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Predicting chemotherapeutic 
drug combinations through gene 
network profiling
Thi Thuy Trang Nguyen1,2, Jacqueline Kia Kee Chua1,8, Kwi Shan Seah1,2, Seok Hwee Koo5,10, 
Jie Yin Yee2,5, Eugene Guorong Yang6, Kim Kiat Lim1,2, Shermaine Yu Wen Pang1, 
Audrey Yuen9, Louxin Zhang7, Wee Han Ang4,8, Brian Dymock6, Edmund Jon Deoon Lee2,5 & 
Ee Sin Chen1,2,3,4

Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. 
However, selecting the most appropriate drugs for such therapy is not necessarily an easy or 
straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection 
of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. 
Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of 
proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. 
Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with 
six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific 
ontological sub-classifications were identified through the computation of relative hypersensitivities. 
We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant 
treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic 
acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and 
the differential targeting of a conserved gene interaction network when screening for successful 
chemotherapeutic drug combinations for human cells.

Cancer is a global health problem and there is a critical need for new advancements in its management and treat-
ment if we are to meet the projected increase in new cases1. One important challenge facing clinicians is how to 
determine the most appropriate treatment strategy for patients. Thus far, chemotherapy has remained the mainstay 
for cancer management2. Yet, most of the widely employed anticancer drugs used in the clinic are cytotoxic, harbor 
a relatively narrow therapeutic window, and/or pose a risk for the development of severe side effects that can poten-
tially jeopardize treatment outcomes3. Despite the toxicity experienced by patients, evidence shows the importance 
of maintaining a consistent dosage of chemotherapeutic agents within the body over the therapeutic period to kill 
cancer cells. This high, constant drug insult often induces selection pressure, which encourages the proliferation 
of certain cells that exhibit increased counter-chemotherapeutic responses, thus leading to chemoresistance4.

Drug responsiveness, cytotoxic side effects, and the onset of resistance are linked to the ‘genetic makeup’ of 
the patient but this concept itself also remains poorly defined5. Recent breakthroughs in genome-wide profiling 
have uncovered an intimate correlation between molecular signatures, such as gene expression, and patient drug 
responsiveness, and these findings provide support for the hypothesis that molecular processes are drivers of car-
cinogenesis that may be employed as discriminating criteria to further fine-tune treatment options2.
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Numerous genes bearing significance in carcinogenesis or contributing significantly to various cancer signatures 
have been described as hallmarks of cancers6 and have been deemed as obvious ‘druggable’ targets for chemother-
apy7. Genome-based profiling has also revealed a large collection of genes, many of which have, as yet, undefined 
connections to carcinogenesis. These genes do not function alone but, rather, act in synergy with other so-called 
partner genes to control heritable attributes8. Some of these interactions have been characterized through direct 
protein–protein binding studies but most have been defined through genetic means9. Although the functions of 
individual genes may not be resolved, it is clear that these synergistic relationships among genes form a ‘safety net’ 
to ensure cell survival, especially following environmental insults by agents such as cytotoxic chemotherapeutic 
compounds10. In recent years, considerable attention has been given to these genetic interactions, as they underpin 
the synthetic lethality approach, which is considered to be able to predict the precise combination of drugs that 
will improve the efficacy of chemotherapeutics11. Despite the potential utility of this approach, elucidating genetic 
connectivity in human cells remains a technically and financially challenging task12.

Clinical chemotherapeutic applications involve drug combinations of typically three to four drugs13,14, and 
determining the most suitable drug combination profoundly affects chemotherapeutic success. Drugs that pos-
sess varied modes of action would be expected to counteract different mechanisms of cellular resistance, and, by 
that reasoning, should provide efficient or even better therapeutic outcomes when combined rather than applied 
singly. To this end, we herein describe an approach to predict the efficacy of chemotherapeutic drug combinations 
that will act to kill human cancer cells in a cooperative manner. This approach is based on an overlapping drug 
resistance network elucidated using fission yeast (Schizosaccharomyces pombe) as a surrogate model. Drugs with 
a smaller overlap in the resistance gene network are considered to have different mechanisms of action and thus, 
in view of our reasoning above, would be expected to demonstrate a stronger cooperative effect with the target 
drug (doxorubicin in our case).

