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Stroke-induced endothelial cell injury leads to destruction of cerebral microvasculature
and significant damage to the brain tissue. A subacute phase of cerebral ischemia
is associated with regeneration involving the activation of vascular remodeling,
neuroplasticity, neurogenesis, and neuroinflammation processes. Effective restoration
and improvement of blood supply to the damaged brain tissue offers a potential
therapy for stroke. microRNAs (miRNAs) are recently identified small RNA molecules
that regulate gene expression and significantly influence the essential cellular processes
associated with brain repair following stroke. A number of specific miRNAs are
implicated in regulating the development and propagation of the ischemic tissue
damage as well as in mediating post-stroke regeneration. In this review, I discuss the
functions of the miRNA miR-155 and the effect of its in vivo inhibition on brain recovery
following experimental cerebral ischemia. The article introduces new and unexplored
approach to cerebral regeneration: regulation of brain tissue repair through a direct
modulation of specific miRNA activity.
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INTRODUCTION

Stroke is a major public health problem in the United States, with 795,000 stroke survivors each
year (610,000 of these are first attacks). According to the global stroke burden assessment, in 2013
there were more than 25 million stroke patients worldwide, with ∼10.3 million having a first
stroke. Ischemic strokes account for up to 71% of all stroke cases and 51% of all stroke-related
deaths worldwide, and they are currently among the top leading causes of serious, long-term
disability (Feigin et al., 2016). Stroke-associated ischemic damage involves cellular bioenergetic
failure, excitotoxicity, oxidative stress, blood–brain barrier dysfunction, microvascular injury,
post-ischemic inflammation, and, ultimately, the death of neurons, glia, and endothelial cells.
The endothelial cell damage leads to a significant microvascular injury that directly contributes
to cerebral tissue damage via increased endothelial cell permeability, matrix degradation, and
the loss of cerebrovascular autoregulation (Brouns and De Deyn, 2009; Xing et al., 2012). The
ischemic cascade leads to the development of the infarct core, which is represented by non-
viable brain tissue. A hypoxic, but still viable, peri-infarct area surrounding the core region is a
subject of intensive investigation, with a focus on neuroprotective and pro-regenerative treatments
for preservation of salvageable brain tissue. The subacute phase of ischemia is accompanied
by the active regeneration process, including post-ischemic angiogenesis and vasculogenesis
in the ischemic boundary zone, which enhances oxygen and nutrient supply to the affected
tissue (Ding et al., 2008; Beck and Plate, 2009). Stroke induces a potent neurogenic response
and a massive migration of neural progenitors into the lesion area, which may substantially
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contribute to recovery and repair processes (Arvidsson et al.,
2002; Kernie and Parent, 2010). In addition, cerebral ischemia
triggers neuronal plasticity reflected in formation of new
structural and functional connections between the neurons from
the area adjacent to the infarcted tissue and the surrounding
“healthy” brain tissue of the same hemisphere (Carmichael
et al., 2017). Post-ischemic inflammatory response is an
integral part of both brain damage and recovery. Post-ischemic
elevation of cytokines is associated with recruitment of
neutrophils, lymphocytes, and monocytes and activation of
resident microglia, astrocytes, and endothelial cells. Activation
of microglia and astrocytes leads to the additional release
of pro-inflammatory factors (Liguz-Lecznar and Kossut,
2013). Lower levels of pro-inflammatory cytokines and higher
expression of anti-inflammatory cytokines are associated with
lower infarct size and a better clinical outcome (Perera et al.,
2006; Lakhan et al., 2009). However, there is controversy
surrounding the dual role of neuroinflammation in tissue
damage and recovery: the post-stroke inflammation events
contribute to brain injury but, on the other hand, could
participate in tissue remodeling and recovery following brain
damage. All of the described functionally-linked regeneration
processes (including vascular remodeling, neural stem cell
activation, neuronal plasticity, and neuroinflammation) reflect
crosstalk between the components of the injured brain tissue.
Molecular mechanisms of this complex repair process are
extensively studied in search of possible targets for therapeutic
intervention.

