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Abstract

Adeno-associated virus (AAV) vectors are important gene delivery tools for the treatment of

many recessively inherited retinal diseases. For example, a wild-type (WT) AAV5 vector

can deliver a full-length Cnga3 (cyclic nucleotide-gated channel alpha-3) cDNA to target

cells of the cone photoreceptor function loss 5 (cpfl5) mouse, a spontaneous animal model

of achromatopsia with a Cnga3 mutation. Gene therapy restores cone-mediated function

and blocks cone degeneration in the mice. However, since transgene expression delivered

by an AAV vector shows relatively short-term effectiveness, this cannot be regarded as a

very successful therapy. AAV2 and AAV8 vectors with capsid mutations have significantly

enhanced transduction efficiency in retinas compared to WT AAV controls. In this study,

AAV8 (Y447, 733F+T494V)-treated cpfl5 retinas showed greater preservation of short-term

cone electroretinogram (ERG) responses than AAV8 (Y447, 733F)- or AAV2 (Y272, 444,

500, 730F+T491V)-mediated treatments. To explore the long-term rescue effect, AAV8

(Y447, 733F+T494V)-treated cpfl5 retinas were evaluated at 9 months following postnatal

day 14 (P14) treatment. Rescued ERG responses in the cones of treated cpfl5 eyes de-

creased with increasing age, but still maintained more than 60% of the WT mouse responses

at the oldest time point examined. Expression of CNGA3 and M/S-opsins was maintained in

cone outer segments of the treated cpfl5 eyes and was equal to expression in age-matched

WT retinas. Near-normal cone-mediated water maze behavior was observed in the treated

cpfl5 mice. As these are the longest follow-up data reported thus far, AAV8 with capsid Y-F

and T-V mutations may be one of the most effective AAV vectors for long-term treatment in a

naturally occurring mouse model of CNGA3 achromatopsia.

Introduction

Achromatopsia, also known as rod monochromatism, is a relatively rare autosomal recessive reti-

nal disorder characterized by cone photoreceptor dysfunction. Clinically, the disease is generally

classified into complete (typical) and incomplete (atypical) forms [1]. Typical symptoms of
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complete achromatopsia are more severe than the incomplete form. They include seriously

reduced visual acuity, nystagmus, photophobia, and color blindness [1]. With only rod-mediated

vision, patients are extremely sensitive to light and have daylight blindness. To reduce photopho-

bia, currently available medical care is to limit light exposure using dark glasses. With the dev-

elopment of adeno-associated virus (AAV) vectors as gene delivery tools for many recessively

inherited retinal diseases, several promising gene therapy projects have been initiated [2–9].

Recent preclinical trials have made significant progress in providing effective treatment for achro-

matopsia. The first clinical trials of gene therapy are either underway or will be launched soon and

they are expected to contribute important data on the safety and efficacy of these treatments [10].

Thus far, six genes have been implicated in achromatopsia-associated mutations [11–15]:

cyclic nucleotide-gated channel alpha-3 (Cnga3) [16,17], cyclic nucleotide-gated channel beta-

3 (Cngb3) [18,19], guanine nucleotide binding protein alpha transduction active peptide 2

(Gnat2) [1,20], phosphodiesterase 6C (Pde6c) [21,22], Pde6h [12,13], and cyclic AMP-depen-

dent activating transcription factor-6 alpha (Atf6) [14,15]. The proteins encoded by these

genes play vital roles in the phototransduction cascade of cone photoreceptors.

The Cnga3 gene encodes a member of the cyclic nucleotide-gated ion channel protein fam-

ily, which is critical for normal vision in cone photoreceptors [23]. As the first identified and

second most common cause of achromatopsia, Cnga3 mutations account for approximately

25% of all cases [24,25]. A cone photoreceptor function loss 5 (cpfl5) mouse strain, with a natu-

rally occurring Cnga3 mutation, was discovered at The Jackson Laboratory [11]. Due to a sin-

gle nucleotide A to G transition at position 492 of exon 5, the deficient mice exhibit selective

loss of cone-mediated electroretinogram (ERG) responses [11]. In addition, it has been shown

that loss of CNGA3 results in impaired expression and trafficking of cone opsins [11,26].

New generations of viral vectors have made it possible to deliver functional genes to retinal

cells [27]. Gene therapy, which can rescue visual function, has been used to treat achromatop-

sia in some animal models [28]. The most commonly used transgene vectors are those derived

from AAVs. Early studies have shown short-term rescue [28,29]. In a later study using a wild-

type (WT) AAV5 vector driven by the chicken beta actin (CBA) promoter, photopic ERG b-

wave responses were maintained to an average of 80% of the WT mouse responses at 5 months

following subretinal gene therapy [11]. However, a longer duration of rescue was not pursued

in those studies. It cannot be considered a successful therapy if transgene expression delivered

by an AAV vector shows only short-term effectiveness.

AAV vectors with different serotypes and capsid mutations have been developed. These

include AAV2 and AAV8, with capsid surface-exposed tyrosine residues mutated to phenylal-

anine (Y-F) [11] and/or threonine mutated to valine (T-V) [30]. These mutations were shown

to protect vector particles from proteasomal degradation [30–34]. Designing new vectors with

these mutations may be an effective way to improve longevity of transgene expression.

In this study, three AAV vectors with different capsid mutations were compared for treat-

ment of cpfl5 mice. These vectors were AAV8 (Y447, 733F + T494V), AAV8 (Y447, 733F), and

AAV2 (Y272, 444, 500, 730F + T491V). All vectors delivered the same Cnga3 cDNA, but had

different Y-F and/or T-V mutations on the capsid. We report the 9-month preservation of

cone structure and function using the AAV8 (Y447, 733F + T494V) vector to deliver treatment

in a mouse model of achromatopsia.

