fuzzy-ontology-oriented case-based reasoning
framework for semantic diabetes diagnosis. Artif Intell Med Nov 2015;65(3):
179–208. http://dx.doi.org/10.1016/j.artmed.2015.08.003 [Epub 2015 Aug 14].

[77] Cade WT. Diabetes-related microvascular and macrovascular diseases in the phys-
ical therapy setting. Phys Ther Nov 2008;88(11):1322–35.

[78] Lagani V, Chiarugi F, Thomson S, Fursse J, Lakasing E, Jones RW, et al. Development
and validation of risk assessment models for diabetes-related complications based
on the DCCT/EDIC data. J Diabetes Complications May-Jun 2015;29(4):479–87.
http://dx.doi.org/10.1016/j.jdiacomp.2015.03.001 [Epub 2015 Mar 6].

[79] Lagani V, Chiarugi F, Manousos D, Verma V, Fursse J, Marias K, et al. Realization of a
service for the long-term risk assessment of diabetes-related complications. J Dia-
betes Complications Jul 2015;29(5):691–8. http://dx.doi.org/10.1016/j.jdiacomp.
2015.03.011 [Epub 2015 Mar 25].

[80] Sacchi L, Dagliati A, Segagni D, Leporati P, Chiovato L, Bellazzi R. Improving risk-
stratification of diabetes complications using temporal data mining. Conf Proc
IEEE Eng Med Biol Soc Aug 2015;2015:2131–4. http://dx.doi.org/10.1109/EMBC.
2015.7318810.

[81] Huang G-M, Huang K-Y, Lee T-Y, Weng J. An interpretable rule-based diagnostic
classification of diabetic nephropathy among type 2 diabetes patients. BMC
Bioinforma 2015;16(S-1):S5.

[82] Leung RK,Wang Y, Ma RC, Luk AO, Lam V, NgM, et al. Using a multi-staged strategy
based on machine learning and mathematical modeling to predict genotype–phe-
notype risk patterns in diabetic kidney disease: a prospective case–control cohort
analysis. BMC Nephrol Jul 23 2013;14:162. http://dx.doi.org/10.1186/1471-2369-
14-162.

[83] DuBrava S,Mardekian J, Sadosky A, Bienen EJ, Parsons B, HoppsM, et al. Using random
forestmodels to identify correlates of a diabetic peripheral neuropathy diagnosis from
electronic health record data. Pain Med May 31 2016 [pii: pnw096. [Epub ahead of
print]].

[84] Stranieri A, Abawajy J, Kelarev A, Huda S, Chowdhury M, Jelinek HF. An approach
for Ewing test selection to support the clinical assessment of cardiac autonomic
neuropathy. Artif Intell Med Jul 2013;58(3):185–93. http://dx.doi.org/10.1016/j.
artmed.2013.04.007 [Epub 2013 Jun 13].

[85] Abawajy J, Kelarev A, Chowdhury M, Stranieri A, Jelinek HF. Predicting cardiac auto-
nomic neuropathy category for diabetic data with missing values. Comput Biol Med
Oct 2013;43(10):1328–33. http://dx.doi.org/10.1016/j.compbiomed.2013.07.002
[Epub 2013 Jul 12].

[86] de la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes—evidence
reviewed. J Diabetes Sci Technol Nov 2008;2(6):1101–13.

[87] Narasimhan K, Govindasamy M, Gauthaman K, Kamal MA, Abuzenadeh AM, Al-
Qahtani M, et al. Diabetes of the brain: computational approaches and interven-
tional strategies. CNS Neurol Disord Drug Targets Apr 2014;13(3):408–17.

[88] Jin H, Wu S, Di Capua P. Development of a clinical forecasting model to predict co-
morbid depression among diabetes patients and an application in depression
screening policy making. Prev Chronic Dis Sep 3 2015;12:E142. http://dx.doi.org/
10.5888/pcd12.150047.

[89] Yusuf N, Zakaria A, Omar MI, Shakaff AY, Masnan MJ, Kamarudin LM, et al. In-vitro
diagnosis of single and poly microbial species targeted for diabetic foot infection
using e-nose technology. BMC Bioinforma May 14 2015;16:158. http://dx.doi.org/
10.1186/s12859-015-0601-5.

