ISSN 1600-5368

Received 1 July 2014 Accepted 13 July 2014

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: metal–organic framework; dicyanoargentate(l); 1,2-bis(pyridin-2-yl)ethylene; crystal structure

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a two-dimensional grid-type iron(II) coordination polymer: poly[[diaquatetraµ-cyanido-diargentate(I)iron(II)] *trans*-1,2-bis-(pyridin-2-yl)ethylene disolvate]

Jintana Othong,^a Nanthawat Wannarit,^b Chaveng Pakawatchai^c and Sujittra Youngme^a*

^aMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kean 40002, Thailand, ^bDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12121, Thailand, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. *Correspondence e-mail: sujittra@kku.ac.th

In the title compound, { $[Ag_2Fe(CN)_4(H_2O)_2]\cdot 2C_{12}H_{10}N_2\}_n$, the asymmetric unit contains one Fe^{II} cation, two water molecules, two dicyanidoargentate(I) anions and two uncoordinating 1,2-bis(pyridin-2-yl)ethylene (2,2'-bpe) molecules. Each Fe^{II} atom is six-coordinated in a nearly regular octahedral geometry by four N atoms from dicyanidoargentate(I) bridges and two coordinating water molecules. The Fe^{II} atoms are bridged by dicyanidoargentate(I) units to give a two-dimensional layer with square-grid spaces. The intergrid spaces with interlayer distance of 6.550 (2) Å are occupied by 2,2'-bpe guest molecules which form O – H···N hydrogen bonds to the host layers. This leads to an extended three-dimensional supramolecular architecture. The structure of the title compound is compared with some related compounds containing dicyanidoargentate(I) ligands and N-donor organic co-ligands.

1. Chemical context

Metal-organic frameworks (MOFs) have attracted much attention because of their versatile topologies and dimensions. These structural properties lead to potential interesting applications in the filed of magnetism, sensing, porous materials and catalysis (Biswas *et al.*, 2014; Horike *et al.*, 2008; Sanda *et al.*, 2013). Structural diversity in MOFs can occur as a result of various preparation methods. However, supramolecular chemistry and topologies of MOFs are rather controlled by the nature of the metal ions and the structure of the organic ligands (Yang *et al.*, 2008).

One-, two- and three-dimensional frameworks containing dicyanidoargentate(I) and N-donor linkers such as pyrazine, 4,4'-bpy and 4,4'-bpe [bpy is bipyridineand bpe is 1,2-bis(4-pyridyl)ethylene] ligands have been studied (Soma &

Figure 1

A view of the asymmetric unit in (I), showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.

Iwamoto, 1996; Munoz *et al.*, 2007; Dong *et al.*, 2003). Whereas 4,4'-bpe appears to be somewhat ubiquitous in cyanido compounds, its cousin 2,2'-bpe is not very often used, which led us to prepare a dicyanidoargentate(I) compound with a 2,2'-bpe ligand. In this communication, we report the synthesis and crystal structure of a three-dimensional supramolecular framework of { $[Ag_2Fe(CN)_4(H_2O)_2]\cdot 2C_{12}H_{10}N_2$ }, (I).

2. Structural commentary

The asymmetric unit consists of one Fe^{II} atom, two dicyanidoargentate(I) ligands, two water molecules and two uncoordinating 2,2'-bpe molecules (Fig. 1). Ag1 and Ag2 are situated on inversion centres. The dicyanidoargentate(I) ligands link Fe^{II} atoms into an infinite two-dimensional layer

Figure 2

A view of the square grid of (I) in the *ac* plane; the 2,2'-bpe molecules have been omitted. [Symmetry codes: (iii) -x + 1, -y + 2, *z*; (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y, -z + 1.]

network with a nearly square-grid geometry of 10.66 \times 10.64 Å² (Fig. 2). The Fe^{II} ion is six-cooordinated in a nearly regular octahedral geometry by four N atoms from four dicyanidoargentate(I) ligands and two water molecules.

Table 2Hydrogen-bond geometry (Å, °).

