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Barley is a grain rich in β-glucan, a soluble dietary fiber, and its consumption can help

maintain good health and reduce the risk of metabolic disorders, such as dyslipidemia.

However, the effect of barley intake on the risk of dyslipidemia has been found to vary

among individuals. Differences in gut bacteria among individuals may be a determining

factor since dietary fiber is metabolized by gut bacteria and then converted into

short-chain fatty acids with physiological functions that reduce the risk of dyslipidemia.

This study examined whether gut bacteria explained individual differences in the effects

of barley intake on dyslipidemia using data from a cross-sectional study. In this study,

participants with high barley intake and no dyslipidemia were labeled as “responders”

to the reduced risk of dyslipidemia based on their barley intake and their gut bacteria.

The results of the 16S rRNA gene sequencing showed that the fecal samples of

responders (n = 22) were richer in Bifidobacterium, Faecalibacterium, Ruminococcus

1, Subdoligranulum, Ruminococcaceae UCG-013, and Lachnospira than those of

non-responders (n = 43), who had high barley intake but symptoms of dyslipidemia.

These results indicate the presence of certain gut bacteria that define barley responders.

Therefore, we attempted to generate a gut bacteria-based responder classificationmodel

through machine learning using random forest. The area under the curve value of the

classification model in estimating the effect of barley on the occurrence of dyslipidemia

in the host was 0.792 and the Matthews correlation coefficient was 0.56. Our findings

connect gut bacteria to individual differences in the effects of barley on lipid metabolism,

which could assist in developing personalized dietary strategies.

Keywords: barley, dyslipidemia, gut bacteria, responder, machine learning

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.812469
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.812469&domain=pdf&date_stamp=2022-03-24
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matsuoka.tsubasa@hakubaku.co.jp
https://doi.org/10.3389/fnut.2022.812469
https://www.frontiersin.org/articles/10.3389/fnut.2022.812469/full


Maruyama et al. Gut Bacteria-Based Dyslipidemia Occurrence Classification

INTRODUCTION

Dyslipidemia, a disorder in lipid metabolism characterized by
high levels of LDL-cholesterol and/or triglycerides and low
HDL-cholesterol levels, is a well-established risk factor for
cardiovascular disease (1, 2). According to the World Health
Organization, one-third of ischemic heart diseases worldwide is
attributable to high cholesterol, with elevated cholesterol being
estimated to cause 2.6 million deaths (4.5% overall) and 29.7
million disability-adjusted life years (3). In Japan, the government
estimated 2,205,000 dyslipidemia patients (4), representing a
public health problem.

The causes of dyslipidemia include genetics (5) and dietary

habits, such as excessive dietary lipid intake (6). In addition

to dietary interventions limiting fat and carbohydrates intake,

other ways of treating dyslipidemia may benefit from the food

ingested. The active intake of resistant starch and dietary fiber
has been proposed as an example diet that effectively improves
dyslipidemia (7). A double-blind, randomized crossover trial
reported that corn-resistant starch improved lipid metabolism
by increasing insulin sensitivity in obese men (8). In addition,
several meta-analyses have shown that barley β-glucan reduced
serum LDL-cholesterol (9, 10). However, individual differences
in the effects of foods on host energy sensitivity have been
identified, which has not been resolved for functional foods
(11, 12). One reason for these individual differences is thought
to be due to differences in the composition of gut bacteria among
humans (13).

In addition to the physical properties of the dietary fiber we
consume, such as inhibiting lipid and carbohydrate absorption,
there are physiological effects of the metabolites converted
by gut bacteria (14). These metabolites are short-chain fatty
acids (SCFAs), such as acetate, propionate, and butyrate (15),
which are highly bioactive and exhibit physiological functions,
such as improving lipid metabolism, insulin sensitivity, and
oxidative stress (16, 17). Since different gut microbiomes cause
differences in the production of metabolites, including SCFAs,
the function of foods might depend on an individual’s gut
microbiome composition. For example, the soluble fiber β-glucan
in barley is a crucial nutrient source for gut bacteria (18, 19);
therefore, differences in the gut microbiome composition can
lead to differences in the health effects of β-glucan. Kovatcheva-
Datchary et al. (20) observed that the effects of barley on
postprandial blood glucose levels for some subjects (responders)
improved glucose metabolism after barley intake, while for others
(non-responders), it did not. Moreover, they mentioned that
responders had a higher ratio of Prevotella/Bacteroides (i.e.,
the two dominant gut bacteria) than non-responders. Since
Prevotella has been reported to promote glycogen storage in the
liver and improve host glucose metabolism, it has been suggested
that Prevotella is involved in improving glucose metabolism by
barley in the gut (20).