[90] Rau HH, Hsu CY, Lin YA, Atique S, Fuad A, Wei LM, et al. Development of a web-
based liver cancer prediction model for type II diabetes patients by using an artifi-
cial neural network. Comput Methods Programs Biomed Mar 2016;125:58–65.
http://dx.doi.org/10.1016/j.cmpb.2015.11.009 [Epub 2015 Nov 27].

[91] Patterson CC. Mortality from heart disease in a cohort of 23,000 patients with
insulin-treated diabetes. Diabetologia 2003;46:760–5.

[92] Jonnagaddala J, Liaw ST, Ray P, KumarM, Dai HJ, Hsu CY. Identification and progres-
sion of heart disease risk factors in diabetic patients from longitudinal electronic
health records. Biomed Res Int 2015;2015:636371. http://dx.doi.org/10.1155/
2015/636371 [Epub 2015 Aug 25].

[93] Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care 2003 [Am
Diabetes Association].

[94] Sudharsan B, Peeples M, Shomali M. Hypoglycemia prediction using machine
learning models for patients with type 2 diabetes. J Diabetes Sci Technol Jan
2015;9(1):86–90. http://dx.doi.org/10.1177/1932296814554260 [Epub 2014 Oct
14].

[95] Georga EI, Protopappas VC, Ardigò D, Polyzos D, Fotiadis DI. A glucose model based
on support vector regression for the prediction of hypoglycemic events under free-
living conditions. Diabetes Technol Ther Aug 2013;15(8):634–43. http://dx.doi.
org/10.1089/dia.2012.0285 [Epub 2013 Jul 13].

[96] Jensen MH, Mahmoudi Z, Christensen TF, Tarnow L, Seto E, Johansen MD, et al.
Evaluation of an algorithm for retrospective hypoglycemia detection using
professional continuous glucose monitoring data. J Diabetes Sci Technol Jan 1
2014;8(1):117–22 [Epub ahead of print].

[97] Pinhas-Hamiel O, Hamiel U, Greenfield Y, Boyko V, Graph-Barel C, Rachmiel M,
et al. Detecting intentional insulin omission for weight loss in girls with type 1 di-
abetes mellitus. Int J Eat Disord Dec 2013;46(8):819–25. http://dx.doi.org/10.1002/
eat.22138 [Epub 2013 May 15].

[98] Tapp RJ, Shaw JE, Harper CA, et al. The prevalence of and factors associated with di-
abetic retinopathy in the Australian population. Diabetes Care June 2003;26(6):
1731–7.

[99] Li B, Li HK. Automated analysis of diabetic retinopathy images: principles, recent
developments, and emerging trends. Curr Diab Rep Aug 2013;13(4):453–9.
http://dx.doi.org/10.1007/s11892–013–0393-9.

[100] Torok Z, Peto T, Csosz E, Tukacs E, Molnar AM, Berta A, et al. Combined methods for
diabetic retinopathy screening, using retina photographs and tear fluid proteomics
biomarkers. J Diabetes Res 2015;2015:623619. http://dx.doi.org/10.1155/2015/
623619 [Epub 2015 Jun 29].

[101] Jin J, Min H, Kim SJ, Oh S, Kim K, Yu HG, et al. Development of diagnostic bio-
markers for detecting diabetic retinopathy at early stages using quantitative
Proteomics.J. Diabetes Res 2016;2016:6571976. http://dx.doi.org/10.1155/2016/
6571976 [Epub 2015 Nov 9].

[102] Oh E, Yoo TK, Park EC. Diabetic retinopathy risk prediction for fundus examination
using sparse learning: a cross-sectional study. BMC Med Inform Decis Mak Sep 13
2013;13:106. http://dx.doi.org/10.1186/1472–6947–13-106.

[103] Ibrahim S, Chowriappa P, Dua S, Acharya UR, Noronha K, Bhandary S, et al. Classi-
fication of diabetes maculopathy images using data-adaptive neuro-fuzzy infer-
ence classifier. Med Biol Eng Comput Dec 2015;53(12):1345–60. http://dx.doi.
org/10.1007/s11517–015–1329-0 [Epub 2015 Jun 25].

