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Zinc-based flow batteries have gained widespread attention and are considered to be

one of the most promising large-scale energy storage devices for increasing the utilization

of intermittently sustainable energy. However, the formation of zinc dendrites at anodes

has seriously depressed their cycling life, security, coulombic efficiency, and charging

capacity. Inhibition of zinc dendrites is thus the bottleneck to further improving the

performance of zinc-based flow batteries, but it remains a major challenge. Considering

recent developments, this mini review analyzes the formation mechanism and growth

process of zinc dendrites and presents and summarizes the strategies for preventing

zinc dendrites by regulating the interfaces between anodes and electrolytes. Four typical

strategies, namely electrolyte modification, anode engineering, electric field regulation,

and ion transfer control, are comprehensively highlighted. Finally, remaining challenges

and promising directions are outlined and anticipated for zinc dendrites in zinc-based

flow batteries.

Keywords: flow battery, zinc deposition, zinc dendrites, interfaces engineering, energy storage and conversion,

rechargeable battery

INTRODUCTION

Energy and environment are the foundation of human survival and development (Zhang et al.,
2019a). To meet increasing requirements, people are exploring sustainable and clean energy
(Turner, 1999). However, sustainable and clean energy, represented by wind, solar, and tidal, are
affected by climate and cannot directly generate continuous and stable electrical power (Yang et al.,
2011; Lou et al., 2020). Large-scale energy storage devices seem to be the best choice for collecting
the fluctuating energy and outputting high-quality power (Dunn et al., 2011; Leadbetter and Swan,
2012).

Flow batteries have received widespread attention due to their high safety and low cost (Liu
et al., 2019a; Zhang et al., 2019a; Ye et al., 2020a,b). Their power and capacity can be designed
independently. The power is determined by the number and size of the stacks, while the capacity
is limited by the volume and concentration of the electrolyte outside stacks. Their capacity can be
easily be increased by increasing the number of redox couples in the electrolyte without adding
other equipment. Therefore, flow batteries are very suitable for large-scale energy storage.

Zinc-based flow batteries (ZFBs) have the advantages of low cost, high safety, flexible structure,
and high energy efficiency and have been extensively studied (Arenas et al., 2018). Various ZFBs
have been proposed, such as the zinc-bromine flow battery (Jeon et al., 2014; Suresh et al., 2014),
zinc-iodine flow battery (Xie et al., 2019), zinc-nickel flow battery (Cheng et al., 2014b, 2019c;
Huang et al., 2018), zinc-air flow battery (Cheng et al., 2018, 2019b), zinc-iron flow battery (Yuan
et al., 2018a; Chang et al., 2019), and zinc-manganese flow battery (Liu et al., 2020). Some of these
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flow batteries, like the zinc-bromine flow battery, zinc-nickel flow
battery, zinc-air flow battery, and zinc-iron battery, are already in
the demonstration stage and are close to commercial application
(Arenas et al., 2018).

The structure and mechanism of ZFBs are shown in
Figure 1A. The electrochemical reaction at the anode side is zinc
deposition and stripping. This is a little different in aqueous
acid/neutral and alkaline solutions (Khor et al., 2018).

(1) Acid or neutral solution
Zn2+ + 2e− ↔ Zn Eo = −0.763 V vs. SHE

(2) Alkaline solution
Zn(OH)2−4 +2e− ↔ Zn+4OH− E0 = −1.216 V vs.

SHE

However, zinc dendrites are formed during the charging process
and eventually pierce the separator, resulting in short circuit
and battery failure (Figure 1B). Moreover, zinc dendrites can
easily fall from anodes, resulting in a decrease in efficiency and
capacity (Cheng et al., 2014a). Therefore, inhibiting zinc dendrite
formation is very important for the further development of
ZFBs. Recently, researchers have done a lot of work to solve
zinc dendrite formation through modifications to the electrolyte,
anodes, electric field, and zinc ion transfer. In this review, we
will introduce the formation and growth mechanism of zinc
dendrites, summarize typical methods for solving zinc dendrite
formation, and outline promising future directions.