Materials and methods

Animals

The congenic inbred strain of the cpfl5 mice and the isogenic WT C57BL/6J mice were

acquired from The Jackson Laboratory (Bar Harbor, ME, USA). Mice were bred and
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maintained in the Animal Facilities of Wenzhou Medical University (Wenzhou, China). All

animals were maintained on a cycle of 12 h of light and 12 h of dark, with free access to water

and food. Animal experiments were approved by Wenzhou Medical University’s Institutional

Animal Care and Use Committee (Permit Number: wydw2014-0072), and conducted accord-

ing to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Construction of AAV vectors

The AAV8 (Y447, 733F + T494V) capsid is an AAV serotype 8 capsid with a double Y-to-F

mutation at residue 447 and 733, accompanied by a single T-to-V mutation at residue 494.

AAV8 (Y447, 733F + T494V) was used to package the vector DNA. For comparison, the vector

DNA was also packaged in AAV8 (Y447, 733F) and AAV2 (Y272, 444, 500, 730F + T491V).

IRBP/GNAT2 is a hybrid promoter consisting of a 277-bp GNAT2 promoter and a 214-bp

interphotoreceptor retinoid binding protein (IRBP) enhancer. AAV vectors containing the

IRBP/GNAT2 promoter exhibit cone photoreceptor-specific transgene expression [35]. Mouse

Cnga3 cDNA was cloned under the IRBP/GNAT2 promoter to make an AAV-IRBP/GNAT2-

Cnga3 construct [35]. All AAV vectors were constructed and purified at the University of Flor-

ida (Gainesville, FL, USA).

Vector delivery via subretinal injection

Subretinal injection was performed at postnatal day 14 (P14) [36] to achieve maximum rescue

of cone photoreceptors. Cpfl5 mice were treated with AAV8 (Y447, 733F + T494V)-IRBP/

GNAT2-Cnga3 (Group 1), AAV2 (Y272, 444, 500, 730F + T491V)-IRBP/GNAT2-Cnga3
(Group 2), or AAV8 (Y447, 733F)-IRBP/GNAT2-Cnga3 (Group 3). One microliter of each

vector solution (1013 vector genomes per mL) was injected subretinally into one eye of each

cpfl5 mouse. The other eye remained uninjected as a control. Subretinal injection was per-

formed as described previously [36]. Each original AAV-vector solution (1E13 vg/ml) was

diluted into 2E12 and 1E11 vg/ml, and the dilutions were also administered unilaterally by

subretinal injection (1μl) on P14. A small amount of fluorescein (0.1 mg/mL final concentra-

tion) was routinely added to allow visualization of the AAV vector solution [36]. An injection

was considered successful if blood vessels in the detached retina could be clearly seen with

green dye underneath, suggesting that the AAV vector solution was in the subretinal space

[36]. Mice were selected for further evaluation if they had minimal surgical complications and

their initial detached retinal blebs (the area with vector solution underneath) covered more

than 80% of the whole retina. We included at least six mice per group for statistical analysis.

ERG recordings

After overnight dark adaptation, mice were anesthetized with a solution of ketamine (70 mg/

kg) and xylazine (5 mg/kg) under dim red light. Full-field ERGs were recorded under a stan-

dard Ganzfeld dome, which is controlled by a computer-based system (Roland Consult, Wies-

baden, Germany). White light-emitting diodes (LEDs, 450–780 nm) were used as stimulation

and background light sources. Scotopic ERGs were recorded at 0 log cd-s/m2 stimulus inten-

sity [37]. With an interstimulus interval of 30 seconds, five responses were recorded and aver-

aged. After adapting to a steady background illumination (30 cd/m2) for 10 min, photopic

ERGs were recorded with a white-light stimulus intensity of +1.0 log cd-s/m2 [38]. To increase

the signal:noise ratio, 50 individual ERG responses were averaged to produce the final wave-

form. The flash duration was set at 2 ms and the band pass of the amplifiers at 1–500 Hz.

Amplitudes and peak times of ERG responses were saved for further evaluation.
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Immunohistochemistry

Mice were sacrificed by CO2 inhalation. Retinal sections were prepared as described in detail

previously [11]. Briefly, eyes were enucleated and fixed immediately in 4% paraformaldehyde

in 0.1 M phosphate buffer (pH = 7.4, 4˚C) overnight. The cornea, lens, and vitreous were

removed and the remaining eyecup was dehydrated in 30% sucrose for 4 h. After embedding

in optimal cutting temperature medium (OCT; Sakura Finetek USA Inc., Torrance, CA, USA),

samples were frozen in liquid nitrogen and cut on a cryostats. Cryosections (12-μm thick)

were incubated overnight at 4˚C with rabbit anti-mouse polyclonal CNGA3 primary antibody

(1:200, bs-10772R; Bioss, Beijing, China). After three rinses with 0.1 M PBS, sections were

incubated with goat anti-rabbit IgG conjugated to a Cy3 fluorochrome (1:400, AP187C; Merck

Millipore, Darmstadt, Germany) for 2 h, followed by three rinses with 0.1 M PBS. Addition-

ally, FITC-conjugated peanut agglutinin (PNA, 1:400; Vector Laboratories, Burlingame, CA,

USA) was used to detect the interphotoreceptor matrix sheath, which surrounds the cone

outer segments. Similarly, frozen sections were stained for M- or S-cone opsins [39]. Nuclei

were stained with 4’,6-diamidino-2- phenylindole (DAPI). Retinal whole-mounts were pre-

pared and stained for M- or S-cone opsins as described previously [39]. Retinal cryosections

and whole-mounts were mounted with coverslips and imaged by fluorescence microscopy.