[104] Roychowdhury S, Koozekanani DD, Parhi KK. DREAM: diabetic retinopathy analysis
using machine learning. IEEE J Biomed Health Inform Sep 2014;18(5):1717–28.
http://dx.doi.org/10.1109/JBHI.2013.2294635.

[105] Krishnamoorthy S, Alli P. A novel image recuperation approach for diagnosing and
ranking retinopathy disease level using diabetic fundus image. PLoS One May 14
2015;10(5):e0125542. http://dx.doi.org/10.1371/journal.pone.0125542
[eCollection 2015].

[106] Pires R, Jelinek HF, Wainer J, Goldenstein S, Valle E, Rocha A. Assessing the need for
referral in automatic diabetic retinopathy detection. IEEE Trans Biomed Eng Dec
2013;60(12):3391–8. http://dx.doi.org/10.1109/TBME.2013.2278845 [Epub 2013
Aug 16].

[107] Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin Jr KW, et al. Exudate-
based diabetic macular edema detection in fundus images using publicly available
datasets. Med Image Anal Jan 2012;16(1):216–26. http://dx.doi.org/10.1016/j.
media.2011.07.004 [Epub 2011 Jul 23].

[108] Quellec G, LamardM, Cochener B, Decencière E, Lay B, Chabouis A, et al. Multimedia
data mining for automatic diabetic retinopathy screening. Conf Proc IEEE Eng Med
Biol Soc 2013;2013:7144–7. http://dx.doi.org/10.1109/EMBC.2013.6611205.

[109] Prentasic P, Loncaric S. Weighted ensemble based automatic detection of exudates
in fundus photographs. Conf Proc IEEE EngMed Biol Soc 2014;2014:138–41. http://
dx.doi.org/10.1109/EMBC.2014.6943548.

[110] Zhang B, Vijaya Kumar BVK, Zhang D. Detecting diabetes mellitus and
nonproliferative diabetic retinopathy using tongue color, texture, and geometry
features. IEEE Trans Biomed Eng 2014;61(2):491–501.

[111] Ogunyemi O, Kermah D. Machine learning approaches for detecting diabetic reti-
nopathy from clinical and public health records. AMIA Annu Symp Proc Nov 5
2015;2015:983–90 [eCollection 2015].

[112] Torok Z, Peto T, Csosz E, Tukacs E, Molnar A, Maros-Szabo Z, et al. Tear fluid prote-
omics multimarkers for diabetic retinopathy screening. BMC Ophthalmol Aug 7
2013;13(1):40. http://dx.doi.org/10.1186/1471-2415-13-40.

[113] Jelinek HF, Wilding C, Tinley P. An innovative multi-disciplinary diabetes complica-
tions screening programme in a rural community: a description and preliminary
results of the screening. Aust J Prim Health 2006;12:14–20.

[114] Wright AP, Wright AT, McCoy AB, Sittig DF. The use of sequential pattern mining to
predict next prescribed medications. J Biomed Inform Feb 2015;53:73–80. http://
dx.doi.org/10.1016/j.jbi.2014.09.003 [Epub 2014 Sep 16].

[115] Deja R, Froelich W, Deja G. Differential sequential patterns supporting insulin ther-
apy of new-onset type 1 diabetes. Biomed Eng Online Feb 21 2015;14:13. http://dx.
doi.org/10.1186/s12938-015-0004-x.

[116] Herrero P, Pesl P, Reddy M, Oliver N, Georgiou P, Toumazou C. Advanced insulin
bolus advisor based on run-to-run control and case-based reasoning. IEEE J Biomed
Health Inform May 2015;19(3):1087–96.

[117] Adem Karahoca M. Alper Tunga: dosage planning for type 2 diabetes mellitus pa-
tients using indexing HDMR. Expert Syst Appl 2012;39(8):7207–15.

[118] Namayanja J, Janeja VP. An assessment of patient behavior over time-periods: a
case study of managing type 2 diabetes through blood glucose readings and insulin
doses. J Med Syst Nov 2012;36(Suppl. 1):S65–80. http://dx.doi.org/10.1007/
s10916–012–9894-3 [Epub 2012 Oct 27].