FORMATION MECHANISM OF ZINC
DENDRITES

Zinc deposition begins with nucleation and continues with
growth (Yufit et al., 2019; Zheng et al., 2019). The energy barrier
for zinc nucleation is much higher than for zinc growth on the
nucleus, as shown in Figure 1C (Zeng et al., 2019; Zhang et al.,
2020). As a result, the overpotential of zinc nucleation is also
larger than that of zinc growth on the nucleus (Figure 1D; Zhang
et al., 2019b, 2020). This indicates that once a zinc nucleus forms,
zinc ions prefer to deposit on the nucleus rather than to produce
a new nucleus. Moreover, small nuclei have high surface energy
and thermodynamically tend to aggregate into larger particles
(Pei et al., 2017; Cheng et al., 2019a). Therefore, it is very difficult
to obtain uniform zinc nuclei on the anode.

During the growth process, zinc ions migrate to a nucleus
under the driving forces of electric fields and concentration
gradients (Wang et al., 2015; Lacitignola et al., 2017). The
distributions of the electric field and zinc ions at the interface
between anodes and electrolytes play an important role in zinc
deposition (Cheng et al., 2013b, 2014a). A uniform electric field
is favorable for both the nucleation and growth of zinc deposits.
Unfortunately, the electric field is much stronger in the areas
adjacent to current collectors than at edges and corners far away
from current collectors (Cheng et al., 2013b). After zinc ions at
the interface are consumed, zinc ions that exist in the electrolyte
far from the interface cannot migrate to the interface in time,
resulting in severe concentration polarization (Wang et al.,
2015). Simultaneously, zinc ions preferentially migrate to the

protruding tips of anodes and subsequently grow on previously
deposited zinc seeds, which accelerates the formation of zinc
dendrites (Lu et al., 2018). Additionally, hydrogen evolution at
an anode alsomakes mass transfer more difficult (Ito et al., 2011a;
Dundalek et al., 2017). This phenomenon is more serious in the
case of the rapid deposition of zinc ions at large anodes (Cheng
et al., 2015, 2019c).

STRATEGIES TO PREVENT ZINC
DENDRITE FORMATION

Recently, various methods have been proposed to inhibit zinc
dendrite formation, including electrolyte modification (Wen
et al., 2012; Banik and Akolkar, 2013; Kim et al., 2019), anode
engineering (Lin, 2018; Suresh et al., 2019; Yin et al., 2020),
electric field regulation (Cheng et al., 2014a; Nikiforidis et al.,
2014; Yuan et al., 2018b), and ion transfer control (Ito et al.,
2011b; Song et al., 2014; Wang et al., 2014). In this section, we
will introduce the typical solutions for preventing zinc dendrite
formation in ZFBs from the above four aspects, as shown in
Figure 2.

Electrolyte Modification
Organic molecules, polymers, and metal ions are common
additives for inhibiting zinc dendrites. Organic molecules and
polymers can selectively adsorb onto the protruding parts of
anodes and act as a barrier to the access of zinc ions (Mitha
et al., 2018; Chladil et al., 2019). Therefore, they prevent zinc
deposition on protruding parts and accelerate zinc nucleation
and growth on dents by steric effects and/or electrostatic
shielding. Compared with polymers, organic molecules have
shorter chain lengths, and smaller end steric hindrances. Organic
molecules are more likely to cover protruding parts and delay
the deposition of zinc ions. Generally, the higher the polarity
of the organic additives, the stronger the adsorption on anodes.
However, excessively strong adsorption will result in severe
electrochemical polarization for zinc deposition. Metal ions can
affect the nucleation of zinc and thereby influence the growing
process, and so, a uniform and compact zinc deposits layer can
be obtained.