Strategies to Improve a Post-stroke
Recovery
Despite the recent progress in post-stroke survival, therapeutic
approaches directed toward recovery remain limited. Traditional
approaches utilizing tissue-plasminogen activator (rt-PA) for
thrombolysis are associated with time limitations (a 3–4 h
therapeutic window) and possible complications (Lakhan
et al., 2009). Neurorestorative processes may be enhanced by
improving angiogenesis, neuroplasticity, and neurogenesis.
Proposed approaches for vascular repair include the injection
of angiogenesis-promoting compounds (Navaratna et al., 2009)
or the transplantation of the endothelial progenitors (Fan
et al., 2010; Bai et al., 2015) or neural stem/progenitor cells
(Roitbak et al., 2008). Stem cell-based therapy for stroke and
current pharmacological and tissue engineering approaches are
discussed in detail in most recent reviews (Carmichael, 2016;
Venkat et al., 2017).

All of the described therapeutic approaches are associated
with certain limitations and complications, such as the increased
vascular permeability and edema following VEGF treatment or
possible transplant rejection, tumor formation, and infection
associated with progenitor cell transplantation. An emerging
and yet unexplored approach for treatment is based on the
epigenetic processes associated with stroke (Pearce, 2011; Kassis
et al., 2017). Among the epigenetic mechanisms that regulate
stroke progression and recovery are the signaling pathways
mediated by recently identified short non-coding RNAs called
microRNAs.

microRNAs

miRNAs are a diverse class of highly conserved small RNA
molecules that function as critical regulators of gene expression
and are able to greatly influence cell development, differentiation,
proliferation, and apoptosis (Kato and Slack, 2008). It is
estimated that a large number of encoded genes are regulated
by these single-stranded non-coding short (18–24 nucleotides
long) RNAs. The miRNAs bind to their mRNA target at
complementary sequences and downregulate gene expression by
inhibiting the mRNA translation into proteins or by inducing
mRNA degradation (Sun et al., 2010). The miRNAs control
post-transcriptional gene expression in many tissues, including
the brain (Ludwig et al., 2016). miRNA profiles have been
characterized in the cerebral vasculature, neurons, astrocytes, and
microglia (Kosik, 2006; Butovsky et al., 2014; Lopez-Ramirez
et al., 2014; Rao et al., 2016).

Recent findings demonstrate that miRNAs orchestrate a
variety of signaling pathways involved in stroke progression and
post-stroke recovery, including neurogenesis (Zhao et al., 2008;
Shi et al., 2010), endothelial cell morphogenesis (Poliseno et al.,
2006; Suarez et al., 2007), and neuroinflammation (Gaudet et al.,
2017). Multiple miRNAs have been found to play a profound role
in stroke progression. The role of the miRNAs and the associated
molecular mechanisms are discussed in detail in several excellent
reviews (Lim et al., 2010; Vemuganti, 2010; Khoshnam et al.,
2017; Li et al., 2017). Significant changes of miRNA profiles
in the brain tissue and blood were detected at different times
after the experimental ischemia in rodents (Liu et al., 2010).
Numerous studies have reported a significant deregulation of
specific circulating miRNAs in stroke patients (Jickling et al.,
2014; Sepramaniam et al., 2014). These distinctive temporal
changes are now regarded as indicators of the risk, occurrence,
severity, and prognosis of stroke and have prompted an extensive
search for specific peripheral miRNAs as biomarkers of the
disease (Vijayan and Reddy, 2016). Another approach constitutes
targeted regulation of the specific microRNA activity to stimulate
a recovery process after stroke.

In Vivo Regulation of miRNAs
Systemic or local administration of the miRNA inhibitors
and mimics are utilized to regulate the activity of specific
miRNAs in various experimental animal models, including
brain tumor (Teplyuk et al., 2016), breast cancer (Zhao et al.,
2013), pancreatic cancer (Gibori et al., 2018), and pulmonary
hypertension (McLendon et al., 2015) disease models. The first
steps are performed to apply this technology to humans, such
as subcutaneous delivery of anti-miR-122 in chronic hepatitis
C patients (Stelma et al., 2017; van der Ree et al., 2017). This
method could provide a future therapeutic potential in treatment
of various diseases (Linnstaedt et al., 2010; Zhang et al., 2013).
In vivo regulation of miRNAs in the animal models of stroke
has been achieved by direct intracerebroventricular injections
of specific antagomirs for miRNAs miR-493 and miR-23a-3p
(Zhao et al., 2013; Li et al., 2016). Our recent investigations
involving the in vivo inhibition of miRNA miR-155 introduced
a novel approach to cerebral regeneration after stroke: regulation
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of post-stroke recovery via systemic injection of specific miRNA
inhibitor.