[119] Shoombuatong W, Prachayasittikul V, Anuwongcharoen N, Songtawee N, Monnor
T, Prachayasittikul S, et al. Navigating the chemical space of dipeptidyl peptidase-
4 inhibitors. Drug Des Devel Ther Aug 10 2015;9:4515–49. http://dx.doi.org/10.
2147/DDDT.S86529 [eCollection 2015].

[120] Patra JC, Chua BH. Artificial neural network-based drug design for diabetes mellitus
using flavonoids. J Comput Chem 2011;32(4):555–67.

[121] Schrom JR, Caraballo PJ, Castro MR, Simon GJ. Quantifying the effect of statin use in
pre-diabetic phenotypes discovered through association rule mining. AMIA Annu
Symp Proc Nov 16 2013;2013:1249–57 [eCollection 2013].

[122] Bujac S, Del Parigi A, Sugg J, Grandy S, Liptrot T, Karpefors M, et al. Patient charac-
teristics are not associated with clinically important differential response to

http://dx.doi.org/10.5812/ijem.25389
http://dx.doi.org/10.5812/ijem.25389
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0350
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0350
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0350
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0355
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0355
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0355
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0360
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0360
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0360
http://dx.doi.org/10.1016/j.cmpb.2013.07.009
http://dx.doi.org/10.1016/j.artmed.2015.08.003
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0375
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0375
http://dx.doi.org/10.1016/j.jdiacomp.2015.03.001
http://dx.doi.org/10.1016/j.jdiacomp.2015.03.011
http://dx.doi.org/10.1016/j.jdiacomp.2015.03.011
http://dx.doi.org/10.1109/EMBC.2015.7318810
http://dx.doi.org/10.1109/EMBC.2015.7318810
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0395
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0395
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0395
http://dx.doi.org/10.1186/1471-2369-14-162
http://dx.doi.org/10.1186/1471-2369-14-162
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0405
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0405
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0405
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0405
http://dx.doi.org/10.1016/j.artmed.2013.04.007
http://dx.doi.org/10.1016/j.artmed.2013.04.007
http://dx.doi.org/10.1016/j.compbiomed.2013.07.002
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0420
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0420
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0425
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0425
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0425
http://dx.doi.org/10.5888/pcd12.150047
http://dx.doi.org/10.5888/pcd12.150047
http://dx.doi.org/10.1186/s12859-015-0601-5
http://dx.doi.org/10.1186/s12859-015-0601-5
http://dx.doi.org/10.1016/j.cmpb.2015.11.009
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0445
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0445
http://dx.doi.org/10.1155/2015/636371
http://dx.doi.org/10.1155/2015/636371
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0455
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0455
http://dx.doi.org/10.1177/1932296814554260
http://dx.doi.org/10.1089/dia.2012.0285
http://dx.doi.org/10.1089/dia.2012.0285
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0470
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0470
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0470
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0470
http://dx.doi.org/10.1002/eat.22138
http://dx.doi.org/10.1002/eat.22138
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0480
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0480
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0480
http://dx.doi.org/10.1007/s11892�013�0393-9
http://dx.doi.org/10.1155/2015/623619
http://dx.doi.org/10.1155/2015/623619
http://dx.doi.org/10.1155/2016/6571976
http://dx.doi.org/10.1155/2016/6571976
http://dx.doi.org/10.1186/1472�6947�13-106
http://dx.doi.org/10.1007/s11517�015�1329-0
http://dx.doi.org/10.1007/s11517�015�1329-0
http://dx.doi.org/10.1109/JBHI.2013.2294635
http://dx.doi.org/10.1371/journal.pone.0125542
http://dx.doi.org/10.1109/TBME.2013.2278845
http://dx.doi.org/10.1016/j.media.2011.07.004
http://dx.doi.org/10.1016/j.media.2011.07.004
http://dx.doi.org/10.1109/EMBC.2013.6611205
http://dx.doi.org/10.1109/EMBC.2014.6943548
http://dx.doi.org/10.1109/EMBC.2014.6943548
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0540
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0540
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0540
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0545
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0545
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0545
http://dx.doi.org/10.1186/1471-2415-13-40
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0555
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0555
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0555
http://dx.doi.org/10.1016/j.jbi.2014.09.003
http://dx.doi.org/10.1016/j.jbi.2014.09.003
http://dx.doi.org/10.1186/s12938-015-0004-x
http://dx.doi.org/10.1186/s12938-015-0004-x
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0570
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0570
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0570
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0575
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0575
http://dx.doi.org/10.1007/s10916�012�9894-3
http://dx.doi.org/10.1007/s10916�012�9894-3
http://dx.doi.org/10.2147/DDDT.S86529
http://dx.doi.org/10.2147/DDDT.S86529
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0590
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0590
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0595
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0595
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0595