	•	·		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H2W\cdots N5$	0.76 (3)	2.07 (3)	2.829 (2)	174 (2)
$O2-H4W \cdot \cdot \cdot N6$	0.73 (3)	2.09 (3)	2.823 (3)	174 (3)
$O1 - H1W \cdot \cdot \cdot N7^{i}$	0.75 (3)	2.14 (3)	2.870 (3)	164
$O2-H3W \cdot \cdot \cdot N8^{ii}$	0.74 (3)	2.15 (3)	2.868 (3)	162

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

3. Supramolecular features

Four independent 2,2'-bpe molecules are located between adjacent grid layers of which two are parallel (blue) to the grid layers and two non-parallel (red) (Fig. 3). The interlayer distance is 6.550 (2) Å. The two parallel 2,2'-bpe ligands form hydrogen bonds to the host layer (O1-H2W···N5 = 2.07 Å and O2-H4W···N6 = 2.09 Å) (Fig. 4a), while the other two arrange themselves across the host layer to form also hydrogen bonds (O1-H1W···N7 = 2.14 Å and O2-H3W···N8 = 2.15 Å) (Fig. 4b) to the host layers. These hydrogen bonds generate an extended three-dimensional supramolecular framework.

4. Database survey

The two-dimensional structure of (I) was found to be different from other closely related compounds. In the structure of $[Cd(imH)_4[Ag(CN)_2]_2]_n$ (imH = imidazole), a one-dimensional chain *via* bridging dicyanidoargentate(I) is found, while all imidazole molecules act as a terminal ligand (Takayoshi & Toschitake, 1996). In addition, the two-dimensional framework of $[Fe(3-Fpy)_2[Ag(CN)_2]_2]_n$ (3-Fpy = 3-fluoropyridine) consists of four cyanide moieties occupying the equatorial positions generating a square grid-type structure similar to

2,2'-Bpe in parallel (blue) and non-parallel (red) fashion between adjacent layers.

Table	3	
Experi	mental	details

Crystal data	
Chemical formula	$[Ag_{2}Fe(CN)_{4}(H_{2}O)_{2}]\cdot 2C_{12}H_{10}N_{2}$
$M_{ m r}$	776.14
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
a, b, c (Å)	9.2078 (4), 9.8558 (5), 18.9029 (9)
α, β, γ (°)	77.667 (1), 77.507 (1), 67.900 (1)
$V(Å^3)$	1535.11 (13)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.77
Crystal size (mm)	$0.43 \times 0.11 \times 0.09$
Data collection	
Diffractometer	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker,
*	2007)
T_{\min}, T_{\max}	0.684, 1.000
No. of measured, independent and	21143, 7389, 5865
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.073, 1.03
No. of reflections	7389
No. of parameters	389
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.37

Computer programs: SMART and SAINT (Bruker, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

that of the title compound, while the axial positions are occupied by two terminal 3-Fpy ligands instead of two water molecules in (I) (Munoz *et al.*, 2007). When the terminal ligands such as imH and 3-Fpy are replaced by N-donor linkers such as pyrazine, 4,4'-bpy and 4,4'-bpe, three-dimensional interpenetrating frameworks are obtained, as in $\{[Fe(pz)[Ag(CN)_2]_2], pz\}_n$ (pz = pyrazine), $[Mn(4,4'-bpy)_2-[Ag(CN)_2]_2]_n$, $[Fe(4,4'-bpy)_2[Ag(CN)_2]_2]_n$ and $[Fe(bpe)_2-$

Table 1		
Selected	bond lengths	(Å).

Fe-O1	2.1365 (15)	Fe-N4	2.1489 (16)
Fe-O2	2.1392 (16)	Fe-N2	2.1522 (16)
Fe-N1	2.1440 (17)	Fe-N3	2.1539 (17)

 $[Ag(CN)_2]_2]_n$ (Niel *et al.*, 2002; Dong *et al.*, 2003). The last compound contains bpe bridges, while in the title compound 2,2'-bpe behaves as the organic guest molecules in the lattice. This could be the result of the difference in the N-donor position.