To provide evidence for the utility of such a work flow, we interrogated our previously identified doxorubicin 
resistance (DXR) genetic network and the intersection of doxorubicin with six other drugs: hydroxyurea (HU), 
an inhibitor of the deoxyribonucleotide biosynthesis enzyme ribonucleotide reductase (RNR)15; methyl meth-
anesulfonate (MMS), an alkylating agent that causes nucleotide base damage and impedes the progress of the 
DNA replication fork16; camptothecin (CPT), a topoisomerase I inhibitor17; thiabendazole (TBZ), a microtubule 
destabilizing agent18; cisplatin, an intra-DNA strand cross-linker and blocker of transcription19,20 and suberoylan-
ilide hydroxamic acid (SAHA), a histone deacetylase inhibitor21. With the exception of TBZ, which targets mitotic 
spindle microtubules, the remaining drugs are reported to induce DNA aberrations that cause DNA damage15–23.

Profiling performed in fission yeast, however, showed that the genes and networks that function to respond to 
HU, MMS and CPT—initially chosen based on differential mode of action—showed an unexpectedly high degree 
of overlap. SAHA and cisplatin, on the other hand, exhibited unique gene profiles. These drugs were further shown 
to act cooperatively with doxorubicin to result in preferential growth retardation in several DXR mutants and 
interestingly, also in human cancer cells. Thus, the degree of similarity in synthetic lethal drug hypersensitivity 
profiles and network overlap in fission yeast is useful to narrow down the potential drug candidates and select the 
best combination(s) that could be subsequently applied to a human cancer cell model.

Results
Study Design Overview. We recently performed a screen for genes that confer doxorubicin resistance (DXR) 
using fission yeast (Schizosaccharomyces pombe) as a model, and found that a network of genes protected cells 
against drug cytotoxicity24,25. We noted that many cells with mutations in these DXR genes exhibited hypersensitiv-
ity to a range of drugs, not specifically doxorubicin23,26,27, and this pointed to a potential overlap in drug resistance 
mechanisms and/or the existence of a genetic network counteracting multiple cytotoxic agents in fission yeast.

To assess this potential link between the DXR cellular network and that of other drugs, we tested the hypersen-
sitivity of 90 DXR mutant strains with each of the following six drugs: HU, MMS, CPT, TBZ, cisplatin and SAHA. 
We chose again to use fission yeast cells to test the drug combinations in these 90 genes because of the time and 
cost efficiencies afforded by this model over human cells.

We serially diluted exponentially growing DXR mutant cells and manually spotted the cultures onto plates incor-
porated with various concentrations of each of the six drugs: 0, 2, and 4 mM of HU; 0, 6, 8, 10, and 12 μ M of CPT; 
0%, 0.001%, 0.002%, 0.005%, 0.01%, and 0.02% of MMS; 0, 8, and 10 μ g/ml of TBZ; 0, 1.2, and 1.6 mM of cisplatin; 0 
and 10 mM of SAHA. The following null mutants were employed as positive controls for our drug-hypersensitivity 
assays: for HU, MMS and CPT, we used the DNA damage checkpoint kinase rad3 (Δ rad3) (Supplementary Fig. 
1–3); for TBZ and cisplatin, α -tubulin nda3 (nda3-KM311) (Supplementary Fig. 4, 5); and for SAHA, a type I 
histone deacetylase complex alp13 (Δ alp13) (Supplementary Fig. 6)18,28–30. In all cases, an isogenic, prototrophic 
wild-type (WT) strain was used as a negative control and also as an indicator that the drug concentrations used 
were within the physiological range and did not affect WT cell growth24.

Classification of drug hypersensitivity mutants using sensitivity scores. The growth of the various 
strains was documented during the intermediate and stationary phases (days 3 and 7 after drug treatment, respec-
tively (Supplementary Fig. 1–6)). Growth was quantified using a sensitivity score (s-score), which accounted for 
the relative fold sensitivity of a specific DXR mutant over the range of the drug concentrations tested as compared 
with that of untreated cells. Relative changes in fold sensitivity were normalized by comparing the WT strain 
on plates with drugs over those without. A negative s-score depicts drug sensitivity, whereas a positive s-score 
denotes drug resistance. An s-score of 0 was obtained when the growth of a particular strain resembled that of WT 
cells (Supplementary Fig. 7). Cells that showed less than 10-fold sensitivity at only one drug concentration were 
classified as weakly sensitive mutants (pink, Fig. 1b), whereas cells exhibiting 10-fold or greater sensitivity for all 
drug concentrations were classified as strongly sensitive (dark red, Fig. 1b); the values in between (from >  10-fold 
in one concentration up to 10-fold at all concentrations) were deemed to have a medium sensitivity (red, Fig. 1b).
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Multidrug resistance is controlled by regulators of various DNA-related processes. We noted 
that almost all DXR mutants showed hypersensitivity to the drugs tested, with very few drug-resistant phenotypes 
(Fig. 1a). In strains showing drug resistance, this resistance was only transiently observed during the intermediate 
growth stage (day 3) when the strains grew faster relative to that of WT, reminiscent of a resistance-like growth pat-
tern (Fig. 1a). However, upon further incubation, these ‘transiently resistant’ strains (Δ arp5, Δ ies6, Δ SPCC18.02, 
Δ coq6, Δ coq7, Δ cox6, Δ SPAC17H9.08, Δ php3, and Δ yox1; Fig. 1) were shown to be hypersensitive, but only 
to HU.