Individual differences in barley’s effects on the occurrence of
dyslipidemia may result from these differences in gut bacteria.
However, differences in gut bacteria by race and place of
residence are known to exist (21), and there have been no
detailed studies on the Japanese population. Identifying the gut

bacteria specific to barley in dyslipidemia could improve the
field’s understanding of the relationship between barley and lipid
metabolism as well as the mechanisms of this association. This
would allow for the predictions of individual differences in the
effects of barley, such as barley responder determination based
on gut bacteria. Further, understanding these differences could
provide insights for developing individualized dietary programs
for disease prevention in healthy populations. Therefore, this
study aimed to determine whether gut bacteria could explain
individual differences in the effect of barley on the occurrence
of dyslipidemia.

The data from a cross-sectional study of Japanese adults
(N = 130) were analyzed; participants were divided into two
groups by barley intake—“responders” without dyslipidemia
and “non-responders” with dyslipidemia. We compared the gut
bacteria in both groups and examined whether these bacteria
explained the effects of barley by identifying the gut bacterial
characteristics of responders. Finally, we generated a barley
responder classification model based on gut bacteria using
machine learning to predict barley responders.

MATERIALS AND METHODS

Study Design and Participants
The current study used the first year of data of the participants
over age 40 who were enrolled in a larger project, “The cohort
study on barley and intestinal environment (UMIN000033479).”
The objective of the overall study, UMIN000033479, was to
assess the associations between the health impact of barley and
gut bacteria. The study was conducted in accordance with the
principles of the Declaration of Helsinki. The sampling occurred
from August 2018 to March 2019. The current analyses in
this study examined the gut bacterial characteristics of barley
responders with dyslipidemia.

In the original study, 272 participants provided informed
consent, and 236 participants had complete data. In the current
analyses, we excluded 106 participants under age 40 years from
the final analyses because they had a lower risk of dyslipidemia.
The remaining 130 participants were classified into either a
“high barley or “low barley” group based on their median barley
consumption rate (g/1,000 kcal). The high barley group was
the primary analytic group for this study. Figure 1 shows the
flowchart of the sample in this study.

Measures
We assessed the daily total energy (kcal/day) of participants using
a brief self-administered diet history questionnaire (BDHQ,
Gender Medical Research, Inc., Tokyo, Japan). Daily barley
intake (g/day) was calculated using a questionnaire. Specifically,
we asked about the size of the rice bowl (large-size 200 g, middle-
size 160 g, small-size 140 g, child-size 100 g), the proportion
of barley to white rice in the bowl (none, 5, 10, 15, 30,
50%), number of bowls per day (number), and frequency
of consumption per month (none, 0.5, 1, 4, 8, 16, or more
days/month). Then, we calculated the daily barley consumption
rate (g/1,000 kcal) for each participant using their daily
total energy and barley intake. We asked the participants
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FIGURE 1 | Flow chart of the recruitment and selection of participants.

to submit a copy of their health examination reports to
study their basic information, such as body weight and blood
test. Moreover, details including sex, age, history of diseases,
medications, smoking habits, daily activity, evacuation condition,
and fermented food and supplement consumption habits were
collected using the questionnaire.

DNA Extraction and 16S rRNA Gene
Amplicon Sequencing
Fecal samples were collected in containers of guanidine
thiocyanate (GuSCN) solution at home. DNA was extracted
from fecal samples and stored at room temperature for up to
30 days following previously described methods (21). Briefly,
0.2mL of fecal sample in GuSCN solution was mixed with 0.3mL
of lysis buffer (No. 10, Kurabo Industries Ltd., Osaka, Japan)
and 0.5 g of 0.1mm glass beads (WakenBtech Co., Ltd., Tokyo,
Japan). It was homogenized using a Cell Destroyer PS1000 (Bio
Medical Science, Tokyo, Japan) at 4,260 rpm for 50 sec at room
temperature. The homogenized sample was centrifuged at 13,000