116 I. Kavakiotis et al. / Computational and Structural Biotechnology Journal 15 (2017) 104–116
dapagliflozin: a staged analysis of phase 3 data. Diabetes Ther Dec 2014;5(2):
471–82. http://dx.doi.org/10.1007/s13300–014-0090-y [Epub 2014 Dec 12].

[123] Liu H, Xie G, Mei J, ShenW, SunW, Li X. An efficacy driven approach for medication
recommendation in type 2 diabetes treatment using data mining techniques. Stud
Health Technol Inform 2013;192:1071.

[124] Lee YC, LeeWJ, Liew PL. Predictors of remission of type 2 diabetes mellitus in obese
patients after gastrointestinal surgery. Obes Res Clin Pract Dec 2013;7(6):
e494–500. http://dx.doi.org/10.1016/j.orcp.2012.08.190.

[125] LeeWJ, Chong K, Chen JC, Ser KH, Lee YC, Tsou JJ, et al. Predictors of diabetes remis-
sion after bariatric surgery in Asia. Asian J Surg Apr 2012;35(2):67–73. http://dx.
doi.org/10.1016/j.asjsur.2012.04.010 [Epub 2012 May 26].

[126] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personal-
ized nutrition by prediction of glycemic responses. Cell Nov 19 2015;163(5):
1079–94. http://dx.doi.org/10.1016/j.cell.2015.11.001.

[127] Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-depen-
dent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based
cohort of twins in Finland. Diabetologia 1992;35:1060–7.

[128] Anjos S, Polychronakos C. Mechanisms of genetic susceptibility to type 1 diabetes:
beyond HLA. Mol Genet Metab 2004;81:187–95.

[129] Zhao LP, Bolouri H, Zhao M, Geraghty DE, Lernmark Å, Better Diabetes Diagnosis
Study Group. An object-oriented regression for building disease predictive models
with multiallelic HLA genes. Genet Epidemiol May 2016;40(4):315–32. http://dx.
doi.org/10.1002/gepi.21968.

[130] Nguyen C, Varney MD, Harrison LC, Morahan G. Definition of high-risk type 1 dia-
betes HLA-DR and HLA-DQ types using only three single nucleotide polymor-
phisms. Diabetes Jun 2013;62(6):2135–40. http://dx.doi.org/10.2337/db12-1398
[Epub 2013 Feb 1].

[131] Park SH, Lee JY, Kim S. A methodology for multivariate phenotype-based genome-
wide association studies to mine pleiotropic genes. BMC Syst Biol 2011;5 Suppl. 2:
S13. http://dx.doi.org/10.1186/1752-0509-5-S2-S13 [Epub 2011 Dec 14].

[132] Lopes M, Kutlu B, Miani M, Bang-Berthelsen CH, Størling J, Pociot F, et al. Temporal
profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and
network inference. Genomics Apr 2014;103(4):264–75. http://dx.doi.org/10.
1016/j.ygeno.2013.12.007 [Epub 2014 Jan 24].

[133] Lee J, Keam B, Jang EJ, Park MS, Lee JY, Kim DB, et al. Development of a predictive
model for type 2 diabetes mellitus using genetic and clinical data. Osong Public
Health Res Perspect Sep 2011;2(2):75–82. http://dx.doi.org/10.1016/j.phrp.2011.
07.005 [Epub 2011 Aug 4].

[134] Yarimizu M, Wei C, Komiyama Y, Ueki K, Nakamura S, Sumikoshi K, et al. Tyrosine
kinase ligand-receptor pair prediction by using support vector machine. Adv
Bioinforma 2015;2015:528097. http://dx.doi.org/10.1155/2015/528097 [Epub
2015 Aug 11].

[135] Global burden of diabetes. International Diabetes federation. Diabetic Atlas Fifth
Edition 2011, Brussels. Available at http://www.idf.org/diabetesatlas. [Accessed
18th December 2011].