Visually guided water maze behavioral test

The visually guided water maze behavioral test was performed as described previously [40]

with only minor modifications. Briefly, 9 months after injection, the AAV8 (Y447, 733F +

T494V)-IRBP/GNAT2-Cnga3-treated cpfl5 mice, together with age-matched untreated cpfl5
and WT mice, were initially trained to escape to a small platform positioned randomly in a

water tank. The water tank had a diameter of 1.2 meters. Before formal tests, mouse pupils

were dilated (1% atropine) and retinas were fully light-adapted (100 cd/m2 for 10 min) to pre-

vent rod intrusion. During each test, a mouse was initially placed in the water tank from one of

four equally spaced starting locations. The time taken to escape to the randomly positioned

platform was recorded as the visually guided behavioral data. If a mouse could not escape to

the platform within 60 seconds, it was guided to the platform and its escape time was recorded

as 60 seconds. The water maze tests were performed in well-lit (18 lux) environments.

Statistical analysis

ERG data were presented as mean ± standard deviation (SD). SPSS 18.0 (IBM Corporation,

Armonk, NY, USA) was used for statistical analysis. The data were checked by Shapiro-Wilk

test for normality before applying any parametric test. Paired sample t-test or one-way

ANOVA with least significant difference (LSD) post hoc test was used for data comparison

between or among groups. A P-value of less than 0.05 was considered statistically significant.

Results

Rescue efficacy of AAV vectors with capsid Y-F and/or T-V mutations in

cpfl5 ERGs

Cpfl5 mice exhibit selective loss of cone ERG responses, similar to the electroretinographic

phenotype of complete achromatopsia patients with Cnga3 mutations. After treatment with

one of the three AAV vectors at P14, eyes of cpfl5 mice were tested by scotopic and photopic

ERGs (Fig 1A and 1B). ERG data in each group were normally distributed (Shapiro-Wilk test,

n = 6, P> 0.05). The photopic b-wave amplitudes were significantly improved in the three

treated cpfl5 groups (versus the untreated cpfl5 eyes, P< 0.001), to 42%*84% of amplitudes in
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age-matched WT mice (P< 0.05). Among the three treated groups, Cnga3 was delivered by

AAV8 (Y447, 733F + T494V), AAV2 (Y272, 444, 500, 730F + T491V), or AAV8 (Y447, 733F)

vectors. At 1 month after treatment, early preservation of photopic ERG b-waves was statisti-

cally higher in AAV8 (Y447, 733F + T494V) (75 ± 13 μV) and AAV2 (Y272, 444, 500, 730F +

T491V) (76 ± 14 μV) groups, compared with the AAV8 (Y447, 733F) group (56 ± 11 μV,

P< 0.01; Fig 1C). Here, vectors with both Y-F and T-V mutations led to better ERG rescue

than vectors with only a Y-F mutation. At 3 months after treatment, photopic amplitudes of

AAV2 (Y272, 444, 500, 730F + T491V)- and AAV8 (Y447, 733F)-treated retinas decreased

to 47 ± 9 μV and 44 ± 11 μV, respectively, while the average amplitude of the AAV8 (Y447,

733F + T494V) group continued to rise slightly to 86 ± 8 μV. According to these short-term

efficacy data, the AAV8 vector with both Y-F and T-V mutations rescued the best cone ERG

responses (Fig 1C). In addition, a dose escalation study for each vector had been performed.

Fig 1. Comparisons of ERGs at two time-points following AAV vector treatment. As a mouse model of achromatopsia, cpfl5 mice

show selective loss of cone ERG responses. Scotopic (A) and photopic ERGs (B) were recorded at 1 and 3 months following treatment

with AAV8 (Y447, 733F + T494V) (red), AAV2 (Y272, 444, 500, 730F + T491V) (green), or AAV8 (Y447, 733F) (blue). Recovered photopic

ERG (cone-mediated) amplitudes were compared among groups (C). (D) Photopic-ERG dose response of the AAV-vector dilutions. The

cpfl5 mice were treated in one eye at P14 and evaluated at 1 month after subretinal injection. Age-matched WT and untreated cpfl5 eyes

were used as controls (n = 6 mice). P, postnatal day. *indicates P < 0.05, **indicates P < 0.01, ***indicates P < 0.001, NS = no statistical

difference.

https://doi.org/10.1371/journal.pone.0188032.g001
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Cpfl5 retinas were analyzed by photopic ERGs at 1 month post-injection (Fig 1D). Among the

three AAV mutants, a dose at 1E13 vg/ml produced the best improvement for b-wave

amplitudes.

Long-term (9 months) ERG rescue of AAV8 (Y447, 733F + T494V)-

treated cpfl5 eyes

Among the three AAV vectors, AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-Cnga3 was

selected for long-term evaluation. Thus, an ERG recording was repeated in the 9.5-month-old

cpfl5 eyes. ERG data in each group were normally distributed (Shapiro-Wilk test, n = 6,

P> 0.05). Untreated cpfl5 (566 ± 70 μV) and WT eyes (643 ± 64 μV) had similar scotopic b-

wave amplitudes (n = 6, P> 0.05; Fig 2A and 2B). However, there was a decrease in scotopic

responses in treated eyes (410 ± 54 μV) compared with untreated eyes (P< 0.01; Fig 2A and

2B). Rescue of photopic ERG responses was detected in the treated cpfl5 eyes, whereas ERG

responses were nearly extinguished in the untreated cpfl5 eyes (Fig 2C). At 9 months post

injection, photopic ERG b-waves in the treated cpfl5 maintained an average size of 68 ± 17 μV,

about 65% of the WT level (101 ± 9 μV, n = 6, P< 0.001; Fig 2D). Furthermore, we analyzed

implicit time of the rescued photopic b-wave. No significant difference was found between the

treated cpfl5 (60 ± 5 ms) and WT eyes (56 ± 3 ms, n = 6, P> 0.05).