A previous study used genome-wide synthetic lethality screens to test HU, CPT, and MMS in fission yeast26. 
Consistent with this previous report, we observed that Δ rhp51, Δ rhp54, Δ rhp55, Δ rad32, Δ mhf1, Δ rad24, 
and Δ cdt2 showed sensitivity towards HU, MMS and CPT (Fig. 1a)26. Interestingly, these mutants also exhibited 
sensitivity towards doxorubicin, TBZ and SAHA, indicating that these genes may be involved in a fundamental 
mechanism to regulate multidrug resistance (Fig. 1b). Ontologically, these seven genes function in homologous 
recombination (HR) repair, checkpoint signaling and also nucleotide synthesis31,32, suggesting that these mecha-
nisms coordinate resistance against agents that induce chromosomal aberrations (Fig. 1b). The sensitivity towards 
HU, MMS, and CPT is consistent with the roles of these genes in the management of DNA damage. These mutants 
also exhibited strong hypersensitivity towards TBZ, a microtubule destabilizing agent that, conceptually, does 
not affect DNA integrity directly18. Although SAHA is a histone deacetylase inhibitor (HDACi), it has also been 
reported to induce DNA double-stranded breaks (DSBs) in humans22,33, and this is probably due to the role of 
HDAC in chromatin compaction to safeguard cells against unwarranted access by DNA damaging agents29.

A loss of est1—a telomerase regulator that maintains the length of telomeric DNA at the chromosomal 
ends— showed sensitivity to most of the drugs tested, again, with the exception of SAHA (Fig. 1b). This hypersen-
sitivity remained equally high on days 3 and 7, suggesting that the mutants may lose viability upon exposure to 
the drugs. This phenotype is highly reminiscent of that of DNA damage checkpoint mutants; for example Δ rad3 

Figure 1. Sensitivity score (s-score) of the doxorubicin resistance (DXR) mutants obtained at different 
durations of drug exposure. (a) Grey and black bars indicate days 3 and 7, respectively, after drug exposure. (b) 
Level of hypersensitivity. Dark red, high; red, medium; pink, low; white, not sensitive; and light blue, resistant. 
DXR genes that were disrupted in the null mutants are listed. HU: hydroxyurea, CPT: camptothecin, MMS: 
Methyl methanesulfonate, TBZ: thiabendazole, Cis: cisplatin, SAHA: suberoylanilide hydroxamic acid.
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on HU plates28,30 (Supplementary Fig. 1). Overall, these findings are consistent with the previous hypothesis34 that 
genomic instability at the telomere underlies cytotoxicity of chemotherapeutic drugs towards human cancer cells.

Overlap between gene sets regulating resistance toward multiple drugs. We next classified DXR 
genes by the number of drugs they showed sensitivity to at both the intermediate (day 3) and stationary (day 
7) growth phases. Interestingly, in the intermediate growth phase, all mutants—aside from those that showed a 
resistance-like growth to HU (Fig. 1a)—showed sensitivity toward at least one drug (day 3, Fig. 1b), suggesting 
that DXR genes are part of a centralized network that confers resistance to cytotoxic agents. Furthermore, this 
differential sensitivity pointed toward the existence of sub-divisions within the centralized network.

We surmised that the genetic overlap seen for this subset of drugs may point to a similar mode of action for the 
drugs, despite choosing drugs with apparently disparate actions. We noted that at day 7, 13 genes showed no sensi-
tivity toward all of the additional drugs tested aside from doxorubicin, whereas 26 genes remained hypersensitive to 
only one drug in addition to doxorubicin; this cohort comprised 43.3% (39/90) of the total number of DXR genes 
examined. It is possible that these genes are involved in a sub-network that responds to doxorubicin. Interestingly, 
many of the genes in this sub-cluster encode enzymes of the coenzyme Q10 synthesis pathway (coq2+, coq4+, coq6+, 
coq7+, dps1+)35, suggesting that coenzyme Q10 may play an specific role in conferring resistance to doxorubicin.