miR-155 Functions
miR-155 is a multifunctional miRNA implicated in regulating
various physiological and pathological processes such as
hematopoietic lineage differentiation, immunity, inflammation,
cancer, and cardiovascular diseases (Faraoni et al., 2009;
O’Connell et al., 2010). miR-155 is specifically expressed in
hematopoietic cells and cells involved in vascular remodeling,
including B-cells, T-cells, monocytes, and granulocytes as well
as endothelial cells and smooth muscle cells (Landgraf et al.,
2007; Sun et al., 2012). Among other functions, miR-155 is
involved in regulating the endothelial and vascular function
(Sun et al., 2012; Weber et al., 2014). Downregulation of
this miRNA is accompanied by reduced inflammation and
improved regeneration processes (Kurowska-Stolarska et al.,
2011; Murugaiyan et al., 2011; van Solingen et al., 2014).
In addition to these multiple functions, miR-155 is involved
in progression of multiple CNS disorders and pathological
conditions. Some of the recent studies describing these miR-155
functions are summarized in Table 1.

EFFECT OF SYSTEMIC miR-155
INHIBITION AFTER THE EXPERIMENTAL
CEREBRAL ISCHEMIA

Our in vitro studies identified miR-155 as a potential regulator
of the endothelial morphogenesis: specific miR-155 antisense
inhibitors supported capillary-like tube formation by the mouse
brain endothelial cells (Roitbak et al., 2011). We hypothesized
that the inhibition of miR-155 after the experimental ischemia
could support cerebral vasculature and improve vascular
function. Intravenous injections of a specific anti-miR-155
inhibitor, initiated at 48 h after mouse distal middle cerebral
artery occlusion (dMCAO), resulted in ∼50% downregulation
of miR-155 in the injured hemisphere of the mouse brain.
In vivo two-photon laser scanning microscopy imaging and
quantification of red blood cell (RBC) flow velocity detected
a significantly improved blood flow in the peri-infarct area of
the miR-155 inhibitor-injected mice during the first 2 weeks
after dMCAO (Caballero-Garrido et al., 2015). These animals
also demonstrated an improved vascular integrity and well-
preserved capillary tight junctions (TJs). An assessment of
the brain tissue damage using MRI and electron microscopy
(EM) demonstrated that at 3 weeks after stroke there was a
significant (34%) reduction of the infarct size and a significant
decrease in neuronal damage in miR-155 inhibitor-injected
animals, as compared to the control group. Improved TJ
integrity in the inhibitor-injected animals was accompanied
by the increased expression of major TJ protein ZO-1
and miR-155 target protein Rheb (Caballero-Garrido et al.,
2015).

miR-155 inhibition after dMCAO significantly altered the
time course and the expression levels of the major cytokines
(including IL-10, IL-4, IL-6, MIP-1α, IL-5, and IL-17) as well

TABLE 1 | Involvement of miR-155 in CNS disorders and pathological conditions.

Amyotrophic lateral
sclerosis (ALS)

Increased expression in CNS tissue from ALS
patients and in mouse model of ALS (SOD1 mice).
Inhibition prolongs survival and ameliorates disease
in SOD1 mice (Koval et al., 2013; Butovsky et al.,
2015).

Epilepsy Regulates glutamate uptake capacity of astrocytes
in epilepsy (Gao et al., 2017). Significantly
upregulated in the hippocampal tissues of children
with Medial temporal lobe epilepsy (Ashhab et al.,
2013).

Stroke Expression significantly affected by cerebral
ischemia in rodents (Liu et al., 2010). Increased
expression in rat model of stroke; inhibition
supports post-stroke recovery (Caballero-Garrido
et al., 2015; Xing et al., 2016).

Experimental autoimmune
encephalomyelitis (EAE)

Reduced severity of EAE in miR-155 KO mice
(Murugaiyan et al., 2011). Knockdown results in
reduction of Th1 and Th17 cells and mild EAE
(Zhang et al., 2014).

Spinal cord injury Improved locomotor recovery in miR-155 KO mice
(Yi et al., 2015; Gaudet et al., 2017).

Multiple sclerosis (MS) Upregulated in blood and brain samples of MS
patients (Lopez-Ramirez et al., 2014; Zhang et al.,
2014).

Alzheimer’s disease (AD) Upregulation contributes to neuroinflammation in
transgenic mouse model of AD (Guedes et al.,
2014). Regulates T-lymphocyte activation and
function in AD (Song and Lee, 2015).

Parkinson’s disease (PD) Increased expression in mouse model of PD;
mediates inflammatory responses (Thome et al.,
2016).