AAV-mediated CNGA3 expression in cpfl5 retinas

Mediated by the Y-F and/or T-V mutant AAV vectors, cone-specific transgene expression was

driven by the IRBP/GNAT2 promoter [35]. For maximum rescue of cone photoreceptors, sub-

retinal injections were performed at P14. At 3 and 9 months after treatment, CNGA3 expres-

sion was assayed by immunohistochemistry. At 3 months following subretinal injection,

CNGA3 staining was detected primarily in the photoreceptor outer segment (OS) layer of cpfl5
retinas (Fig 3). Strong CNGA3 immunostaining was detected in the AAV8 (Y447, 733F +

T494V)-treated group to a similar extent as in the age-matched WT retina. However, the

immunostaining was relatively weaker in the AAV2 (Y272, 444, 500, 730F + T491V)- and

AAV8 (Y447, 733F)-mediated groups. No CNGA3 expression was detected in the partner

untreated retina from the same cpfl5 mouse (Fig 3). In the AAV8 (Y447, 733F + T494V)-medi-

ated group, transgene expression was also detected at 9 months after treatment (Fig 4). These

are the longest follow-up data for CNGA3 expression thus far.

Long-term rescue of cone opsins following AAV8 (Y447, 733F + T494V)

treatment

CNGA3 deficiency has been shown to impair expression and localization of cone opsins, ulti-

mately leading to cone photoreceptor death in Cnga3-/- and cpfl5 mice [11,41]. Compared to

age-matched WT retinas, untreated cpfl5 retinas showed similar layers of photoreceptor nuclei

and lengths of OS (Figs 5 and 6, right column). In untreated cpfl5 cones, loss of S-opsin pro-

ceeded more rapidly than M-opsin [11]. By 9.5-months of age, no retinal S-opsin was detected

(Fig 6, bottom row) and there were only a few residual cones in the superior retina with mislo-

calization of M-opsin (Fig 5, bottom row). We used PNA to detect the interphotoreceptor

matrix sheath, which surrounds the cone OS. In treated cpfl5 retinas, fluorescent microscopy

at low magnification revealed preservation of M-opsin over most of the eyecup (Fig 5, second

row). However, untreated retinas showed only some residual cones in which M-opsin had mis-

localized to the inner segment, cone nuclei, and cone pedicles (Fig 5, bottom row). Double

staining of M-opsin and cone-specific PNA (high magnification) suggests that the rescued M-
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opsin in treated retinas is located in the cone OS, consistent with that of WT controls (Fig 5,

upper row). In addition, S-opsin was also in the cone OS of treated cpfl5 retinas (Fig 6). In

summary, AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-Cnga3 treatment at P14 maintained

normal expression and distribution of cone opsins. Gene therapy using the AAV vector effec-

tively prevented cone degeneration for at least 9 months.

Fig 2. Long-term (9 months) electroretinographic assessment of treated cpfl5 eyes. Cpfl5 eyes were

treated with AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-Cnga3 at P14. An ERG recording was repeated at 9

months following treatment. (A) Scotopic ERG elicited in treated cpfl5 eyes (red), compared to WT and

untreated cpfl5 eyes (black). (B) Scotopic b-wave amplitudes elicited at 0 log cd-s/m2 intensity in the age-

matched WT, treated, and untreated cpfl5 eyes (n = 6). (C) Photopic ERG elicited in treated cpfl5 eyes (red)

compared to WT and untreated cpfl5 eyes (black). (D) Photopic b-wave amplitudes elicited at 1.0 log cd-s/m2

intensity in age-matched WT, treated, and untreated cpfl5 eyes (n = 6). P, postnatal day. **indicates P < 0.01,

***indicates P < 0.001, NS = no statistical difference.

https://doi.org/10.1371/journal.pone.0188032.g002

Gene therapy in a mouse model of CNGA3-achromatopsia

PLOS ONE | https://doi.org/10.1371/journal.pone.0188032 November 13, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0188032.g002
https://doi.org/10.1371/journal.pone.0188032


Retinal whole-mounts from the treated cpfl5 eyes showed obviously preserved M-cone

opsins and S-cone opsins compared with the contralateral untreated eyes (Fig 7A). At a high

magnification (×40), the two cone opsins were counted in the same field of ventral nasal retina

(Fig 7B and 7C). At 3 months after treatment, the average cone opsin counts were about 80%

of WT levels (P< 0.01). However, M- and S-cone opsins decreased about 15% at 9 months fol-

lowing subretinal treatment. In the untreated cpfl5 retinal whole-mounts, little M-cone or S-

cone opsins expression was detected within the ventral nasal retinas.

AAV8 (Y447, 733F + T494V) rescues cone-mediated water maze

behavior in the cpfl5 mouse

To determine whether the observed electrophysiological, biochemical, and morphological

preservation/restoration of the cpfl5 retina following AAV8 (Y447, 733F + T494V) vector

Fig 3. Immuno-staining of retinal CNGA3 at 3 months post-injection. CNGA3 expression (red) was detected

primarily in the photoreceptor OS following treatment with AAV8 (Y447, 733F + T494V), AAV2 (Y272, 444, 500, 730F +

T491V), or AAV8 (Y447, 733F). Age-matched WT and untreated cpfl5 retinas were used as controls. OS, outer

segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer.

https://doi.org/10.1371/journal.pone.0188032.g003

Fig 4. Long-term retinal CNGA3 expression mediated by AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-

Cnga3 treatment. At 9 months following subretinal injection, retinal cryosections were immunostained with

anti-CNGA3 antibody. CNGA3 expression (red) was detected primarily in the photoreceptor OS (arrows) in

the AAV8 (Y447, 733F + T494V)-treated cpfl5 retinas and age-matched WT controls, but not in the untreated

cpfl5 retinas. OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer;

INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Nuclei were stained with DAPI

(40,6-diamidino-2-phenylindole) (blue).

https://doi.org/10.1371/journal.pone.0188032.g004
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treatment led to improvement in behavioral performance, we tested mice in a visually guided

behavior task (Fig 8), as described previously [40]. During formal tests, mice pupils were dilated

and retinas were fully light-adapted to prevent rod intrusion. The time taken to escape to the

platform under well-lit condition was compared among groups. The WT mice with unilateral

eyelid suture took 10 ± 6 seconds, treated cpfl5 mice took 16 ± 6 seconds, and untreated cpfl5
mice took 29 ± 11 seconds to reach the platform. The data in each group were normally distrib-

uted (Shapiro-Wilk test, n = 6, P> 0.05). Statistical analysis showed significant improvement in

the treated cpfl5 mice compared to the untreated cpfl5 group (n = 6, P< 0.05). No statistical dif-

ference in performance was found between treated cpfl5 and WT mice (P> 0.05). When the

treated eyes of cpfl5 mice were closed by suturing their eyelids, time to reach the platform

increased from 16 ± 6 to 28 ± 12 seconds. No statistical difference in performance was found

between the untreated and treated cpfl5 mice when the treated eyes were sutured (P> 0.05).