[136] Pakhomov SV, Shah ND, Van Houten HK, Hanson PL, Smith SA. The role of the elec-
tronic medical record in the assessment of health related quality of life. AMIA Annu
Symp Proc 2011;2011:1080–8 [Epub 2011 Oct 22].

[137] Nimmagadda SL, Dreher HV. On robust methodologies for managing public health
care systems. Int J Environ Res Public Health Jan 17 2014;11(1):1106–40. http://dx.
doi.org/10.3390/ijerph110101106.

[138] Renard LM, Bocquet V, Vidal-Trecan G, Lair M-L, Couffignal S, Blum-Boisgard C. An
algorithm to identify patients with treated type 2 diabetes using medico-
administrative data. BMC Med Inform Decis Mak 2011;11:23.

[139] Bradley PS. Implications of big data analytics on population health management.
Big Data Sep 2013;1(3):152–9. http://dx.doi.org/10.1089/big.2013.0019 [Epub
2013 Sep 5].

[140] Lee J, Giraud-Carrier C. Results on mining NHANES data: a case study in evidence-
based medicine. Comput Biol Med Jun 2013;43(5):493–503. http://dx.doi.org/10.
1016/j.compbiomed.2013.02.018 [Epub 2013 Mar 18].

[141] Tapak L, Mahjub H, Hamidi O, Poorolajal J. Real-data comparison of data mining
methods in prediction of diabetes in Iran. Healthc Inform Res Sep 2013;19(3):
177–85. http://dx.doi.org/10.4258/hir.2013.19.3.177 [Epub 2013 Sep 30].

http://dx.doi.org/10.1007/s13300�014-0090-y
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0605
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0605
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0605
http://dx.doi.org/10.1016/j.orcp.2012.08.190
http://dx.doi.org/10.1016/j.asjsur.2012.04.010
http://dx.doi.org/10.1016/j.asjsur.2012.04.010
http://dx.doi.org/10.1016/j.cell.2015.11.001
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0625
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0625
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0625
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0630
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0630
http://dx.doi.org/10.1002/gepi.21968
http://dx.doi.org/10.1002/gepi.21968
http://dx.doi.org/10.2337/db12-1398
http://dx.doi.org/10.1186/1752-0509-5-S2-S13
http://dx.doi.org/10.1016/j.ygeno.2013.12.007
http://dx.doi.org/10.1016/j.ygeno.2013.12.007
http://dx.doi.org/10.1016/j.phrp.2011.07.005
http://dx.doi.org/10.1016/j.phrp.2011.07.005
http://dx.doi.org/10.1155/2015/528097
http://www.idf.org/diabetesatlas
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0670
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0670
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0670
http://dx.doi.org/10.3390/ijerph110101106
http://dx.doi.org/10.3390/ijerph110101106
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0680
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0680
http://refhub.elsevier.com/S2001-0370(16)30073-3/rf0680
http://dx.doi.org/10.1089/big.2013.0019
http://dx.doi.org/10.1016/j.compbiomed.2013.02.018
http://dx.doi.org/10.1016/j.compbiomed.2013.02.018
http://dx.doi.org/10.4258/hir.2013.19.3.177

	Machine Learning and Data Mining Methods in Diabetes Research
	1. Introduction
	2. Machine Learning and Knowledge Discovery
	2.1. Categories of Machine Learning Tasks
	2.1.1. Supervised Learning
	2.1.2. Unsupervised Learning
	2.1.2.1. Association Rule Learning
	2.1.2.2. Clustering

	2.1.3. Reinforcement Learning

	2.2. Feature Selection

	3. Diabetes Mellitus
	4. Methods
	5. DM Through Machine Learning and Data Mining
	5.1. Biomarker Identification and Prediction of DM
	5.1.1. Diagnostic and Predictive Markers
	5.1.2. Prediction of DM

	5.2. Diabetic Complications
	5.3. Drugs and Therapies
	5.4. Genetic Background and Environment
	5.5. Health Care Management Systems

	6. Discussion
	6.1. Computational Insight Into Diabetes Research
	6.2. Computational Interfacing With Diabetes Mellitus

	7. Conclusions
	Acknowledgements
	References