Doxorubicin resistance gene network. We next investigated connectivity among the DXR genes by assess-
ing published physical and genetic interactions using the online bioinformatics tool, String (version 9.1)36. With the 
exception of lcf1+, apl5+, apl6+, erd2+ sce3+, dph2+, npp106+, vph2+, pmd1+, mug166+, cor1+, clr5+, ppr1+, cay1+, 
atd1+ and several uncharacterized coding sequences (SPCC18.02, SPBC19G7.10c, SPAC17H9.08 and SPAC823.10c), 
most of the genes isolated in our DXR screen can be assimilated into an extensive network that conceptually 
depicts, at least in part, a centralized multidrug resistance (MDR) network (Fig. 2). These connections are func-
tionally defined and mostly depict physical interactions as curated by String36. However, they also comprise genetic 
interactions and catalysis mechanisms involved in similar biochemical pathways, particularly for ubiquinone35.

The DXR gene network consists of several sub-clusters that can be grouped according to ontological pathways: 
mitochondrial function/coenzyme Q10 biosynthesis; chromatin remodeling, particularly highlighting Ino80 
complex components; chromosomal segregation, primarily the DASH complex; membrane-associated transport; 
nucleotide metabolism; signal transducers (a small cluster); DNA damage response; transcriptional regulation; 
and protein translation (Fig. 2). We noticed that the DXR network was centrally connected by several ‘hubs’ 
encompassing the histone acetyltransferase SAGA complex and chromatin remodeling factors (but excluding the 
Ino80 complex) (Fig. 2). S-scores of Δ gcn5 at day 3 indicated that it exhibited high sensitivity towards cisplatin 
and TBZ but was weakly affected by HU and CPT, and not sensitive to MMS and SAHA (Fig. 1b). By day 7, Δ gcn5 

Figure 2. Gene network of doxorubicin resistance (DXR) genes. Linkages between the DXR genes were 
obtained using String ver. 9.1. The genes are color-coded according to their ontological/functional classification.
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cells exhibited a weak sensitivity to the drugs (Fig. 1b). These findings suggest that Δ gcn5 serves a supportive role 
that involves decondensing the chromatin to facilitate transcribed RNA-templated HR repair37 or to regulate DNA 
damage checkpoint activation38.

HR DNA repair factors also assumed a focal position, especially Rhp51 (Fig. 2). Unlike Δ gcn5, Δ rhp51 showed 
strong hypersensitivity towards all six drugs tested on both days 3 and 7 (Fig. 1b, 2b). Rhp51-like protein is required 
to repair DSBs and enforce DNA damage tolerance during S-phase of the cell cycle39; this likely explains the 
importance of HR proteins in facilitating resistance to most drugs used in this study. Mutants with compromised 
HR integrity also showed hypersensitivity to TBZ, which disrupts microtubule assembly; this hypersensitivity is 
probably based on the connection between the DNA replication checkpoint and the spindle assembly checkpoint40.

Sub-clusters of the doxorubicin gene network are also required to respond to other cytotoxic 
agents. Next, we sought to identify mutants that showed concomitant hypersensitivity to doxorubicin and one 
or more of the other tested drugs. This was achieved by determining any overlap in the drug-resistance network. 
Null mutants that were hypersensitive (red: medium-strong; pink: weak sensitivity, Fig. 3a–f) to HU (Fig. 3a), CPT 
(Fig. 3b), MMS (Fig. 3c), TBZ (Fig. 3d), cisplatin (Fig. 3e), or SAHA (Fig. 3f) were overlaid with the DXR gene 

Figure 3. Overlap in drug resistance network between the tested drugs and doxorubicin. The DXR mutants 
that remained hypersensitivity on day 7 upon exposure to (a) hydroxyurea (HU), (b) camptothecin (CPT), (c) 
methyl methanesulfonate (MMS), (d) thiabendazole (TBZ), (e) cisplatin, and (f) suberoylanilide hydroxamic 
acid (SAHA). Strains that showed sensitivity across all drug concentrations tested or only on one of the tested 
concentrations: red, high to medium sensitivity; pink, weak sensitivity.
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network to highlight a genetic overlap. We found a significant overlap of DXR nodes for HU, CPT and MMS—each 
of which disrupt DNA replication (p< 0.0001)15–17,41 (Fig. 3a-c). This overlap lends further support to the theory 
that DXR genes belong to a centralized MDR network42. We noted that cisplatin also shared considerable overlap 
with the HU/CPT/MMS cluster; albeit, with more variation (Fig. 3f).