Brain tumor Promotes glioma cell proliferation and contributes
to glioma progression (Zhou et al., 2013; Yan et al.,
2015); Increased expression in glioma tissue is
associated with poor prognosis in patients (Sun
et al., 2012). Upregulated in glioblastoma and
promotes tumor growth (D’Urso et al., 2012).

as considerably modified the microglia/macrophage phenotype
in the peri-infarct area of stroke. Electron microscopy-based
quantification detected a decreased number of phagocytically
active peri-vascular microglia/macrophages (M/Ms) in these
animals (Pena-Philippides et al., 2016).

The assessment of sensorimotor deficits (bilateral
asymmetry/adhesive removal test) and gait/locomotion
recovery (CatWalk system), as well as the weight-gain
evaluation, indicated that the inhibitor-injected animals
regained their sensorimotor deficits and recovered faster
than controls (Caballero-Garrido et al., 2015). Thus, miR-
155-inhibition-induced support of the cerebral vasculature,
preservation of brain tissue, and the modified course of
post-stroke neuroinflammation reflected in more efficient
functional recovery of the inhibitor-injected animals. To our
knowledge, this is among first reports describing the efficacy
of intravenous antagomir injections performed during the
sub-acute phase of the experimental stroke. Another study
involving intravenous anti-miR-181 demonstrated improved
animal recovery in mouse transient focal ischemia model (Xu
et al., 2015). Experiments utilizing miR-155 inhibition in the
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rat model of cerebral ischemia supported our studies and
demonstrated the efficacy of anti-miR-155 treatment in rats
(Xing et al., 2016). In this study, the intracerebroventricular
injections of anti-miR-155 performed at 24 h before the
MCAO resulted in reduced infarct size and improved
recovery. Similar to our findings, this effect was associated
with the activation of miR-155 target Rheb (Xing et al.,
2016).

MOLECULAR MECHANISMS OF miR-155
INHIBITION-INDUCED SUPPORT OF
POST-STROKE RECOVERY

Possible mechanisms and consequences associated with in vivo
inhibition of miR-155 after stroke are summarized in Figure 1.
The improved blood supply to the peri-infarct area of the injured
hemisphere detected in the inhibitor-injected animals could be
mainly attributed to miR-155 inhibition-induced preservation
of the endothelial TJs and thus BBB integrity. Based on the
analyses, strengthening of TJs could be mediated by miR-155
inhibition-induced stabilization of ZO-1, a regulatory scaffolding
protein critical for the TJ assembly and signal transduction
(Antonetti et al., 1999; Harhaj and Antonetti, 2004; Balda and
Matter, 2009). Since ZO-1 is not a direct target of miR-155,
the exact mechanism of this regulation is unclear. Based on
the analyses, miR-155 downregulation-induced ZO-1 stability
could be mediated by the upregulation of a direct miR-155
target protein Rheb. Interestingly, stabilization of ZO-1 after
miR-155 inhibition was also detected in human brain vascular
endothelial cells in vitro (our unpublished data; Lopez-Ramirez
et al., 2014). In these studies, the increased expression of
ZO-1 and its stabilization on the endothelial cell membrane
was associated with miR-155 direct target protein claudin-1.
Identification of new miR-155 target proteins in the future
could further clarify the effect of miR-155 activity on ZO-1
protein.

In the in vivo setting, other direct miR-155 targets
upregulated in the inhibitor-injected mouse brain could
broadly influence vascular function and brain tissue remodeling.
These molecules are implicated in the regulation of angiogenesis,
vascular stabilization and remodeling as well as vasodilation,
neurovascular inflammation, and neuroprotection and thus
could significantly contribute to the observed beneficial
neurovascular effect of miR-155 inhibition (Figure 1). Detected
elevated expression of SMAD5 protein may be associated
with the activation of the bone morphogenetic protein
(BMP) pathway, implicated in reduction of inflammation
and vasculature stabilization (Marchuk et al., 2003; Pardali et al.,
2010). Increased expression of Rictor, a major component of
mTORC2 complex, could activate mTOR signaling, implicated
in supporting angiogenesis (through activation of nitric oxide
signaling) and neuroprotection after stroke (Karar and Maity,
2011; Chong et al., 2013). Endothelial nitric oxide synthase
(eNOS) is associated with the improvement of blood flow and
decreased rates of neuronal injury (Srivastava et al., 2012).
Neuroprotective and overall pro-regenerative effect of miR-155

inhibition could be also mediated via its influence on brain-
derived neurotrophic factor (BDNF) expression (Varendi et al.,
2014).