× g for 5min at room temperature, and DNA was extracted
from the supernatant using a Gene Prep Star PI-80X device
(Kurabo Industries Ltd). The concentration of the extracted
DNA was determined using a NanoDrop Spectrophotometer
ND-1000 (Thermo Fisher Scientific Inc., DE, USA). The samples
were stored at −30◦C until use. 16S rRNA gene amplification
and sequencing were performed following previously published
procedures (22). Barcoded amplicons were generated from the
V3–V4 region of the 16S rRNA gene from the fecal DNA samples
using the following primers: forward: 5-TCGTCGGCAGC
GTCAGATGTGTATAAGCGACAGCCTACGGGNGGCWGC
AG-3; reverse, 5-GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGGACTACHVGGGTATCTAATCC-3′. The Nextera
XT Index Kit v2 Set A (Illumina Inc., CA, USA) was used to
prepare the DNA library for Illumina MiSeq. The concentration
of the DNA library was determined using the QuantiFluor
dsDNA System (Promega, Co., MI, USA), and 16S rRNA gene
sequencing was performed using Illumina MiSeq (Illumina) in
accordance with the manufacturer’s instructions.
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Bioinformatics Analysis
The Quantitative Insights Into Microbial Ecology (QIIME)
software package (version 1.9.1) (23) was used to analyze the
sequence reads from the Illumina MiSeq. The steps from the
trimming of paired-end reads to an operational taxonomic unit
(OTU) picking were performed automatically using QIIME
Analysis Automating Script (Auto-q) (24). OTU picking was
performed based on sequence similarity (>97%) using open-
reference OTU picking with UCLUST software against the SILVA
v128 reference sequence. The taxonomy (phylum, class, order,
family, genus) and relative abundance were calculated using the
SILVA v128 database (25, 26). We created a rarefaction curve
(Supplementary Figure 1) by using vegan R-package (version
2.5-7) to confirm the relationship between the number of
sequence reads and the measured OTUs. Based on this curve, we
randomly selected 10,000 reads per sample for statistical analysis;
this read depth was enough to observe true species richness.

Selection of Responders and
Non-responders
We stratified the patients into the dyslipidemia group (including
mild abnormality) and the non-dyslipidemia group based on
blood lipids from health examinations and medication status. All
data were up-to-date, reported within 1 year, and there were no
participants with missing data. Participants were categorized as
being in the dyslipidemia group if they had at least one of the
following: (1) triglycerides of 150 mg/dL or higher, (2) HDL-
cholesterol of <40 mg/dL, (3) LDL-cholesterol of 120 mg/dL
or higher, or (4) taking lipid metabolism-related medication.
Those who did not fit any of the criteria were assigned to the
non-dyslipidemia group.

From the high barley group, we identified the group of
responders (n = 22) who were in the non-dyslipidemia group.
The remaining participants in the high barley group were
categorized as non-responders (n = 43). In brief, barley
responders were defined as participants in the high barley group
without problems related to lipid metabolism, while barley non-
responders were participants who had lipidmetabolism problems
despite being in the high barley group.

Data Analysis
All data analyses were conducted in R version 3.6.0 (27).

Statistical Analyses
α-diversity (within-subject species diversity) indices of Chao
1, Shannon, and Simpson were calculated using the estimated
richness function of the phyloseq R-package (version 1.30.0).
We performed Student’s independent t-tests on age, body
mass index, blood pressure, fasting blood glucose, hemoglobin
A1c, triglyceride, LDL-cholesterol, and HDL-cholesterol between
responders and non-responders. We performed the Mann–
Whitney U test to determine differences in α-diversity and
the abundance of gut bacteria. As a sensitivity analysis,
we additionally performed the analysis of composition of
microbiomes (ANCOM) by using nlme R-package (version 3.1-
155) and compositions R-package (version 2.1.3). We set α =.05
at 70% of the comparisons in ANCOM, with the W statistics

corresponding to the number of times the abundance of the gut
bacteria differed significantly among the subject groups (28). The
compared gut bacteria were based on the 64 families and top 50
genera that were sorted bymean relative abundance in all subjects
over 40 years old. All p-values derived from the difference in α-
diversity, medical check-up, and microbiota were corrected for
multiple testing by the method of false discovery rate (FDR) and
then called q-values. In this study, the gut bacteria with p < 0.05
were considered significant.