Cooperative effect among doxorubicin, SAHA and cisplatin in fission yeast. Given the significant 
gene overlap noted among several of the drugs, we further interrogated the MDR drug response network to predict 
an efficient drug combination that may be used to sensitize human cancer cells toward doxorubicin. We first spotted 
serially diluted WT fission yeast cells on media incorporated with increasing concentrations of doxorubicin and 
sub-lethal doses of MMS (0.01%), TBZ (8 μ g/ml), HU (2 mM), CPT (8 μ M), cisplatin (1.2 mM), or SAHA (5 mM) 
as a control (Supplementary Fig. 8). Overall, WT cells were not affected by the drug treatments. We observed a 
slight growth reduction with doxorubicin, CPT and SAHA on day 3 (Supplementary Fig. 8a, day 3) but cells were 
generally unaffected, as growth on day 7 was similar between treated and untreated cells (Supplementary Fig. 8b, 
day 7). No change was observed for cells treated with HU, CPT, MMS or TBZ.

We further assessed the synergism noted for the combination of doxorubicin, SAHA and cisplatin by repeating 
the serial dilution and spotting assays using several DXR null mutants: Δ rav1, Δ rhp51, Δ vps35, Δ caf1 and Δ tim11. 
These genes encode for a vacuolar ATPase assembly factor (Δ rav1), a HR factor (Δ rhp51), a subunit of endosome 
sorting (Δ vps35), a protein of the CCR/NOT deadenylase complex (Δ caf1), and a mitochondrial ATPase complex 
protein (Δ tim11)32,43–45. In human cancers, these proteins have been linked with drug resistance and/or cancer cell 
proliferation25,46–49. We found that Δ rhp51 cells showed exceedingly high sensitivity to doxorubicin as well as to 
that of other drugs, and therefore any synergistic effect was likely masked. The Δ rav1 null mutant, in comparison, 
showed particular hypersensitivity to cisplatin, again preventing the identification of any cumulative drug effects. 
Interestingly, the remaining three mutants (Δ vps35, Δ caf1 and Δ tim11) showed prominent attenuation of a 
growth defect when the cells were treated with the triple combination of doxorubicin, cisplatin and SAHA, thus 
demonstrating a synergistic effect for the drugs and a role for these genes (Supplementary Fig. 9).

Sensitization of human cancer cells to doxorubicin by SAHA and cisplatin. Next we tested whether 
the cooperative effect of doxorubicin, cisplatin and SAHA could be recapitulated in human cancer cell models and 
thus confirm whether fission yeast serves as a suitable model for the screening of chemotherapeutic drug combi-
nations. Others have reported in the past that mutations in genes of the vacuolar sorting pathway are connected to 
gastric cancer occurrence46, so we tested our drug combination first on gastric adenocarcinoma (AGS) cells. Indeed, 
gastric cancers are treated clinically with a chemotherapeutic regime containing doxorubicin and cisplatin50.

Figure 4. Sensitization of human gastric adenocarcinoma (AGS) cells to doxorubicin via concurrent 
treatment with cisplatin and SAHA. (a) Cells were co-treated with varying concentrations of cisplatin in the 
presence of 5 μ M SAHA, or 0.1 or 1 μ M doxorubicin or with a triple combination of cisplatin, 5 μ M SAHA 
and 0.1 or 1 μ M doxorubicin. (b) Dose response effect on the viability of AGS cells was analyzed. Cells were 
treated with varying concentrations of cisplatin alone (blue), in combination with 5 μ M SAHA (red) or 0.1 μ M 
doxorubicin (green), or both 0.1 μ M doxorubicin and 5 μ M SAHA (purple).
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AGS cells were treated in single, double or triple combinations of cisplatin (0 μ M to 100 μ M), SAHA (5 μ M), 
and doxorubicin (0.1 or 1 μ M) (Fig. 4). Cisplatin alone induced a concentration-dependent cytotoxicity in AGS 
cells and showed an additive effect with doxorubicin, particularly at higher concentrations of doxorubicin (1 μ M); 
lower doxorubicin concentrations (0.1 μ M) had little to no effect (Fig. 4, beige bars). SAHA treatment alone 
reduced AGS cell viability, and this was further decreased with the addition of doxorubicin. The triple combination 
killed the cells and affected the entire dose-response curve (Fig. 4b). This synergism among the three drugs was 
particularly apparent at 25–50 μ M cisplatin, 0.1 μ M doxorubicin and 5 μ M SAHA (Fig. 4b). Thus, as with fission 
yeast cells, the three drugs worked cooperatively to kill gastric adenocarcinoma cells (Fig. 4). We also observed 
a similar cooperative effect in human cervical carcinoma (HeLa) cells (Supplementary Fig. 10a,b) but not in the 
non-cancerous embryonic kidney HEK293 cells (Supplementary Fig. 11a,b). This observation is reminiscent of the 
lack of effect of the three-drug combination on WT fission yeast cells (Supplementary Fig. 8). Taken together, our 
results show that fission yeast can be used as a surrogate model to derive effective chemotherapeutic combinations 
to target human cancer cells.