Discussion

AAVs are non-pathogenic, single-stranded, DNA-packaging dependoparvoviruses within the

Parvoviridae family. One of the major applications of AAVs is as a gene therapy vector to treat

monogenic recessive blindness. For example, AAV serotype 2 has been adopted for ongoing

RPE65-Leber congenital amaurosis (LCA2) gene therapy clinical trials [42]. Transgene

Fig 5. Long-term preservation of retinal M-opsin and CNGA3 after treatment with AAV8 (Y447, 733F + T494V)-

IRBP/GNAT2-Cnga3. At 9 months after P14 treatment, cpfl5 retinal immunostaining revealed normal expression and the

cone OS distribution (merge) of M-opsin, compared with WT controls. In untreated cpfl5 eyes, the inferior retinas had little

M-opsin and cone specific PNA staining, whereas the superior retinas showed mislocalization of M-opsin within residue

cones (arrows). In WT and treated cpfl5 retinas, M-opsin was located in the cone OS. Red: M-opsin or CNGA3 staining;

Green: cone-specific PNA staining; Blue: nuclei staining with DAPI (40,6-diamidino-2-phenylindole). P, postnatal day.

https://doi.org/10.1371/journal.pone.0188032.g005
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expression efficiency of AAV vectors can be affected by phosphorylation of capsid surface-

exposed residues, the phosphorylation ultimately leads to capsid ubiquitination and proteaso-

mal degradation of AAV particles [31,32,43]. AAV2 variants containing capsid surface-exposed

Y-F and/or T-V mutations protect vector particles from proteasomal degradation, thus signifi-

cantly increasing the efficiency of retinal transduction [30,33,34,44]. Inhibiting proteasomal

degradation may improve longevity of transgene expression. To test this, we investigated AAV

variants from serotypes 2 and 8, the latter of which was recently reported to have higher photo-

receptor transduction efficiency than wild-type AAV2 and 5 [45,46]. We compared rescue dif-

ferences between three cpfl5 groups, in which treatments were mediated by AAV8 (Y447,

733F + T494V), AAV8 (Y447, 733F), or AAV2 (Y272, 444, 500, 730F + T491V) vectors. At 1

month after treatment, photopic ERG responses were higher in AAV8 (Y447, 733F + T494V)

and AAV2 (Y272, 444, 500, 730F + T491V) groups. Vectors with a combination of Y-F and T-V

mutations seemed to lead to better ERG rescue than vectors with only a Y-F mutation. At 3

months after treatment, photopic responses of AAV2 (Y272, 444, 500, 730F + T491V)- and

AAV8 (Y447, 733F)-treated retinas decreased, while the responses in those treated with AAV8

(Y447, 733F + T494V) were sustained or continued to rise slightly. Treated with the three AAV

mutants, preservation of photopic-ERG responses was almost dose dependent across doses

between 1E11 and 1E13 vg/ml. Among the original and diluted solutions, a dose at 1E13 pro-

duced the best improvement (Fig 1C and 1D). In summary, an AAV8 vector with both Y-F and

T-V mutations gave the best preservation of cone ERG responses.

Fig 6. Long-term preservation of retinal S-opsin after treatment with AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-

Cnga3. At 9 months after treatment of P14 mice, cpfl5 retinal immunostaining revealed normal expression (red) and the

cone OS distribution (merge) of S-opsin compared with WT controls. S-opsin was not detected in untreated cpfl5 retinas.

In WT and treated cpfl5 retinas, S-opsin was located in the cone OS. Red: S-cone opsin staining; Green: cone-specific

PNA staining; Blue: nuclei staining with DAPI (40,6-diamidino-2-phenylindole). P, postnatal day.

https://doi.org/10.1371/journal.pone.0188032.g006
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Besides design considerations to prevent proteasomal degradation, these results highlight

the need for careful consideration of vector serotype in any therapeutic AAV vector platform.

AAV8 vector can target a variety of retinal cells, including retinal pigment epithelial cells and

Fig 7. M-cone and S-cone opsins preservation in retinal whole mounts after treatment. At 3 and 9 months after P14

treatment with AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-Cnga3, M-cone opsins (red) and S-cone opsins (white) were

imaged (A) and counted (B, C) in the same field of ventral nasal retina (n = 6). WT and untreated cpfl5 mice were used as

controls. D, dorsal; V, ventral; T, temporal; N, nasal. P, postnatal day; M, months. *indicates P < 0.05, **indicates

P < 0.01, ***indicates P < 0.001, NS = no statistical difference.

https://doi.org/10.1371/journal.pone.0188032.g007

Fig 8. Cone-mediated visually guided behavioral test after treatment with AAV8 (Y447, 733F + T494V)-

IRBP/GNAT2-Cnga3. #Statistical analysis indicates a significant difference in performance (P < 0.01) in the

WT mice with unilateral eyelid suture compared to untreated cpfl5 mice and the treated cpfl5 mice when the

treated eye was sutured. *Statistical analysis indicates a significant difference in performance (P < 0.05) in

the treated cpfl5 mice compared to untreated cpfl5 mice and treated cpfl5 mice with the treated eye sutured.