Principal Coordinate Analysis of Microbiomes at the

Genus Level
We summarized the composition of the gut microbiome by
principal coordinate analysis (PCoA) using the vegdist function
of the vegan R-package (version 2.5-7), the quasieuclid function,
and the dudi.pco function of the ade4 R-package (version 1.7-
16) to generate figures. Data were calculated using the Bray-
Curtis distance.

Random Forest Machine Learning
This study used supervised classification learning of random
forest models to predict dyslipidemia as responders or non-
responders. Sixty-five participants in the high barley group were
used as the dataset. Forty-seven (70%) were randomly selected
as the training set to train the model, with the remaining being
used to evaluate the model’s performance. The bacteria of the
top 50 genera were used as the variables. The classification model
was generated using the RandomForest R-package (version 6.6-
14) and the caret R-package (version 6.0-86). We also generated
a baseline model by the RandomForest R-package using default
values for all parameters. Next, repeated cross-validation was
performed to address the small sample size and improve the
evaluation of the model. The number of folds was 13, and the
number of repetitions was 10. For hyperparameters, the ntree was
set to 500, and mtry was tuned using the caret R-package. The
other parameters used default values. The importance of each
variable was calculated using the varImp function of the caret
R-package. The model was evaluated using a receiver operating
characteristic (ROC) curve (ROCR R-package, version 1.0-11).
To measure the relative performance, we calculated the area
under the ROC curve (AUC) and the Matthews correlation
coefficient (MCC) (29).

RESULTS

Participant Characteristics
The participants’ mean age was 51 years (SD = 6), with a range
of 40–65 years. Of the total participants, 104 (80%) were males,
and the remaining 26 (20%) were females. The median barley
intake of the 130 participants was 3.68 (interquartile range:
1.17, 8.49) (g/1,000 kcal), and participants were stratified into a
high barley group (n = 65) and a low barley group (n = 65)
based on this value (Figure 1). Participants meeting at least one
criterion were defined as non-responders who had dyslipidemia,
and the remaining non-dyslipidemia subjects were defined as
responders. Twenty-two were responders, and 43 were non-
responders (Figure 1 and Table 1). No significant differences in

Frontiers in Nutrition | www.frontiersin.org 4 March 2022 | Volume 9 | Article 812469

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Maruyama et al. Gut Bacteria-Based Dyslipidemia Occurrence Classification

TABLE 1 | Characteristics of the study participants of each group.

Overall (N = 130) Responders (n = 22) Non-responders (n = 43)

mean (SD) or n (%) mean (SD) or n (%) mean (SD) or n (%) p-valuea

Male (n, %) 104 (80%) 15 (68%) 37 (86%) 0.17b

Age (years) 51 (6) 48 (6) 51 (7) 0.07

Weight (kg) 67.1 (12.3) 59.8 (11.2) 72.3 (10.7) <0.001

BMI (kg/m2 ) 23.4 (3.7) 21.1 (3.0) 25.0 (3.1) <0.001

Systolic blood pressure (mmHg) 122 (16) 116 (17) 127 (17) 0.03

Diastolic blood pressure (mmHg) 79 (12) 74 (13) 84 (11) 0.003

Fasting blood glucose (mg/dL) 95 (12) 88 (7) 97 (15) 0.002

Hemoglobin A1c (%) 5.6 (0.4) 5.4 (0.2) 5.6 (0.4) 0.014

Triglyceride (mg/dL) 125 (86) 61 (24) 159 (89) <0.001

HDL-cholesterol (mg/dL) 60 (16) 71 (15) 54 (16) <0.001

LDL-cholesterol (mg/dL) 123 (29) 95 (12) 136 (25) <0.001

BMI, body mass index; SD, standard deviation.
aCompared responders and non-responders using Student’s independent t-tests except for sex.
bCompared responders and non-responders using Pearson’s chi-squared test.

TABLE 2 | α-diversity of each group.