Discussion
In this report, we show that large-scale genetic synthetic lethality screening in fission yeast can be used to increase 
the reliability of predicting the synergistic effect of multiple drugs when targeting human cancer cells. This study 
provides a proof-of-concept that three drugs—doxorubicin, cisplatin and SAHA, which show a low degree of 
overlap among gene networks in fission yeast cells—can synergistically work to affect cell growth.

With the completion of sequencing for many organisms, especially that of yeast, the ability to interrogate the 
functional implications of individual genes to a phenotype has revolutionized genome-based studies25,51. Large-scale 
genetic interaction assays have made it possible to model the lives of eukaryotic organisms in order to identify the 
complicated connectivity among genes and study how this interactivity constitutes a network that determines the 
phenotype52,53; in this case, chemotherapeutic resistance. The study of genetic interactions has gained momentum, 
and the revelation of the ‘interactome’54 has shed light on how multiple components can be regulated concurrently. 
It has also (fortunately) revealed that there are rules that govern how the structure and topology of genetic networks 
operate, and studies show that genes within the network often form a relatively restricted set of positive and negative 
interactions12. Cross-species studies have also identified conservation of a fundamental network that is universal 
in higher eukaryotes, including humans, and it has been determined that this network shares, unexpectedly, great 
overlap with that of single cellular eukaryotes, such as yeast25,55. Given that toxin responses are fundamental to 
all cells, it is likely that this forms the basis for the conserved mechanism of drug resistance observed between 
fission yeast and human cells. Thus, it is plausible to take advantage of the commonality amongst eukaryotic cells 
to understand the molecular mechanism of resistance to chemotherapeutic agents.

The results presented here support our expectation that large-scale synthetic lethality network elucidation in 
unicellular eukaryotes (such as fission yeast) would be a suitable model with which to predict a pharmacological 
regimen for sensitizing human cancer cells to chemotherapeutic agents. Gene knockout screening in human cell 
models is typically costly and time consuming. By comparison, our synthetic lethality workflow with fission yeast 
demonstrates the power and possibility to improve chemotherapeutic combinatorial therapeutics. The positive 
outcomes arising from this study suggest that lower eukaryotic systems, such as the fission yeast, will offer a cheaper 
and faster alternative to screen for drug combinations that are more likely to offer a better therapy. Fission yeast is 
also highly amendable to genetic manipulation, and thus useful for scaling up assay sizes to test many drugs and 
genes simultaneously.

In this work, we employed a serial dilution spotting assay, a commonly used method, which can be varied by 
streaking log-phase cells or by measuring changes in cell density23,30,56–58. Unlike previous studies, we have uniquely 
incorporated a computation of dose response, which, in our view, increases the accuracy of the assay. Furthermore, 
studying dose-response changes also helps to emphasize the pharmacological behavior of each compound over a 
range concentrations. However, the accuracy of cell growth can be further improved and incorporated into future 
experiments, such as the use of flow cytometric measurements of fluorescently labeled strains59 and the measure-
ment of yeast colony sizes in conjunction with image-analysis software60.

One paradigm highlighted in this work is that cells possess a centralized, responsive network to counter-
act cytotoxic agents; this finding is consistent with a large-scale chemogenomic fitness screen in budding yeast, 
which uncovered a 45-gene cluster that coordinated the response of cells to small pharmacological molecules42. 
Mutants of the DXR genes showed differential sensitivity towards multiple DNA damaging agents, indicating 
an unequal contribution of each DXR gene toward this hypothesized centralized multidrug resistance (MDR) 
network; this unequal contribution may be partially explained by the differences in connectivity among partners 
in the network61,62 or specificity for the central target of the drugs, such as that demonstrated for topoisomerase 
II in response to doxorubicin63.

The clustering of drug hypersensitivity exhibited by the DXR genes suggests a hierarchical architecture in which 
smaller networks are integrated into progressively more extensive networks that are directed against an increasingly 
larger number of drugs. This model depicts that a targeted destabilization of widely separated sub-networks would 
result in stronger synergistic effects as compared to a disruption of closely related ones. Hence, a drug combination 
that can destabilize a more widely separated nexus within the MDR network would be expected to triumph as an 
effective combination. An understanding of the unique network architecture specific for cancer cells would help 
shed light on how drug resistance is coordinated in cancer cells, and this knowledge would facilitate the targeted 
killing of cancer cells over that of normal cells.