No statistical difference in performance was found between the WT mice with unilateral eyelid suture and

treated cpfl5 mice or between untreated cpfl5 mice and treated cpfl5 mice when the treated eye was sutured

(n = 6).

https://doi.org/10.1371/journal.pone.0188032.g008
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photoreceptors, and its transfection is believed to be safe in mice, dogs and nonhuman primates

[47]. Studies have showed that AAV8 has higher photoreceptor transduction efficiency than

AAV2 and 5 [35]. Using WT or capsid mutant AAV8 vectors, gene therapy has successfully

treated animal models of Leber’s congenital amaurosis, autosomal recessive retinitis pigmentosa

and achromatopsia [35,45,46,48,49]. Compared to AAV2, AAV8 is able to achieve equivalent

expression at lower dose [47,48]. In addition, transgene expression mediated by AAV8 is much

sooner than AAV2 and 5 [45,47,48]. An AAV8 tyrosine-capsid mutant can confer more effec-

tive therapy than that of a standard AAV vector in an animal model with early-onset rapid reti-

nal degeneration [45]. Besides AAV2, AAV8 can be another promising vector for human

clinical gene therapy trials for choroideremia and even in the future for other retinal degenera-

tive disorders [48]. Here, long-term Validation of capsid mutants AAV8 vector for CNGA3-a-

chromatopsia has been demonstrated in a mouse model, but AAV vector performance in

human patients could be different from mice. It is unlikely that concerns of long-term efficacy

and safety can be sufficiently addressed in a small animal model. Thus, AAV8 or its mutants

still need careful evaluation in large-animal models and/or non-human primates.

CNGA3-deficient retinas are characterized by early cone photoreceptor dysfunction, fol-

lowed by rapid S-opsin loss, abnormal M-opsin distribution, and ultimately, cone cells death

[11,41]. Three-week-old cpfl5 retinas exhibit normal M-opsin staining in the cone OS, but

already show a decrease in S-opsin [11]. By 10 weeks, little S-opsin staining is detected and all

M-opsin has mislocalized to the cone inner segment, nuclei, and pedicles [11]. As to the

9.5-month-old cpfl5 mice, we found a loss of the mislocalized M-opsin in the inferior retinas

(Fig 5).

Here, gene therapy through subretinal injection was performed at P14 to achieve maximum

rescue of cone photoreceptors. In mice younger than P14, especially within one week after

birth, trans-corneal subretinal injection could cause severe damage to cornea, iris, lens, and

retina because of the smaller eyeballs, underdeveloped cornea and lens, and difficulty in

achieving excessive dilatation of the pupil, as described previously [36]. Additionally, it is diffi-

cult to detach a significant fraction of the mouse retina via subretinal injection prior to P14

[38]. We have previously found that subretinally injected vectors localized around the injection

area in P10 mice and ultimate coverage of the vector solution was no more than one-third of

the whole retina, an area much smaller than P14 injections [38].

AAV vectors containing the IRBP/GNAT2 promoter exhibit cone photoreceptor-specific

transgene expression [35]. Using AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-Cnga3, we

obtained a more robust rescue than using AAV2 (Y272, 444, 500, 730F + T491V) or AAV8

(Y447, 733F) vectors in cpfl5 mouse, a spontaneous animal model of achromatopsia with a

Cnga3 mutation. Photopic ERG responses in the mouse retina were rescued and maintained to

an average of 2/3 of the WT mouse responses at 9 months after injection of AAV8 (Y447,

733F + T494V). Moreover, the rescued cone-ERG responses showed no implicit time delay.

These data are from the longest follow-up period reported thus far. In our previous work, the

long-term cone-ERG responses of a WT AAV5 vector treatment were significantly lower than

those of the AAV8 triple-mutant vector treatment. The water maze visually guided behavioral

test has been used in dark conditions to examine AAV-mediated rod function recovery in

rd12 mice [40]. Here, we extended this application to test cone function in pupil-dilated and

fully light-adapted cpfl5 mice. In addition to functional outcomes, our data show biochemical

and structural preservation/restoration following AAV8 (Y447, 733F + T494V) vector

treatment.

Cone-mediated ERG responses decreased about 20% from 3 to 9 months after treatment

with the AAV8 (Y447, 733F + T494V) vector. In accordance with the deterioration of cone-

ERG responses, the two cone opsins decreased about 15% at 9 months. This is likely due to
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inadequate expression of CNGA3 in some cone photoreceptors. Relative to 3 months follow-

ing AAV8 (Y447, 733F + T494V) treatment, the immunostaining of rescued CNGA3 seemed

to be lesser and weaker at 9 months (Figs 3 and 4). Additionally, the decrease upon treatment

may be partly caused by a damaging effect of subretinal injection. In human retinas, cone den-

sity is very high in the central macula. Retinal detachment of the fovea, caused by subretinal

injection, may cause more damage than benefit [30]. Rod-mediated ERG responses showed a

reduction of b-wave amplitudes in treated compared with untreated eyes, similar as described

previously [11]. The decrease upon treatment may be a consequence of injection-related

damage.

Recently, successful gene therapies have been reported in CNGA3-deficient sheep, a large-

animal model of achromatopsia [50–52]. In these studies, AAV serotype 2 and 5 vectors carry

Cnga3 gene under control of a human red/green cone opsin promoter. The results of a large-

animal model provide an important data base for gene therapy in CNGA3-achromatopsia

patients.

Here, we show that gene therapy mediated by AAV8 (Y447, 733F + T494V)-IRBP/GNAT2-

Cnga3 can effectively rescue cone degeneration in the retinas of cpfl5 mice for at least 9

months. To our knowledge, this is the longest and most significant rescue reported so far in

the mouse model of Cnga3-associated achromatopsia.
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29. Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, et al. Restoration of

cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function.