5. Synthesis and crystallization

An aqueous solution (5 ml) of K[Ag(CN)₂] (0.0995 g, 0.5 mmol) was added dropwise to an MeOH–H₂O mixed solution (1:1 ν/ν , 10 ml) of (NH₄)₂[Fe(SO₄)₂]·6H₂O (0.0980 g, 0.25 mmol) and 2,2'-bpe (0.0911 g, 0.5 mmol) at room temperature. After filtration and slow evaporation for 1 d, yellow crystals were obtained.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were positioned geometrically and included as riding atoms, with aromatic C– H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were located in difference Fourier maps and refined isotropically.

Acknowledgements

The authors gratefully acknowledge The Thailand Research Fund (BRG5680009), the Higher Education Research Promotion and National Research University Project of Thailand, through the Advanced Functional Materials Cluster of Khon Kaen University, and the center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, Thailand, for financial support.

Figure 4

A fragment of the three-dimensional supramolecular framework *via* $N \cdots H - O$ hydrogen-bonding interactions between (*a*) parallel 2,2'-bpe and coordinating water molecules (dashed lines), and (*b*) non-parallel 2,2'-bpe and coordinating water molecules (dashed lines). [Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.]

References

- Biswas, A., Jana, S. S., Sparkes, H. A., Howard, J. A., Alcalde, N. A. & Mohanta, S. (2014). *Polyhedron*, **74**, 57–66.
- Bruker (2007). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, W., Wang, Q. L., Si, S. F., Liao, D. Z., Jiang, Z. H., Yan, S. P. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 873–876.
- Horike, S., Dinca, M., Tamaki, K. & Long, J. R. (2008). J. Am. Chem. Soc., 130, 5854–5855.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Munoz, M. C., Gasper, A. B., Galet, A. & Real, J. A. (2007). Inorg. Chem. 46, 8182–8192.
- Niel, V., Munoz, M. C., Gasper, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). *Chem. Eur. J.* 11, 2446–2453.
- Sanda, S., Parshamoni, S. & Konar, S. (2013). Cryst. Growth Des. 13, 5442–5449.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soma, T. & Iwamoto, T. (1996). Inorg. Chem. 35, 1849-1856.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, J., Chen, Y. B., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2008). Chem. Commun. 19, 2233–2235.

supporting information

Acta Cryst. (2014). E70, 107-110 [doi:10.1107/S1600536814016250]

Crystal structure of a two-dimensional grid-type iron(II) coordination polymer: poly[[diaquatetra-µ-cyanido-diargentate(I)iron(II)] *trans*-1,2-bis(pyridin-2yl)ethylene disolvate]

Jintana Othong, Nanthawat Wannarit, Chaveng Pakawatchai and Sujittra Youngme

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SMART* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Poly[[diaquatetra-µ-cyanido-diargentate(I)iron(II)] bis[trans-1,2-bis(pyridin-2-yl)ethylene]]

Crystal data	
$[Ag_{2}Fe(CN)_{4}(H_{2}O)_{2}]\cdot 2C_{12}H_{10}N_{2}$	$V = 1535.11 (13) \text{ Å}^3$
$M_r = 776.14$	Z = 2
Triclinic, $P\overline{1}$	F(000) = 768
Hall symbol: -P 1	776.14
a = 9.2078 (4) Å	$D_{\rm x} = 1.679 {\rm ~Mg} {\rm ~m}^{-3}$
b = 9.8558(5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 18.9029 (9) Å	$\mu = 1.77 \; \mathrm{mm^{-1}}$
$\alpha = 77.667 \ (1)^{\circ}$	T = 293 K
$\beta = 77.507 \ (1)^{\circ}$	Block, yellow
$\gamma = 67.900 \ (1)^{\circ}$	$0.43 \times 0.11 \times 0.09 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	21143 measured reflections
diffractometer	7389 independent reflections
Radiation source: fine-focus sealed tube	5865 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
phi and ω scans	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 1.1^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2007)	$k = -13 \rightarrow 13$
$T_{\min} = 0.684, T_{\max} = 1.000$	$l = -24 \rightarrow 24$
Refinement	
Refinement on F^2	0 restraints
Least-squares matrix: full $P[E^2 > 2\pi(E^2)] = 0.020$	Primary atom site location: structure-invariant
$K[\Gamma^{-} > 20(\Gamma^{-})] = 0.029$ $mD(\Gamma^{2}) = 0.072$	ullect litethous
$WK(\Gamma^{-}) = 0.0/3$	Secondary atom site location: difference Fouri

direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

S = 1.03

7389 reflections

389 parameters

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 0.1941P]$	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag3	-0.235709 (19)	1.239825 (17)	0.249406 (10)	0.06308 (7)	
Ag2	0.0000	0.5000	0.5000	0.05956 (8)	
Ag1	0.5000	1.0000	0.0000	0.06538 (9)	
Fe	0.26653 (3)	0.74083 (2)	0.251508 (12)	0.02989 (7)	
01	0.15978 (19)	0.64325 (19)	0.19630 (8)	0.0437 (3)	
O2	0.3821 (2)	0.83190 (18)	0.30581 (9)	0.0440 (3)	
N3	0.0604 (2)	0.9394 (2)	0.25270 (11)	0.0562 (5)	
N2	0.1689 (2)	0.64872 (19)	0.35630 (9)	0.0476 (4)	
N1	0.3633 (2)	0.83204 (19)	0.14683 (9)	0.0497 (4)	
N4	0.4711 (2)	0.54179 (18)	0.24955 (10)	0.0453 (4)	
N5	0.3585 (2)	0.37522 (19)	0.14391 (9)	0.0472 (4)	
N6	0.6565 (2)	0.62355 (18)	0.36001 (9)	0.0446 (4)	
N7	0.9350 (3)	0.7412 (3)	0.09581 (12)	0.0717 (6)	
C26	0.2054 (3)	0.1175 (3)	0.52221 (14)	0.0675 (7)	
H26	0.1402	0.1178	0.5673	0.081*	
C3	-0.0459 (3)	1.0458 (3)	0.25155 (14)	0.0618 (6)	
C2	0.1135 (3)	0.5943 (2)	0.40815 (11)	0.0508 (5)	
C1	0.4140 (3)	0.8860 (3)	0.09364 (11)	0.0541 (5)	
C4	0.5760 (2)	0.4344 (2)	0.24875 (12)	0.0494 (5)	
C5	0.3629 (3)	0.2536 (3)	0.19190 (12)	0.0577 (6)	
Н5	0.2794	0.2601	0.2304	0.069*	
C6	0.4827 (3)	0.1197 (3)	0.18812 (13)	0.0653 (7)	
H6	0.4789	0.0369	0.2220	0.078*	
C7	0.6076 (3)	0.1114 (3)	0.13335 (13)	0.0676 (7)	
H7	0.6930	0.0232	0.1303	0.081*	
C8	0.6063 (3)	0.2340 (2)	0.08276 (12)	0.0569 (6)	
H8	0.6908	0.2295	0.0450	0.068*	
C9	0.4787 (2)	0.3644 (2)	0.08807 (10)	0.0422 (4)	
C10	0.4628 (2)	0.4983 (2)	0.03421 (11)	0.0458 (5)	
H10	0.3953	0.5880	0.0492	0.055*	
C11	0.7884 (3)	0.6068 (2)	0.31163 (11)	0.0534 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.7929	0.6865	0.2756	0.064*
C12	0.9174 (3)	0.4796 (3)	0.31178 (13)	0.0596 (6)
H12	1.0074	0.4736	0.2771	0.072*
C13	0.9117 (3)	0.3612 (3)	0.36401 (13)	0.0610 (6)
H13	0.9963	0.2719	0.3646	0.073*
C14	0.7776 (3)	0.3769 (2)	0.41567 (12)	0.0516 (5)
H14	0.7718	0.2984	0.4521	0.062*
C15	0.6523 (2)	0.5092 (2)	0.41323 (10)	0.0405 (4)
C16	0.5075 (2)	0.5375 (2)	0.46672 (11)	0.0442 (5)
H16	0.4180	0.6149	0.4528	0.053*
C17	0.8716 (4)	0.6370 (3)	0.10434 (16)	0.0836 (8)
H17	0.8639	0.5809	0.1504	0.100*
C18	0.8173 (4)	0.6069 (4)	0.05021 (19)	0.0864 (9)