Organic molecules include non-ionic dimethyl sulfoxide
(Hosseini et al., 2019), thiourea (Goh et al., 2014; Sun et al.,
2017), diethyl ether (Xu et al., 2019), polyacrylic acid (Shimizu
et al., 2019); cationic quaternary ammonium (Rossi et al., 2020),
benzyl trimethyl ammonium hydroxide (Liu et al., 2019b),
trimethyl octadecyl ammonium chloride (Shimizu et al., 2019),
hexadecyl trimethyl ammonium bromide (Chladil et al., 2019),
anionic sodium dodecyl sulfate (Miyazaki et al., 2016; Hosseini
et al., 2018; Shimizu et al., 2019), and EMI-PF6 and EMI-TFSA
(Song et al., 2016). Polymers include polyethyleneimine (Banik
and Akolkar, 2015; Hashemi et al., 2017), Triton X-100 (Kan
et al., 1998), polyvinyl alcohol (Ortiz-Aparicio et al., 2013),
polyethylene glycol (Lee et al., 2006a; Ballesteros et al., 2007;
Banik and Akolkar, 2013), polyacrylamide (Zhang et al., 2019b),
Tween 20 (Chladil et al., 2019), and Pluronic F-127 (Hosseini
et al., 2018). Metal ions comprise Pb2+ (Justinijanović et al., 1973;
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FIGURE 1 | (A) Principle and structure of typical ZFBs. (B) Schematic of the nucleation and growth processes of zinc dendrites. (C) The energy barrier for the zinc

nucleation and growth processes. (D) Overpotential of zinc nucleation and growth processes. Reproduced from Pei et al. (2017) with permission. Copyright 2017

American Chemical Society.

Wen et al., 2012), Sn2+ (Yuan et al., 2007; Kim and Shin, 2015;
Yao et al., 2019), Bi3+ (Wang et al., 2001), In3+ (Leung et al.,
2011), and La3+ (Yang et al., 2004).

For example, cationic 1-Ethyl-1-methyl-pyrrolidinium
bromide was employed as an additive in electrolytes of zinc-
bromine flow batteries to prevent zinc-dendrite development
through forming an electrostatic shield in and around the
zinc dendrite during the charging process (Figures 2a–c; Kim
et al., 2019). The zinc deposits were uniform and compact,
but the charging overpotential increased by 47mV, and
discharging overpotential increased by 98mV. The cycling life
of zinc-bromine flow batteries was improved by sacrificing
voltage efficiency.

Tin ions promote the formation of crystal seeds and
substantially improve the charge retention of the zinc-nickel
flow battery. Interestingly, only a slightly negative shift in the
initial potential of zinc nucleation was observed, and the rate
performance and polarization properties of zinc anodes were no
significantly reduced (Yao et al., 2019).

The synergy between various additives should also be noted.
The synergistic effect of lead ions and TBAB can inhibit the
growth of zinc dendrites, thereby obtaining smooth and dense
zinc deposits in alkaline zincate electrolytes. This is beneficial
for improving the cycling life of zinc-nickel flow batteries
(Wen et al., 2012).

Anode Engineering
The physicochemical properties and structure of anodes have an
important effect on zinc deposition (Wei et al., 2016; Parker et al.,
2017; Jiang et al., 2018). As zinc randomly deposits onto and
strips from the anode, cracks are inevitable after repeated charge-
discharge cycles when using pure zinc foils/sheets as anodes
(Cheng et al., 2019b). To avoid rapid failure, conductive materials
are usually used as a host for zinc deposition/dissolution, such as
carbon (Jiang et al., 2018; Lin, 2018; Shen et al., 2018; Suresh et al.,
2019; Zeng et al., 2019; Zhang et al., 2019b), nickel (Cheng et al.,
2013a), copper (Zhang et al., 2019b), lead (Zhang et al., 2008),
tin (Yin et al., 2020), chromium (Zhang et al., 2008), indium (Lee
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FIGURE 2 | (a) Illustration of the prevention of zinc dendrite formation by cationic 1-Ethyl-1-methyl-pyrrolidinium bromide (MEP·Br) through an electrostatic shielding

effect. (b) Without and (c) with 1.2M MEP·Br in 2.0M zinc-bromide electrolyte solution. X100 magnification of deposited zinc. (a–c) Reproduced from Kim et al.

(2019) with permission. Copyright 2019 Elsevier. (d) Schematic illustration for the fabrication process of Sn-coated carbon felt. Interfacial charge-density of (e) carbon

and (f) Sn based on DFT calculation. (d–f) Reproduced from Yin et al. (2020) with permission. Copyright 2020 Wiley-VCH. (g–i) Schematic of zinc deposition when

employing an uncharged (top) and a negatively charged (bottom) membrane in a zinc–iron flow battery, and corresponding zinc morphologies at the end of charging.

Reproduced from Yuan et al. (2018b) with permission. Copyright 2018 Nature Publishing Group. (j) Electrolyte concentration distribution at Pe = 100 and Pe = 1e5.