In addition to these possible mechanisms, downregulation of
pro-inflammatory miR-155 could improve the recovery outcome
by significantly influencing post-stroke inflammation. The effect
of miR-155 silencing was characterized by a suppression of an
early, transient, harmful increase of pro-inflammatory cytokines,
followed by sustained upregulation of neuroprotective cytokines
at the later stages of stroke recovery (14 days after stroke).
At 7 days after dMCAO, in the anti-miR-155 injected animals,
there was a decreased expression of pro-inflammatory cytokines
CCL12 and CXCL3, implicated in vascular inflammation,
accompanied by the upregulation of miR-155 direct targets
and cytokine suppressors SHIP-1 and SOCS-1 as well as
downregulation of JAK/STAT (Janus kinase/signal transducers
and activators of transcription) pathway-mediated cytokine
signaling. miR-155 inhibition resulted in a reduced number
of phagocytic perivascular microglia/macrophages (M/Ms) and
decreased expression of macrophage marker CD45 and active
phagocytosis marker CD68 (Pena-Philippides et al., 2016). Based
on these findings, we concluded that miR-155 induced repression
of cytokine signaling and decreased M/M phagocytic activity
could contribute to preservation of TJs observed at 7 days after
dMCAO.

At 14 days after dMCAO there was a sustained increase
in expression of IL-10 in the inhibitor-injected animals.
This major anti-inflammatory cytokine was shown to trigger
an anti-inflammatory response beneficial for stroke outcome
(Bazzoni et al., 2010; Perez-de Puig et al., 2013). High levels
of IL-10 after the miR-155 inhibition could be induced by the
observed prolonged elevation of miR-155 target and transcription
factor C/EBP-β. Among other cytokines, with the increased
expression at 14 days, were Il-4, IL-5, IL-6, and Il-17, which
are characterized by context-dependent dual action and have
a significant impact on neuroprotection and overall stroke
outcome (Kim et al., 1995; Loddick et al., 1998; Li et al., 2001;
Jiang et al., 2008; Erta et al., 2012). In contrast to 7 days, at
14 days after stroke there was an increase of CD45 and CD68-
positive M/Ms in the peri-infarct area of miR-155 inhibited mice
(Pena-Philippides et al., 2016). According to the literature, Iba-
1/CD45-positive macrophages expressing active phagocytosis
marker CD68 facilitate the brain recovery process following
stroke (Wattananit et al., 2016). Based on our data, we propose
that miR-155 inhibition at 48 h after stroke results in suppression
of early transient harmful actions of the activated M/Ms at 7 days,
followed by an enhancement of their protective and reparative
functions at 14 days after dMCAO.

CONCLUSION

Based on these findings, I conclude that systemic inhibition of
miR-155 at 48 h following the experimental cerebral ischemia
supports cerebral microvasculature and improves cerebral blood
supply to the peri-infarct area of stroke at 7 days after stroke.
These constructive processes following miR-155 downregulation
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FIGURE 1 | Possible molecular mechanisms of miR-155 inhibition-mediated support of post-stroke recovery. Possible molecular mechanisms mediating
neurorestorative processes could be associated with the activation (red arrows) or repression (blue arrows) of miR-155-regulated signaling pathways.
Downregulation of miR-155 results in the increased expression of miR-155 target proteins SMAD5, Rictor, eNOS, and Rheb at 7 days after dMCAO. These signaling
molecules activate molecular pathways including BMP, mTOR, NO, and Akt/ZO-1, which strengthen the barrier function of the microvascular TJs. Upregulated
miR-155 targets SOCS-1 and SHIP-1 suppress JAK/STAT-mediated cytokine signaling, which leads to a decreased number of CD45/CD68-expressing M/Ms and
reduced inflammation. As a result, miR-155 inhibitor-induced support of BBB integrity leads to the reduction of brain edema and restoration blood flow in the
peri-infarct area of stroke. At 14 days after dMCAO, there is an increased expression of the neuroprotective cytokines, including a major anti-inflammatory cytokine
IL-10. IL-10 (possibly activated by miR-155 target C/EBP-β) could upregulate (dotted lines) other cytokines as well as M/M surface antigen CD45. IL-10-triggered
neuroprotective response and delayed activation of phagocytic M/Ms facilitate the brain recovery process. The neuroprotective processes occurring at 7 and
14 days prevent delayed neuronal death in the peri-infarct area at 21 days after the experimental ischemia. Reduced brain infarct is accompanied by improved
functional recovery. SMAD5, mothers against decapentaplegic homolog 5; eNOS, endothelial nitric oxide synthase; Rheb, Ras homolog enriched in brain; SOCS-1,
suppressor of cytokine signaling molecule 1; SHIP-1, Src homology 2-containing inositol phosphatase 1; BMP, bone morphogenetic protein; mTOR, mammalian
target of rapamycin; NO, nitric oxide; ZO-1, zonula occludens-1; JAK/STAT, Janus kinase/signal transducers and activators of transcription; CD45, protein tyrosine
phosphatase, receptor type C/cluster of differentiation antigen 45; CD68, cluster of differentiation antigen 68; C/EBP-β, CCAAT/enhancer binding protein beta;
Ccl12, chemokine ligand 12; CXCL3, chemokine (C-X-C motif) ligand 3; IL, interleukin. The diagram is adopted from Caballero-Garrido et al. (2015) in accordance
with the Journal of Neuroscience Permissions Policy, with slight modifications based on the results published in Pena-Philippides et al. (2016).