We recently showed that two DXR mutants, Δ mcl1 and Δ mhf1, disrupt chromatin integrity at the fission yeast 
centromere, and that this activity could be suppressed by a point mutation in topoisomerase II (Top2) (top2-191)63. 
The Δ mcl1 mutant showed sensitivity to four of the six (not MMS and SAHA) drugs tested, whereas Δ mhf2 was 
sensitive to all but SAHA (Fig. 1b). This hypersensitivity toward multiple cytotoxic agents suggests that disruption 
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to centromeric integrity may be a more widespread mechanism underlying susceptibility to cytotoxic chemother-
apeutic agents besides doxorubicin. The disruption of centromeric integrity may also underlie the rampant hyper-
sensitivity of mutants in DASH complex components to a DNA damaging agent that does not directly undermine 
microtubule stability64 (Figs 1b, 3).

Pmd1 is the fission yeast homolog of the human ATP-binding cassette (ABC) transporter permeability glycopro-
tein (P-gp/MDR1/ABCB1)25 and we have previously shown that Pmd1 acts synergistically with the vacuolar-ATPase 
pathway to govern doxorubicin hypersensitivity in human cervical carcinoma cells, probably via modulation of 
the intracellular accumulation of doxorubicin25. In humans, P-gp has been implicated in resistance against mul-
tiple drugs4 and it is surprising that Δ pmd1 was among the mutants that showed only limited sensitivity towards 
the drugs tested25. This limited sensitivity may be due to peculiar substrate specificities or functional differences 
between the fission yeast Pmd1 and human P-gp. However, it is also possible that P-gp in human cells does not work 
alone but in conjunction with other membrane-associated transporters, resembling the functional cooperation 
between Pmd1/P-gp and V-ATPase in counteracting doxorubicin cytotoxicity25. In this context, it is possible that 
a network of different transporters may be involved in controlling drug resistance by regulating the levels of drug 
accumulation, which may be further modulated by the metabolism of these drugs within the cells.

A potential complication in using a cell-based assay to test drug cooperativity is the difference in bioavailability 
of the drugs due to the differences in transporter profiles among different cell types, which has been reported with 
different human cells and between in vitro cell culture models and in vivo animal models65,66. The results from 
cell-based models must therefore be interpreted with caution. Based on a similar extrapolation, the transporter 
expression profiles would also be different between the yeast systems and human cells. Hence additional exper-
iments using whole animal testing and/or xenografts would be needed to validate the results from cell-based 
models. In this aspect, despite the perceived difference between yeast and human cultured cells, our previous 
results still suggest the value of the yeast system in elucidating plausible, cooperatively acting drug combinations25. 
Furthermore, screening yeast cells offers advantages of speed and cost efficiency over that in human cells, and 
provides the opportunity to target fewer drugs in a more specific manner. 

Doxorubicin is widely employed in chemotherapeutic drug combinations along with cisplatin, for example, 
in the cells of urothelial cancers or with cisplatin, vinblastine and methotrexate in gastric cancer51,65. Here, we 
discovered the HDACi SAHA as a new partnering drug for the doxorubicin–cisplatin combination in gastric 
adenocarcinoma and cervical carcinoma cells. There is a recent resurgence in the utility of HDACis for drug 
sensitization. Initial studies emphasized the use of HDACis in the pretreatment of cancer cells to increase the 
cytotoxicity of the drugs, presumably by decondensing the chromatin for improved accessibility of other cytotoxic 
DNA-adduct-causing drugs66,67. However, here we show that SAHA exerts a similar effect to elicit an increase in 
the cytotoxicity of doxorubicin and further accentuates the effect of cisplatin. The cooperative effect of the three 
drugs was applied at a level where each separately did not show much effect (Fig. 4).

While we were preparing this manuscript, a phase I/II clinical trial was reported, demonstrating that the 
addition of belinostat, a HDACi, can improve a drug regimen containing cisplatin and doxorubicin (also with 
cyclophosphamide) in thymic epithelial tumors68. This report increases our confidence that drug combinations 
that target resistance can be determined from yeast synthetic lethal network analyses and provides evidence for 
the utility of SAHA in the triple combination. Future large-scale profiling of drugs and genetic interactions are 
expected to revolutionize the application of drug combination chemotherapy.