Morphologies of deposited zinc in (k) quiescent alkaline electrolyte and (l) flowing alkaline electrolyte at a current density of 100mA cm−2. (j–l) Reproduced from

Wang et al. (2014) with permission. Copyright 2014 Elsevier.

et al., 2006b; Nikiforidis and Daoud, 2015), and their compounds
(Kang et al., 2018). Additionally, a traditional flat electrode has
a low specific surface area and limits the charging current and
capacity (Cheng et al., 2013b). Further design or modifications of
anodes is essential to obtain uniform and compact zinc deposits
and improve the performance of ZFBs (Chamoun et al., 2015; Li
et al., 2015; Yan et al., 2015).

Nickel and carbon materials are widely used as anodes
due to their good corrosion resistance and high electric
conductivity (Li et al., 2015, 2018; Wang et al., 2016, 2017b;
Xia et al., 2019). Under a large charging current, a rapid
zinc deposition process occurs, which leads to severe zinc
dendrite development on flat anodes because of their lower
specific surface area (Xie et al., 2019). Cheng et al. for the
first time, introduced three-dimensional porous nickel foam
into zinc-nickel flow batteries (Cheng et al., 2013b). Its high
specific surface area reduces the actual current density. Its
three-dimensional porous structure greatly reduces the internal

resistance of the interface between electrodes and electrolytes.
Thus, zinc dendrite was prevented, and improved power
density, energy efficiency, and cycling life were reported. This
indicates that three-dimensional porous electrodes are more
suitable for zinc deposition and dissolution under a high
charging current.

Recently, Yin et al. chose the low-cost metal Sn as
the morphology-inducing material for zinc deposition
(Yin et al., 2020). Magnetron sputtering technology was
used to enable Sn to be firmly deposited on carbon felt
without binders (Figures 2d–f). Sn possesses stronger
adsorption ability to zinc atoms than does carbon, which
effectively strengthened the affiliation between the Sn
nanoparticles and zinc deposits. Sn-modified carbon felt
thus affords more robust zinc nucleation sites and induces
compact and uniform zinc deposition. The Cycling life and
coulombic efficiency of zinc-bromine flow batteries were
significantly improved.
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Electric Field Regulation
The electric field drives zinc nucleation on anodes and the
transfer of zinc ions to the interface between anodes and
electrolytes. The electric field can be controlled by the charging
current (Cheng et al., 2014a; Desai et al., 2014; Nikiforidis et al.,
2014; Song et al., 2014), a charged separator (Yuan et al., 2018b),
and a pulsed charging model (Wang et al., 2015, 2017a; Zelger
et al., 2016; Garcia et al., 2017; Pichler et al., 2017; Yang et al.,
2019).

A charged separator provides an effective way to solve zinc
dendrite development in ZFBs. As shown in Figures 2g–i, Yuan
et al. designed a porous membrane with negative charges on the
pore wall and surface (Yuan et al., 2018b). The negatively charged
zincate ions and the negatively charged porous membrane repel
each other. Therefore, zinc ions can be deposited easily along
the direction of the separator to the 3D carbon felt frame. A
ZFB using a negatively charged membrane has no short circuit
in about 240 cycles at current densities of 80 to 160 mA/cm2 and
exhibits stable performance.

Ito et al. studied the effect of charging currents on zinc
morphology in flowing alkaline electrolytes (Ito et al., 2012).
The ratio of the effective current density to the limiting current
density (current density ratio) is directly related to the zincate
concentration on the interface and determines the morphology
of zinc deposits. When the current density ratio is <0.4, the zinc
morphology is mossy and porous.When the current density ratio
is between 0.4 and 0.9, it has a mixture of a mossy and crystal
structure. Only when the current density ratio is higher than 0.9
will the zinc deposits become crystalline and dense.

The charging module can be designed and operated
to inhibit zinc dendrite (Wang et al., 2015; Pichler et al.,
2017, 2018; Yang et al., 2019). The Taguchi method was
utilized to optimize the values of current density, duty
cycle, and pulse frequency. As the nucleation is mainly
determined by overpotentials and zinc ion distribution on
anodes, large overpotentials can produce more zinc seeds.
Interestingly, pulsed current or voltage provides more
time for zinc transfer to reactive interfaces. This will be
prone to form compact and uniform zinc deposits and
prevent zinc dendrite development in zinc-air flow batteries
(Yang et al., 2019).

