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Abstract

Collinear flanking stimuli can reduce the detectability of a Gabor target presented in periph-

eral vision. This phenomenon is called collinear lateral inhibition and it may contribute to

crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in

peripheral vision, however intensive training is required. Our aim was to assess whether

modulation of collinear lateral inhibition can be achieved within a short time-frame using a

single 20-minute session of primary visual cortex anodal transcranial direct current stimula-

tion (a-tDCS). Thirteen observers with normal vision performed a 2AFC contrast detection

task with collinear flankers positioned at a distance of 2λ from the target (lateral inhibition) or

6λ (control condition). The stimuli were presented 6˚ to the left of a central cross and fixation

was monitored with an infra-red eye tracker. Participants each completed two randomly

sequenced, single-masked stimulation sessions; real anodal tDCS and sham tDCS. For the

2λ separation condition, a-tDCS induced a significant reduction in detection threshold

(reduced lateral inhibition). Sham stimulation had no effect. No effects of a-tDCS were

observed for the 6λ separation condition. This result lays the foundation for future work

investigating whether a-tDCS may be useful as a visual rehabilitation tool for individuals with

central vision loss who are reliant on peripheral vision.

Introduction

Peripheral vision is susceptible to a phenomenon called crowding, whereby it is difficult to seg-

regate a target object from other objects that are in close proximity.[1–4] Crowding is a partic-

ular concern for patients with macular degeneration who lose central vision and are forced to

rely on peripheral vision. These patients often develop a preferred retinal locus (PRL), a spe-

cific region of the peripheral retina that is used for fixation.[5–7] Crowding impairs spatial

vision at the PRL leading to problems with everyday visual activates such as reading.

Crowding in peripheral vision involves cortical mechanisms that can be modulated. For

example, perceptual learning can reduce letter crowding in central vision for observers with
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amblyopia[8,9] and in peripheral vision for observers with macular degeneration[10–13].

However, perceptual learning typically requires a large number of training trials [14] which

may be a barrier for patients. In addition, the learning does not always transfer to non-trained

stimuli.[15–17] Interventions that can directly modulate mechanisms within visual cortex that

may contribute to crowding could complement perceptual learning techniques and enable

improved vision in patients with central vision loss.

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tech-

nique[18–20] that has the potential to modulate neural mechanisms that contribute to crowd-

ing. tDCS involves passing a weak 1-2mA electrical current through two head-mounted

electrodes (the anode and cathode) and can induce regional changes in cortical excitability

and neurotransmitter concentration that outlast the duration of stimulation. For example,

anodal tDCS (a-tDCS) of the motor cortex increases cortical excitability[21] and causes a

regional reduction in the concentration of the inhibitory neurotransmitter GABA [22–24].

When applied to the primary visual cortex, a-tDCS modulates contrast sensitivity[25,26], visu-

ally evoked potential amplitude[25] and the visual cortex BOLD response[26]. Of particular

importance for crowding, a-tDCS can immediately improve Vernier acuity and reduce sur-

round suppression within the near-periphery[27–29], possibly by modulating inhibition

within the visual cortex[27].

Lateral masking involves the presentation of a central target Gabor patch between two

flanker patches.[12] When the patches have collinear orientation, contrast detection thresholds

for the target can be increased (collinear inhibition or lateral masking) or reduced (collinear

facilitation) depending on target/flanker separation. Collinear inhibition is distinct from

crowding, which involves impaired object recognition rather than elevated detection thresh-

olds. However, collinear inhibition represents a well-established psychophysical technique for

assessing low-level inhibitory mechanisms that may contribute to crowding. Collinear inhibi-

tion and facilitation arise within the primary visual cortex[30,31]and are present in central [8]

and peripheral vision[12,32]. Maniglia et al. [12] observed that collinear lateral inhibition

could be reduced by�40% in normal peripheral vision after perceptual learning (20 sessions/

week over 8 weeks), indicating that collinear inhibition mechanisms within the periphery are

plastic.

In this study, we took a first step towards evaluating whether visual cortex a-tDCS has the

potential to reduce crowding in peripheral vision by assessing the acute effects of a single stim-

ulation session on lateral inhibition in participants with normal vision. We observed that 20

min of visual cortex a-tDCS reduced lateral inhibition in the visual periphery of healthy

observers by�30%. This finding paves the way for future studies designed to evaluate the pos-

sibility of inducing long-lasting changes in lateral inhibition using a-tDCS and, in the longer

term, the potential use of a-tDCS to reduce crowding in individuals with central vision loss.