In conclusion, our work provides a novel approach for determining potential chemotherapeutic drug combi-
nations for the sensitization of human cancer cells. Interfacing yeast synthetic lethality and human studies may 
provide a cheap and more targeted workflow with which to address drug resistance.

Methods
Drugs. Methyl methanesulfonate (MMS) and thiabendazole (TBZ) were purchased from Sigma-Aldrich (St 
Louis, MO). Camptothecin (CPT), hydroxyurea (HU), doxorubicin and cisplatin were from Wako Pure Chemical 
Industries Ltd (Osaka, Japan). Vorinostat/suberoylanilide hydroxamic acid (SAHA) was synthesized in-house 
(see Supplementary Materials)69. Doxorubicin was dissolved in water, SAHA (refer supplementary procedure) in 
DMSO, and cisplatin (Wako, Pure Chemical Industries, Ltd, Osaka, Japan) in 10% NaCl. All drugs were further 
diluted with their respective solvents prior to use according to manufacturers’ recommendations.

Fission yeast techniques. A standard procedure for the treatment of fission yeast was followed70. Fission 
yeast strains were serially diluted and then spotted onto drug plates, as previously reported24,25. Cell growth was 
analyzed at two time points, at days 3 and 7, after spotting on the agar media. We chose these two time points in 
order to better estimate the effects of the drugs on cell growth as compared with cell viability. Specifically, during 
the growing phase and before maximum growth is attained (on day 3), cells will exhibit growth retardation if both 
their growth and viability are affected. However, by day 7 and when the strains have reached maximum growth, only 
cells that have lost viability in response to the drug will exhibit growth defects. Cells that show reduced growth but 
no loss in viability will show growth that is near or equivalent to that of WT cells. All DXR strains were obtained in 
a previous screen that tested for the hypersensitivity of fission yeast single-gene knockout strains from commercial 
libraries (versions 1.0 and 2.0) (Bioneer, Daejeon, Korea) and subsequently converted into the prototrophic genetic 
background by backcrossing with prototrophic WT strains.

Calculation of sensitivity score (s-score). The step-wise derivation of the s-score is described in 
Supplementary Fig. 7. Growth fitness of the strains was obtained by comparing the growth of strains on drug-treated 
plates relative to that on non-drug-treated plates. The fitness values obtained for mutants were normalized against 
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that of the WT cells before a logarithmic transformation was performed. The s-score was obtained from the mean 
of the sum of the relative fitness measurement resultant values obtained.

Interaction network construction tool. The online network construction tool, String version 9.136, was 
employed to discover interaction links among the previously identified DXR genes.

Human cell culture and drug treatment. Human gastric adenocarcinoma (AGS) cells (ATCC, Manassas, 
VA) were grown in RPMI media (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) (Life 
Technologies), whereas human cervical carcinoma (HeLa) (ATCC) and human embryonic kidney cells (HEK293) 
(ATCC) were maintained in EMEM media (Sigma-Aldrich) supplemented with 10% FBS. Drug concentrations 
were determined by dose-response assay, where cells were seeded into 96-well culture plates and treated in tripli-
cate with various drug concentrations of doxorubicin: (0, 0.001, 0.01, 0.1, 1, 5, 10, 25, 100 μ M) and SAHA (0, 0.39, 
0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 μ M). The doxorubicin and SAHA concentrations that elicited approximately 30% 
cell death were selected for cytotoxicity tests, in which the cells were then exposed to varying concentrations of 
cisplatin (0, 1.65, 3.125, 6.25, 12.5, 25, 50, 100 μ M; Fig. 4). Cell viability was determined with cck-8 assay, according 
to the manufacturer’s protocol (Dojindo, Kumamoto, Japan). Triplicates of each treatment were performed over 
five separate sets of experiments.

Statistical analyses. Dose-response curves of the following treatments were plotted with standard devia-
tions: varying cisplatin only; 5 μ M SAHA with varying cisplatin; 5 μ M doxorubicin with varying cisplatin; and the 
triple treatment of 5 μ M SAHA with 5 μ M doxorubicin in varying cisplatin. Cell viability at each concentration of 
cisplatin was compared against the 0 μ M cisplatin for the respective treatment group. The statistical significance of 
the synergistic effects was examined with a two-tailed Student’s t-test and performed using Microsoft Excel (2007). 
A simulation was performed to ascertain similarity between CPT, HU and MMS, as previously reported41. For 
each pair of drugs x and y, two sets (Sx and Sy) each of 10,000 random profiles were generated. The significance of 
the similarity s(x, y) between x and y was assessed by the comparison of s(x, y) with the correlation between two 
random profiles taken respectively from Sx and Sy.
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