Zinc Ion Transfer Control
Zinc ion transfer plays an important role in the growth of zinc
on the nucleus. A uniform distribution of zinc ions will result in
the same rate of zinc growth on anodes (Nikiforidis et al., 2014;
Song et al., 2014). However, the concentration gradient of zinc
ions may be different along the interfaces due to non-uniform
zinc seeding. Accurate regulation of zinc ion transfer is needed.
Currently, controlling the flow rate of electrolyte and adding
extra magnetic field are two typical methods for achieving this
(Shi et al., 2013; Wang et al., 2017a, 2018a,b).

Flowing electrolyte can change the mass transfer of zinc
ions from diffusion control in static electrolytes to convection
control (Wang et al., 2014). As shown in Figures 2j–l, the
larger the flow velocity is, the greater the zinc concentration

gradient is in the interfaces. The concentration gradient
is the main driving force for zinc ion transfer. A large
concentration gradient can ensure the timely delivery of reactants
for the nucleation and growth process of zinc deposition.
Therefore, zinc dendrites appear under quiescent electrolyte,
while uniform and compact zinc deposits are obtained in flowing
electrolyte (Wang et al., 2014).

Ito et al. also found that when the flow rate of the electrolyte is
higher than 15 cm/s, the growth of zinc dendrites is deformed in
the direction of the electrolyte flow, thereby avoiding short circuit
of the battery. A zinc-nickel system with a 100 Wh battery was
scaled up to evaluate the influence of zinc ion transfer on zinc
morphology and battery performance. This system had a long
cycling life of more than 200 cycles (Ito et al., 2011b).

A magnetic field can affect the movement of zinc ions (Wang
et al., 2018a). The magnet is placed on the anode side to design
an additional driving force for zinc ion transfer. The magnetic
field accelerates zinc ion transfer and suppresses the dendritic
growth of zinc deposits. As a result, the cycling life of batteries
is improved.

SUMMARY AND OUTLOOK

Zinc anodes are usually used in aqueous electrolytes, enabling
zinc-based batteries with high safety and low cost. Flowing
electrolyte can enhance mass transfer and reduce concentration
polarization. ZFBs have therefore been investigated widely
and show prospects for practical application. The issue of
zinc dendrite formation has been extensively studied since its
emergence. Some effective strategies for inhibiting zinc dendrite
development in ZFBs have been proposed, including electrolyte
modification, anode engineering, electric field regulation, and
ion transfer control. Although great progress has been made in
the field of zinc dendrites, many methods are used in isolation,
with strict working conditions, and costly implementation.
Here, remaining challenges and promising directions for the
inhibition of zinc dendrite formation in ZFBs are outlined
and anticipated.

i) The forms of zinc ions existing in aqueous solution are
very complex. Zinc ions can combine with different amounts of
water and other anions, which has a significant impact on the
nucleation and growth processes of zinc deposition.

ii) Zinc morphology depends strongly on specific operating
conditions, such as the chargingmodel, current density, flow rate,
zinc ion concentration, and temperature. Most current studies
only investigate one or two variables, idly fixing other parameters.
It is necessary to systematically investigate the relationship
between zinc morphologies and operating conditions. The
theoretical basis of our understanding of zinc deposition needs
to be enriched.

iii) The capacity and thickness of zinc deposits in ZFBs is
much larger than that of lithium deposits in lithium batteries. The
zinc deposits in ZFBs are expected to have a specific capacity of
more than 100 mAh/cm−2 and to be thicker than 170 µm. The
thicker the zinc deposit is, the more difficult it is to control its
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morphology. Therefore, great efforts are required to concentrate
on the inhibition of zinc dendrites under large capacity or
thick deposits.

iv) In static zinc batteries, brighteners, pretreatment
of zinc anodes, and new electrolytes have made
significant progress toward achieving a uniform zinc
electroplating/electrostripping process, which may enable
flow battery researchers to look into more possibilities in
further work.

In short, we look forward to a better solution to the zinc
dendrite problem with a view to achieving a long cycling life
and high safety and eventually improving the competitiveness
of ZFBs.
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