Materials and methods

Apparatus and visual stimuli

13 participants with best corrected visual acuity of�20/20 agreed to participate in the study.

All participants provided written, informed consent. The study was approved by the University

of Waterloo research ethics committee. All the procedures involved in this research adhered to

the tenets of the Declaration of Helsinki. Participants were instructed to fixate a 0.2˚central

cross and respond to visual stimuli by pressing a key on a keyboard. Visual stimuli were cre-

ated using PsychoPy[33,34] (available for free download: http://www.psychopy.org). The sti-

muli were presented on a 27” LCD (ASUS - https://www.asus.com/ca-en/Monitors/
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ROG-SWIFT-PG278QR/) placed at the distance of 50cm from a chinrest. The LCD back-

ground luminance was 32 cd/m2.

The visual stimuli consisted of a central target, Gabor patch (visible extent size: 1˚, σ: 5, and

spatial frequency: 7 cpd) presented 6˚ to the left of the fixation cross. We selected a spatial fre-

quency of 7 cpd because this spatial frequency produced detection thresholds that were mea-

surable with our 8-bit-luminance-contrast stimulus display system. We presented our stimuli

at an eccentricity of 6˚ because about 70% of macular degeneration patients have a scotoma

size of<5˚ [5] and this experiment was the first step towards investigating the effects of a-

tDCS in individuals with macular degeneration. Two flanker Gabor patches (7 cpd, 0.8 con-

trast) were presented above and below the target. The flanker Gabor patches were positioned

at a distance of 2λ (lateral inhibition) or 6λ (control). Throughout the procedure, fixation was

monitored in real-time using an infrared video-based eye tracker (EyeLink II, SR Research,

Osgoode, Canada, 500 Hz sampling rate).

Psychophysical task

The 2AFC lateral masking task involved the measurement of contrast detection thresholds for

the central target Gabor patch. The initial contrast of the central Gabor patch was set at 0.5

and its contrast was altered using a 2 down and 1 up staircase procedure with a fixed step size

of 0.05. The staircase was terminated either after 50 trials or 5 reversals. The contrast detection

threshold was determined as the mean of the last 4 reversals. Two staircases were completed

and averaged for each threshold measurement. The same procedure was followed for both

flanker distances of 2λ and 6λ. These particular flanker distances were selected based on a pre-

vious study reporting collinear inhibition for 2λ but not for 6λ[12] and our own pilot data sup-

porting this observation. In fact, a 6λ flanker distance may induce facilitation.[32,35] The 2λ
separation was our experimental condition and the 6λ condition was a control condition to

test for any general effects of a-tDCS on contrast sensitivity for the target stimulus. A training

session was provided for all participants prior to data collection. Any trials in which eye posi-

tion deviated by more than 1˚ from fixation were immediately repeated.

Brain-stimulation (tDCS)

tDCS was delivered by a DC Stimulator MC from NeuroConn gmbh (https://www.rogue-

resolutions.com/catalogue/neuro-modulation/dc-stimulator-tes/) using a pair of rubber elec-

trodes (5cm x 5cm) placed inside saline soaked sponges. The electrodes were secured in place

by the head strap of the eye tracker over electrode positions Oz (anodal electrode) and Cz

(cathodal electrode) identified using the standard 10–20 EEG method (Fig 1). Participants

each completed two randomly sequenced stimulation sessions conducted at least 48 hours

apart; real 2mA anodal tDCS of the primary visual cortex for 20 minutes and sham tDCS

where the current was ramped up and then immediately ramped down with the electrodes

kept in place for 20 minutes. Participants were masked to the type of stimulation. During each

test session, participants completed a block of four threshold measurements for each flanker

distance pre-, during-, 5mins post- and 30mins post-stimulation. The sequence of 2λ and 6λ
separation measurements was randomized within each test block.

Data analysis

Prior to analysis, the standard deviation across reversals was calculated for each individual

staircase. Any staircase with a standard deviation of 2 or greater was considered to be unreli-

able and excluded from analysis. An ANOVA with within-subject factors of stimulation type

(anodal vs. sham) and time (pre-, during-, 5 minutes post- and 30 minutes post-stimulation)
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was applied to the log contrast thresholds. Post-hoc Tukey HSD was used to compare the log

contrast thresholds between different stimulation sessions. Paired t-tests were used to compare

session 1 and session 2 baselines to test for task learning. 2λ and 6λ baselines were also com-

pared to ensure that the 2λ separation induced collinear lateral inhibition. A p value of<0.05

was considered statistically significant.