Overall (N = 130) Responders (n = 22) Non-responders (n = 43)

Median (interquartile range) Median (interquartile range) Median (interquartile range) p-valuea

Chao1 1,077 (887, 1,263) 1,237 (968, 1404) 951 (824, 1,107) 0.009

Shannon 3.69 (3.35, 3.96) 3.81 (3.58, 3.94) 3.48 (3.23, 3.80) 0.07

Simpson 0.94 (0.90, 0.95) 0.94 (0.90, 0.95) 0.92 (0.90, 0.95) 0.20

aCompared responders and non-responders using Mann–Whitney U-test.

age and sex were found between the two groups. In terms of
health indicators, systolic blood pressure [116 (17), 127 (17),
p = 0.026] and diastolic blood pressure [74 (13), 84 (11), p
= 0.004] were lower in responders, while the mean values for
non-responders were categorized as borderline, although they
were not medically hypertensive. Fasting blood glucose [88 (7),
97 (15), p = 0.002] and hemoglobin A1c levels [5.4 (0.2), 5.6
(0.4), p = 0.014] were also lower in responders than in non-
responders; however, the non-responders mean values did not
meet the diagnostic threshold for diabetes nor were they in
the borderline category. Thus, non-responders had no major
abnormalities other than dyslipidemia, but responders generally
had a good health status, including low blood pressure and blood
glucose levels along with normal lipid metabolism markers.

Gut Bacteria Specific to Barley Responders
We compared gut bacteria between responders and non-
responders to examine the involvement of gut bacteria in
the risk of dyslipidemia due to barley intake. First, we
compared α-diversity, which was significantly higher in Chao1
and tended to be higher in Shannon for responders than
for non-responders, indicating that responders had a higher
diversity of gut microbiome (Table 2). Next, we compared the
distribution of the gut microbiome of all participants by PCoA
and found a significant difference between responders and
non-responders in PCoA2 (p = 0.009; Figure 2). In PCoA2,

significant differences between the responders and low barley
groups were observed (p = 0.001), but there was no difference
between the non-responders and low barley groups (p = 0.90;
Figure 2), indicating that the gut microbiome of responders
was specific.

Next, we compared the gut bacterial composition of
responders and non-responders. At the family level,
Bifidobacteriaceae [7.96 (5.06, 11.41), 3.58 (1.02, 5.77), p =

0.02] and Ruminococcaceae [6.73 (3.86, 11.23), 2.19 (0.56,
6.61), p = 0.007] were significantly higher in responders
than in non-responders (Mann-Whitney U-test, Figure 3A).
These two families were also significantly high using ANCOM
(Supplementary Figure 2A). At the genus level, relative
abundance comparison among the top 50 genera revealed
the most minor bacteria had an average relative abundance
of 0.213%. Results of comparison using the Mann–Whitney
U-test revealed that Bifidobacterium [7.96 (5.06, 11.41),
3.58 (1.02, 5.77), p = 0.02], Faecalibacterium [6.73 (3.86,
11.23), 2.19 (0.56, 6.61), p = 0.02], Eubacterium hallii group
Conversely, further analysis using ANCOM showed that only
Bifidobacterium was significantly different at the genus level.
However, the gut bacteria with non-significant but high W
statistics were generally reproducible in analysis using the
Mann-Whitney U-test (Supplementary Figure 2B). Thus,
responders were a specific population in terms of gut bacterial
composition, suggesting that the physiological effects of these
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FIGURE 2 | Comparison of the gut microbiome composition. PCoA of gut microbiome based on 266 genera abundance.

gut bacteria might be related to lipid metabolism in the host.
Among the gut bacteria that changed in both high and low
barley groups, Bifidobacterium and Subdoligranulum were
significantly more abundant in the non-dyslipidemia than
in the dyslipidemia groups, even in the low barley group
(Supplementary Table 1). This suggests that these two genera
may contribute to the reduction of dyslipidemia, regardless
of barley intake. Therefore, the six genera characterized only
in the high barley group (i.e., Faecalibacterium, Eubacterium
hallii_group, Ruminococcus 1, Ruminococcaceae UCG-013,
Lachnospira, and Dorea) may be involved in the interaction with
barley to improve dyslipidemia.