are achieved via direct preservation of TJ integrity and
suppression of the early stage post-stroke inflammation. The
vascular support at 7 days results in neuroprotection, reduction
of the infarct size, and improvement in functional recovery
at the later stages (21 days) of regeneration. This recovery
mechanism is facilitated by: (1) the initial preservation of
vascular integrity, which prevents the propagation of the ischemic

damage into the peri-infarct area; (2) the activation of IL-10-
mediated neuroprotective mechanisms, and (3) transition from
harmful phenotype toward the neuroprotective and reparative
microglia/macrophage phenotype. All these support mechanisms
could be mediated via the activation of miR-155 direct target
proteins, including Rheb, SMAD5, Rictor, eNOS, SOCS-1, SHIP-
1, and C/EBP-β.
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CHALLENGES AND FUTURE
IMPLICATIONS

As we observed in our studies, silencing of a single miRNA
can regulate a broad set of target genes and trigger synergistic
therapeutic effect. Based on this advantage, in vivo regulation
of miRNAs after stroke could become a promising approach
to cerebral regeneration. One of the major challenges of
miRNA-based therapy in patients is achieving specific, safe, and
efficient regulation of particular miRNA expression. Systemic
delivery of miRNA inhibitors and mimics is problematic because
of their instability in blood circulation. Therefore, lipid-based
delivery vehicles, viral vectors, and nanoparticle-conjugated
oligonucleotides are utilized for the introduction of synthetic
miRNA inhibitors and mimics in vivo. Recently developed
Locked Nucleic Acid (LNA)-based technology (successfully
used in our in vivo studies) greatly increases the affinity of
the inhibitors for their target microRNAs, improves their
resistance to enzymatic degradation, and minimizes off-target
effects. Future innovations around the delivery techniques
are expected, as miRNA-based treatment remains to be of
great interest for the pharmacological industry. Delivery
of the antisense inhibitors across the blood–brain barrier
creates an additional challenge. This problem is minimized
due to increased BBB leakage following stroke; however,
impaired cerebral circulation could affect the inhibition
efficacy.

Discovery of more stroke-associated miRNAs could lead
to the development of a combinatory therapy involving the
regulation of multiple miRNA expression: targeting a subset of
genes with multiple miRNAs should enhance the therapeutic

effect. Certain caution should be given to possible side effects
of these molecules in human trials, with specific emphasis
on safety, tolerability, and efficacy of treatment. In fact,
systemic miR-155 inhibition may influence immune function
and negatively interfere with post-stroke recovery in humans.
The optimal dose and time of the therapeutic intervention with
specific microRNA inhibitors or mimics should be carefully
determined to avoid any destructive intervention into the
natural regeneration process. This therapeutic approach should
be based on the knowledge of specific microRNA function,
including its influence on the viability, proliferation, and
differentiation of the brain tissue components as well as its
possible effect on cerebral vasculature and blood flow, post-stroke
inflammation, thrombosis, and atherosclerosis, etc. The degree of
the inhibition or overexpression of specific miRNAs should also
be taken into consideration; moderate systemic downregulation
or upregulation could be a better choice to avoid secondary
non-specific off-target effects or negative side effects such as
impairment of the immune function.
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