Results

One staircase had a SD greater than 2 and was removed from further analysis (see S1 and S2

Tables). Baseline contrast detection thresholds for the central Gabor patch differed signifi-

cantly between the two flanker separation conditions, with higher thresholds for the 2λ separa-

tion than the 6λ separation (mean ± SEM; 2λ 0.36±0.03, 6λ 0.14±0.02, t12 = 8.2, p < 0.001).

This is consistent with previous observations of collinear inhibition within peripheral vision at

a target/flanker separation of 2λ[31,32] but not at a 6λ separation. No significant difference

Fig 1. Experimental design. A) Collinear configuration of Gabor patches that has the same orientation and phase. B) Sample picture of a participant wearing

the eye tracker and the electrodes of tDCS secured using the head strap of the eye tracker. C) Timeline of the experiment. The same timeline was used for

anodal and sham stimulations.

https://doi.org/10.1371/journal.pone.0232276.g001
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between the baseline measures for session 1 and session 2 were observed for either the 2λ (ses-

sion 1, 0.39±0.15; session 2, 0.34±0.16) (t12 = 1.1, p = 0.30) or 6λ (session 1, 0.13±0.15; session

2, 0.15±0.11) (t12 = 0.83, p = 0.42) conditions. This indicates the absence of task learning from

one session to the next.

Fig 2 shows raw individual participant data for the a-tDCS and sham stimulation sessions

for the 2λ (top row) and 6λ (bottom row) flanker separation conditions (a table of data with

mean contrast threshold and standard deviation of staircase reversals for every individual par-

ticipant is provided in the supporting material: S1 and S2 Tables). Fig 3 shows baseline-nor-

malized group means. For the 2λ separation, a-tDCS significantly improved contrast detection

thresholds for the central target (reduced collinear inhibition) whereas sham stimulation had

no effect. There was a significant interaction between stimulation type [anodal vs. sham] and

time [pre, during, post 5 min, post 30 min] (F3, 36 = 3.01, p = 0.042, partial η2 = 0.21), with

post-hoc Tukey HSD comparisons revealing significantly reduced contrast thresholds relative

to baseline for the a-tDCS session during stimulation (p = 0.001) and 30 min post stimulation

(p = 0.01). Thresholds at the 5 min post stimulation timepoint did not differ significantly from

baseline (p = 0.23). Thresholds within the sham stimulation session did not differ from base-

line for any timepoint. For the 6λ separation, there was no significant interaction between

stimulation type and time (F3, 36 = 0.46, p = 0.71, partial η2 = 0.04) indicating no difference

between a-tDCS and sham on contrast detection thresholds.

Fig 2. Contrast threshold. Log contrast detection thresholds (db) for each participant for the 2λ (top row) and 6λ (bottom row) flanker separations during the

active (left column) and sham (right column) stimulation sessions.

https://doi.org/10.1371/journal.pone.0232276.g002
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Discussion

The purpose of the study was to test the hypothesis that anodal tDCS would reduce collinear lat-

eral inhibition in peripheral vision of observers with normal vision. The hypothesis was based on

previous reports of improved peripheral Vernier acuity, Snellen acuity and contrast sensitivity

Fig 3. Reduction of collinear inhibition. Reduction of collinear inhibition using anodal-tDCS. Mean change in

contrast detection threshold from baseline for the 2λ (red) and 6λ (blue) flanker separations for the anodal (solid line)

and sham (dashed line) stimulation conditions. Error bars represent ±1 SEM and asterisk symbols represent statistical

significance (p<0.05). DS, during stimulation; PS, post stimulation.

https://doi.org/10.1371/journal.pone.0232276.g003
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[29] along with reduced center-surround suppression[27] following occipital lobe a-tDCS in par-

ticipants with normal vision. Enhanced contrast sensitivity and modulation of visual cortex activ-

ity following a-tDCS have also been observed in patients with amblyopia.[25,26] We observed a

significant reduction of collinear inhibition during and 30 min after a single 20 min application

of a-tDCS to the occipital lobe. The data collected 5 min post active stimulation exhibited that

same trend as data collected during active stimulation and 30 min post active stimulation, but

they did not differ significantly from baseline or the sham condition. These results could be likely

due to noise inherent in both tDCS effects and psychophysical tasks involving peripheral vision.