Gut Bacteria-Based Classification of
Barley Responder
Since a marked difference in the relative abundance of gut
bacteria in the top 50 genera between responders and non-
responders was observed, we attempted to predict responders
using a random forest model with these 50 genera. We accurately
determined the AUC of the classification model using repeated
cross-validation. As a result, we created a responder classification
model with an AUC of 0.792 for the test set (Figure 4A). The
optimal cutoff value for this model was 0.324, with a sensitivity
of 1.0 and a specificity of 0.583, resulting in MCC of 0.56. The
AUC of the training set was 1.0. The baseline model created
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FIGURE 3 | Comparison of the gut microbiome composition. (A) Relative abundance (%) of the two families specific to responders. (B) Relative abundance (%) of the

eight genera specific to responders.

FIGURE 4 | The random forest classification model generated based on 50 genera in the training data set. (A) The receiver operating characteristic (ROC) curves and

area under curve (AUC) of the microbiome for discrimination between responders and non-responders. (B) The top 20 explanatory variables that are important for the

classification model.

as a reference had MCC of 0.13. Thus, setting the appropriate
parameters and performing repeated cross-validation could
improve the resolution of the model. This model suggests that
gut bacterial composition could be involved as a determinant
of host responsiveness to dyslipidemia. The top 20 gut bacteria
that were essential explanatory variables for this classification

model included Dorea, Bifidobacterium, and Faecalibacterium
(Figure 4B). The relative abundance of these bacteria differed
between responders and non-responders (Figure 3); therefore,
this model reflects the taxonomic characteristics of responders
and may facilitate future clinical interventions to manage
lipid metabolism.
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DISCUSSION

This study included a relatively large sample size from a
population with a high barley intake. In addition, we created a
more versatile classification model using the top 50 genera in
relative abundance as the explanatory variables. We also used
repeated cross-validation when developing the model, which
increases its classification ability. We used these methods to test
whether gut bacteria contributed to individual differences in lipid
metabolic responses to barley intake in a sample of Japanese
adults over age 40. To the best of our knowledge, this is the first
study linking individual differences in the effects of barley on
lipid metabolism to gut bacteria. While barley intake improves
lipid metabolism, its effects are not always consistent (30). In this
study, participants with high barley intake did not necessarily
have low levels of dyslipidemia. Our analytic strategy allowed us
to identify the gut bacteria that define reactivity. Furthermore,
we constructed a model to predict the reactors based on gut
bacteria, which showed that the health-promoting effect of barley
on dyslipidemia could be stratified according to gut bacteria.

We compared the relative abundance of 50 genera by the

Mann-Whitney U-test and found that responders were enriched

in Bifidobacterium, Faecalibacterium, Eubacterium hallii group,

Ruminococcus 1, Subdoligranulum, Ruminococcaceae UCG-013,
and Lachnospira and deficient in Dorea compared to non-
responders. Therefore, these eight genera are characteristic gut
bacteria of barley responders with dyslipidemia. Besides, in
the sensitivity analysis using ANCOM, Bifidobacterium was
also significantly abundant in responders, and the other gut
bacteria characteristic of responders also generally had high
W statistics; these further results increase the robustness of
our results. In addition, the enrichment of Bifidobacterium
and Subdoligranulum observed in the non-dyslipidemia group
compared to the dyslipidemia group of the low barley group,
as shown by the Mann-Whitney U-test, could be a marker
for distinguishing between healthy and unhealthy individuals,
regardless of barley intake. Bifidobacterium is well known to
utilize various carbohydrates (31, 32). Previous studies have
shown that barley β-glucan (33) and polysaccharides, such as
galacto-oligosaccharides (34), arabino-oligosaccharides (35), and
inulin (36) can be widely utilized as energy sources, with acetic
acid as the primary metabolite. Several studies with humans
and animals investigating the effects of prebiotics reported that
Bifidobacterium and acetic acid increased in the feces or cecum as
a result of prebiotics (37, 38). Therefore, it seems reasonable that
the gut without dyslipidemia was enriched in Bifidobacterium,
regardless of barley intake in this study. Although the energy
source and mechanism of Subdoligranulum and its involvement
in dyslipidemia are unclear, it is known to produce butyrate,
which improves lipid metabolism (39, 40). A clinical study in
Taiwan and China has reported that Subdoligranulum is depleted
in patients with inflammatory bowel disease, suggesting that it
may be a helpful bacteria (41, 42).