Mol Ther. 2010; 18:2057–2063. https://doi.org/10.1038/mt.2010.149 PMID: 20628362

30. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J, et al. Targeting photoreceptors via intravitreal

delivery using novel, capsid-mutated AAV vectors. PLoS One. 2013; 8:e62097. https://doi.org/10.

1371/journal.pone.0062097 PMID: 23637972

31. Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L, et al. A dual role of EGFR protein tyrosine

kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol Ther.

2007; 15:1323–1330. https://doi.org/10.1038/mt.sj.6300170 PMID: 17440440

32. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, et al. High-efficiency transduction of the

mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther. 2009; 17:463–471. https://doi.org/

10.1038/mt.2008.269 PMID: 19066593

33. Aslanidi GV, Rivers AE, Ortiz L, Song L, Ling C, Govindasamy L, et al. Optimization of the capsid of

recombinant adeno-associated virus 2 (AAV2) vectors: the final threshold? PLoS One. 2013; 8:

e59142. https://doi.org/10.1371/journal.pone.0059142 PMID: 23527116

34. Boye SL, Bennett A, Scalabrino ML, McCullough KT, Van Vliet K, Choudhury S, et al. Impact of

Heparan Sulfate Binding on Transduction of Retina by Recombinant Adeno-Associated Virus Vectors.J

Virol. 2016; 90:4215–4231. https://doi.org/10.1128/JVI.00200-16 PMID: 26865709

35. Du W, Tao Y, Deng WT, Zhu P, Li J, Dai X, et al. Vitreal delivery of AAV vectored Cnga3 restores cone

function in CNGA3-/-/Nrl-/- mice, an all-cone model of CNGA3 achromatopsia. Hum Mol Genet. 2015;

24:3699–3707. https://doi.org/10.1093/hmg/ddv114 PMID: 25855802

36. Qi Y, Dai X, Zhang H, He Y, Zhang Y, Han J, et al. Trans-Corneal Subretinal Injection in Mice and Its

Effect on the Function and Morphology of the Retina. PLoS One. 2015; 10:e0136523. https://doi.org/

10.1371/journal.pone.0136523 PMID: 26317758

37. Dai X, Zhang H, He Y, Qi Y, Chang B, Pang JJ. et al. The frequency-response electroretinogram distin-

guishes cone and abnormal rod function in rd12 mice. PLoS One. 2015; 10:e0117570. https://doi.org/

10.1371/journal.pone.0117570 PMID: 25706871

38. Dai X, Zhang H, Han J, He Y, Zhang Y, Qi Y, et al. Effects of Subretinal Gene Transfer at Different Time

Points in a Mouse Model of Retinal Degeneration. PLoS One. 2016; 11:e0156542. https://doi.org/10.

1371/journal.pone.0156542 PMID: 27228218

39. Li X, Li W, Dai X, Kong F, Zheng Q, Zhou X, et al. Gene therapy rescues cone structure and function in

the 3-month-old rd12 mouse: a model for midcourse RPE65 leber congenital amaurosis. Invest

Ophthalmol Vis Sci. 2011; 52:7–15. https://doi.org/10.1167/iovs.10-6138 PMID: 21169527

40. Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, Li J, et al. Gene therapy restores vision-

dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber

Gene therapy in a mouse model of CNGA3-achromatopsia

PLOS ONE | https://doi.org/10.1371/journal.pone.0188032 November 13, 2017 15 / 16

https://doi.org/10.1038/jhg.2010.128
https://doi.org/10.1038/jhg.2010.128
http://www.ncbi.nlm.nih.gov/pubmed/21107338
https://doi.org/10.1016/j.ajhg.2009.06.016
http://www.ncbi.nlm.nih.gov/pubmed/19615668
https://doi.org/10.3109/13816810.2014.991932
http://www.ncbi.nlm.nih.gov/pubmed/25605338
https://doi.org/10.1086/323613
http://www.ncbi.nlm.nih.gov/pubmed/11536077
https://doi.org/10.1038/sj.ejhg.5201269
http://www.ncbi.nlm.nih.gov/pubmed/15657609
https://doi.org/10.1097/ICU.0000000000000189
http://www.ncbi.nlm.nih.gov/pubmed/26196097
http://www.ncbi.nlm.nih.gov/pubmed/22300136
https://doi.org/10.1016/j.visres.2007.08.009
http://www.ncbi.nlm.nih.gov/pubmed/17950399
https://doi.org/10.1007/978-1-4419-1399-9_73
http://www.ncbi.nlm.nih.gov/pubmed/20238068
https://doi.org/10.1038/mt.2010.149
http://www.ncbi.nlm.nih.gov/pubmed/20628362
https://doi.org/10.1371/journal.pone.0062097
https://doi.org/10.1371/journal.pone.0062097
http://www.ncbi.nlm.nih.gov/pubmed/23637972
https://doi.org/10.1038/mt.sj.6300170
http://www.ncbi.nlm.nih.gov/pubmed/17440440
https://doi.org/10.1038/mt.2008.269
https://doi.org/10.1038/mt.2008.269
http://www.ncbi.nlm.nih.gov/pubmed/19066593
https://doi.org/10.1371/journal.pone.0059142
http://www.ncbi.nlm.nih.gov/pubmed/23527116
https://doi.org/10.1128/JVI.00200-16
http://www.ncbi.nlm.nih.gov/pubmed/26865709
https://doi.org/10.1093/hmg/ddv114
http://www.ncbi.nlm.nih.gov/pubmed/25855802
https://doi.org/10.1371/journal.pone.0136523
https://doi.org/10.1371/journal.pone.0136523
http://www.ncbi.nlm.nih.gov/pubmed/26317758
https://doi.org/10.1371/journal.pone.0117570
https://doi.org/10.1371/journal.pone.0117570
http://www.ncbi.nlm.nih.gov/pubmed/25706871
https://doi.org/10.1371/journal.pone.0156542
https://doi.org/10.1371/journal.pone.0156542
http://www.ncbi.nlm.nih.gov/pubmed/27228218
https://doi.org/10.1167/iovs.10-6138
http://www.ncbi.nlm.nih.gov/pubmed/21169527
https://doi.org/10.1371/journal.pone.0188032


congenital amaurosis. Mol Ther. 2006; 13:565–572. https://doi.org/10.1016/j.ymthe.2005.09.001

PMID: 16223604

41. Michalakis S, Geiger H, Haverkamp S, Hofmann F, Gerstner A, Biel M. Impaired opsin targeting and

cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3.