The effects of a single a-tDCS session are transient, but, overall, our results suggest that a-tDCS is

able to modulate low-level lateral interactions in early visual cortex that may contribute to crowd-

ing in peripheral vision. The reduction of collinear inhibition that we observed for the measure-

ments made offline (after stimulation) is consistent with previous studies reporting stronger

offline than online (during stimulation) primary visual cortex a-tDCS effects [36]. However, in

addition to the offline effect, we also observed a significant reduction of collinear inhibition for

the online measurements. This is in agreement with a previous report of primary visual cortex a-

tDCS effects on surround suppression. In general, offline effects are likely to be more important

for the potential use of a-tDCS to improve vision in people with central vision loss as they indicate

a lasting influence of a-tDCS on visual cortex function.

A number of explanations have been proposed for the effects of visual cortex a-tDCS. These

include changes in response gain[29], stochastic resonance leading to increased signal strength

[37], and reduced GABA-mediated inhibition[22,24]. Our results are most clearly aligned with

a reduction in cortical inhibition as we observed an effect for the lateral inhibition condition

but not the control condition that would have also benefitted from response gain and stochas-

tic resonance changes. Our results also support previous work indicating that lateral inhibition

takes place in V1[31,38], the primary target of our stimulation.

Previous studies have observed that collinear lateral inhibition can be reduced using per-

ceptual learning in observers with normal vision[12] and observers with macular degeneration

[10]. Maniglia et al.[12] reported an approximately 40% reduction of peripheral collinear lat-

eral inhibition after training in healthy observers (an approximate absolute change in contrast

threshold of 0.06). However, in order to achieve this reduction, each participant underwent

160 sessions over the course of 8 weeks (� 7600 trials/week). In this study, we observed that a

single session of anodal tDCS reduced collinear lateral inhibition by approximately 30% (an

absolute change in contrast threshold of 0.13 from baseline to 30 min post active stimulation).

This suggests that a-tDCS may enhance the effects of perceptual learning paradigms designed

to reduce collinear lateral inhibition. Indeed, a very recent study of healthy adults by Conte-

mori et al. observed that the combination of a different tDCS protocol, transcranial random

noise stimulation, and perceptual learning reduced peripheral crowding for trigram stimuli to

a greater extent than perceptual learning alone.[39] Furthermore, tDCS increased the transfer

of learning to other tasks. Taken together, the present results and the results of Contemori

et al.[39] provide a strong foundation for the future application of non-invasive brain stimula-

tion to the rehabilitation of patients with central vision loss, for whom the limitations of

peripheral vision represent a major cause of visual disability [40].

One limitation of our study is that there is no consensus on whether lateral masking and

crowding are associated, although they share similar features such as increasing strength with

eccentricity[41] and a recent study showed that crowding and lateral masking are related and

share similar neural mechanisms.[42] In particular, the mechanism of crowding is likely to

involve higher visual processing centers.[41] Nonetheless, it is plausible that enhancing the

early stages of visual processing by reducing collinear inhibition will improve higher-level

visual processing of crowded stimuli.[43,44] In addition, in this study we used a 6λ target
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flanker separation distance as a control condition. This separation distance was chosen

because it does not induce lateral inhibition, however, flankers at this separation may induce

collinear lateral facilitation.[32,35] An alternative control condition could have involved the

presentation of orthogonally oriented flankers at a 2λ target-flanker separation.[32,35,45] The

fact that we found no effect of a-tDCS for the 6λ separation may suggest that lateral facilitation

is not affected by V1 a-tDCS, perhaps because lateral facilitation involves visual areas down-

stream from V1.[46,47] A study focused directly on lateral facilitation is required to address

this interesting possibility. Finally, this study demonstrates only an acute effect of a-tDCS on

lateral inhibition. The next stage in the development of this research area will be to study the

possibility of long-lasting effects, perhaps by administering multiple a-tDCS sessions[48,49]

and/or combining a-tDCS with perceptual learning[50].

Supporting information

S1 Table. Mean contrast threshold values (db) and SD of reversals for each participant in

2λ condition.

(DOCX)

S2 Table. Mean contrast threshold values (db) and SD of reversals for each participant in

6λ condition.

(DOCX)
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