The other six genera differed only in the high barley
group, suggesting their involvement in the barley-dependent
improvement of dyslipidemia. One mechanism by which fiber-
rich foods, such as barley, improves lipid metabolism is through

SCFAs produced via gut bacterial metabolism. SCFAs have been
shown to affect host energy metabolism by activating various G-
protein coupled receptors (43). For example, in mouse studies,
SCFAs were found to activate G-protein coupled receptor 43
(GPR43) (44). GPR43 is expressed in adipose, intestinal, and
immune tissues and promotes the secretion of leptin, which
breaks down fat and inhibits lipid uptake by adipose tissue (43).
These findings suggest that gut bacteria fermentation influences
host lipid metabolism via “energy harvesting,” the synthesis of
SCFAs from barley. Consistent with these findings, the five genera
that increased in the responders of this study are known to
produce SCFAs. For example, Faecalibacterium, Ruminococcus 1,
and Ruminococcaceae UCG-013 belong to the Ruminococcaceae
family, and many bacteria in this family are known to be general
butyrate-producing bacteria (45–47). Although details of the
metabolic pathways of Ruminococcus 1 and Ruminococcaceae
UCG-013 have not been reported, Faecalibacterium prausnitzii,
the only species belonging to Faecalibacterium, has been reported
to have the ability to ferment complex carbohydrates (48, 49).
In addition, F. prausnitzii can take up acetic acid produced
by bacteria, such as Bifidobacterium, to produce butyric acid
(50). Therefore, the finding that responders had enriched
Faecalibacterium could be related to the fermentation of barley
β-glucan and conversion to butyrate.

Eubacterium hallii is a well-known butyrate-producing
bacterium like those belonging to Ruminococcaceae. However,
unlike F. prausnitzii, it cannot utilize complex carbohydrates.
Previous studies have reported that the energy source of E. hallii
is monosaccharides or intermediate metabolites [acetate or
lactate (48, 51)]. Thus, the Eubacterium hallii_group may not
utilize barley directly and instead uses intermediate metabolites
from other bacteria that can utilize barley to produce butyrate.
Therefore, we analyzed the correlation between Eubacterium
hallii_group and other bacteria in the responders; however,
it did not correlate with well-known acetic acid-producing
bacteria, such as Bifidobacterium (Supplementary Table 2).
Eubacterium hallii_group in the responder was positively
correlated with Feacalibacterium, a responder-specific bacterium
(results not shown), suggesting that these bacteria grow
in the same gut environment since both are acetic acid-
utilizing bacteria. Although the details of these gut bacterial
communities are unclear, our findings indicate that bacteria
directly utilizing barley and bacteria affecting dyslipidemia
through their coexistence with other bacteria may define the
responsiveness to barley in dyslipidemia.

In this study, we developed a classification model for
responders based on gut bacteria using Random Forest.
Generally, individual differences among study subjects
are often eliminated by using multivariate analysis in
epidemiological studies. However, in this study, we focused
on these individual differences and found that gut bacteria
can partially explain the effects of barley. If this classification
model is applied in practical use, the classification ability
may need further improvement. Nevertheless, the results
helped interpret the importance of gut bacteria to the host.
In particular, the fact that similar bacteria were found
through the other analyses, such as the Mann–Whitney U
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test and ANCOM, might have increased the confidence in this
classification model.

This study has several limitations. First, population
characteristics, such as race and dietary habits, that differ
from the current sample may affect the model’s classification
performance. Second, the gut microbiome composition in this
study was not measured by shotgun sequencing, nor was it
measured in terms of metabolites, and thus the discussion of this
study is limited. Finally, this was a cross-sectional study; thus,
we could not establish a causal relationship between gut bacteria
and dyslipidemia. Future studies should verify the performance
of our classification model in participants without bias and
replicate the study in other populations with different races and
lifestyles to identify possible confounding factors. In addition,
we plan to conduct a long-term longitudinal study to investigate
the effect of gut bacteria that are characteristic of responders on
lipid metabolism.

In summary, this study showed that barley responders in
dyslipidemia had distinct bacteria profiles. The possibility of
stratifying a host’s energy response to its diet in terms of gut
bacteria in this study provides insights into the “individual
differences in effects,” which has been a problem in functional
studies of various foods. We performed additional machine
learning studies to create a classification model that could
determine the compatibility between barley and host-based gut
bacteria, which could contribute to developing personalized diet
strategies in the future.
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