Invest Ophthalmol Vis Sci. 2005; 46:1516–1524. https://doi.org/10.1167/iovs.04-1503 PMID:

15790924

42. Schimmer J, Breazzano S. Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III

Results. Hum Gene Ther Clin Dev. 2015; 26:208–210. https://doi.org/10.1089/humc.2015.29004.sch

PMID: 26684444

43. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next generation of

adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at

lower doses. Proc Natl Acad Sci U S A. 2008; 105:7827–7832. https://doi.org/10.1073/pnas.

0802866105 PMID: 18511559

44. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH, et al. Novel properties of tyrosine-mutant

AAV2 vectors in the mouse retina. Mol Ther. 2011; 19:293–301. https://doi.org/10.1038/mt.2010.234

PMID: 21045809

45. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S, et al. Long-term retinal function and structure res-

cue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol

Ther. 2011; 19:234–242. https://doi.org/10.1038/mt.2010.273 PMID: 21139570

46. Dai X, Han J, Qi Y, Zhang H, Xiang L, Lv J, et al. AAV-mediated lysophosphatidylcholine acyltransfer-

ase 1 (Lpcat1) gene replacement therapy rescues retinal degeneration in rd11 mice. Invest Ophthalmol

Vis Sci. 2014; 55:1724–1734. https://doi.org/10.1167/iovs.13-13654 PMID: 24557352

47. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, et al. Dosage thresholds for

AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011; 3:88ra54. https://doi.

org/10.1126/scitranslmed.3002103 PMID: 21697530

48. Black A, Vasireddy V, Chung DC, Maguire AM, Gaddameedi R, Tolmachova T, et al. Adeno-associated

virus 8-mediated gene therapy for choroideremia: preclinical studies in in vitro and in vivo models. J

Gene Med. 2014; 16:122–130. https://doi.org/10.1002/jgm.2768 PMID: 24962736

49. Deng WT, Dinculescu A, Li Q, Boye SL, Li J, Gorbatyuk MS, et al. Tyrosine-mutant AAV8 delivery of

human MERTK provides long-term retinal preservation in RCS rats. Invest Ophthalmol Vis Sci. 2012;

53:1895–1904. https://doi.org/10.1167/iovs.11-8831 PMID: 22408006

50. Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, Zelinger L, et al. Gene Augmentation

Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia.

Mol Ther. 2015; 23:1423–1433. https://doi.org/10.1038/mt.2015.114 PMID: 26087757

51. Gootwine E, Abu-Siam M, Obolensky A, Rosov A, Honig H, Nitzan T, et al. Gene Augmentation Ther-

apy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in

Day-Blind Sheep. Invest Ophthalmol Vis Sci. 2017; 58:1577–1584. https://doi.org/10.1167/iovs.16-

20986 PMID: 28282490

52. Gootwine E, Ofri R, Banin E, Obolensky A, Averbukh E, Ezra-Elia R, et al. Safety and Efficacy Evalua-

tion of rAAV2tYF-PR1.7-hCNGA3 Vector Delivered by Subretinal Injection in CNGA3 Mutant Achroma-

topsia Sheep. Hum Gene Ther Clin Dev. 2017; 28:96–107. https://doi.org/10.1089/humc.2017.028

PMID: 28478700

Gene therapy in a mouse model of CNGA3-achromatopsia

PLOS ONE | https://doi.org/10.1371/journal.pone.0188032 November 13, 2017 16 / 16

https://doi.org/10.1016/j.ymthe.2005.09.001
http://www.ncbi.nlm.nih.gov/pubmed/16223604
https://doi.org/10.1167/iovs.04-1503
http://www.ncbi.nlm.nih.gov/pubmed/15790924
https://doi.org/10.1089/humc.2015.29004.sch
http://www.ncbi.nlm.nih.gov/pubmed/26684444
https://doi.org/10.1073/pnas.0802866105
https://doi.org/10.1073/pnas.0802866105
http://www.ncbi.nlm.nih.gov/pubmed/18511559
https://doi.org/10.1038/mt.2010.234
http://www.ncbi.nlm.nih.gov/pubmed/21045809
https://doi.org/10.1038/mt.2010.273
http://www.ncbi.nlm.nih.gov/pubmed/21139570
https://doi.org/10.1167/iovs.13-13654
http://www.ncbi.nlm.nih.gov/pubmed/24557352
https://doi.org/10.1126/scitranslmed.3002103
https://doi.org/10.1126/scitranslmed.3002103
http://www.ncbi.nlm.nih.gov/pubmed/21697530
https://doi.org/10.1002/jgm.2768
http://www.ncbi.nlm.nih.gov/pubmed/24962736
https://doi.org/10.1167/iovs.11-8831
http://www.ncbi.nlm.nih.gov/pubmed/22408006
https://doi.org/10.1038/mt.2015.114
http://www.ncbi.nlm.nih.gov/pubmed/26087757
https://doi.org/10.1167/iovs.16-20986
https://doi.org/10.1167/iovs.16-20986
http://www.ncbi.nlm.nih.gov/pubmed/28282490
https://doi.org/10.1089/humc.2017.028
http://www.ncbi.nlm.nih.gov/pubmed/28478700
https://doi.org/10.1371/journal.pone.0188032