H18	0.7721	0.5338	0.0590	0.104*
C19	0.8315 (4)	0.6881 (4)	-0.01761 (19)	0.0913 (10)
H19	0.7987	0.6689	-0.0564	0.110*
C20	0.8947 (3)	0.7982 (3)	-0.02814 (15)	0.0754 (7)
H20	0.9050	0.8541	-0.0741	0.091*
C21	0.9428 (3)	0.8251 (3)	0.03048 (14)	0.0603 (6)
C22	1.0045 (3)	0.9443 (3)	0.02706 (13)	0.0649 (7)
H22	1.0535	0.9411	0.0658	0.078*
C23	0.3203 (4)	0.1815 (3)	0.50884 (18)	0.0817 (9)
H23	0.3330	0.2257	0.5448	0.098*
C24	0.4143 (4)	0.1796 (3)	0.44306 (17)	0.0782 (8)
H24	0.4900	0.2252	0.4321	0.094*
C25	0.3943 (3)	0.1080 (3)	0.39311 (15)	0.0762 (7)
H25	0.4617	0.1032	0.3486	0.091*
N8	0.2859 (2)	0.0455 (2)	0.40410 (11)	0.0627 (5)
C27	0.1880 (3)	0.0527 (2)	0.46773 (12)	0.0534 (5)
C28	0.0623 (3)	-0.0088(2)	0.47413 (12)	0.0574 (6)
H28	0.0714	-0.0651	0.4386	0.069*
H1W	0.096 (3)	0.684 (2)	0.1727 (12)	0.044 (7)*
H2W	0.211 (3)	0.574 (3)	0.1795 (13)	0.062 (8)*
H3W	0.339 (3)	0.887 (3)	0.3313 (13)	0.053 (8)*
H4W	0.450 (3)	0.779 (3)	0.3230 (14)	0.062 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Ag3	0.04673 (11)	0.03995 (10)	0.08458 (15)	0.01369 (7)	-0.01787 (10)	-0.01697 (9)
Ag2	0.06824 (17)	0.07681 (18)	0.03192 (12)	-0.03820 (14)	0.00292 (11)	0.00933 (11)
Ag1	0.08051 (19)	0.07607 (18)	0.03474 (13)	-0.03990 (15)	0.00655 (12)	0.01030 (12)
Fe	0.02927 (13)	0.02553 (12)	0.02578 (13)	-0.00351 (10)	0.00002 (10)	-0.00020 (9)
01	0.0401 (8)	0.0444 (8)	0.0442 (8)	-0.0085 (7)	-0.0104 (7)	-0.0089 (7)
O2	0.0484 (9)	0.0357 (8)	0.0442 (9)	-0.0082 (7)	-0.0085 (7)	-0.0083 (7)
N3	0.0452 (10)	0.0412 (10)	0.0621 (12)	0.0063 (8)	-0.0073 (9)	-0.0065 (9)
N2	0.0514 (10)	0.0524 (10)	0.0336 (9)	-0.0206 (8)	0.0007 (8)	0.0023 (7)
N1	0.0570 (11)	0.0512 (10)	0.0345 (9)	-0.0208 (8)	0.0017 (8)	0.0025 (8)

N4	0.0391 (9)	0.0361 (8)	0.0541 (10)	0.0004 (7)	-0.0125 (8)	-0.0127 (7)
N5	0.0513 (10)	0.0511 (10)	0.0395 (9)	-0.0182 (8)	-0.0043 (8)	-0.0090 (8)
N6	0.0517 (10)	0.0450 (9)	0.0375 (9)	-0.0177 (8)	-0.0080 (8)	-0.0038 (7)
N7	0.0780 (15)	0.0757 (15)	0.0653 (14)	-0.0183 (12)	-0.0273 (12)	-0.0168 (12)
C26	0.0747 (17)	0.0638 (15)	0.0627 (16)	-0.0141 (13)	-0.0104 (13)	-0.0247 (12)
C3	0.0515 (13)	0.0444 (12)	0.0731 (16)	0.0079 (10)	-0.0148 (12)	-0.0148 (11)
C2	0.0566 (13)	0.0598 (13)	0.0332 (11)	-0.0254 (11)	0.0003 (9)	0.0016 (9)
C1	0.0663 (14)	0.0579 (13)	0.0349 (11)	-0.0274 (11)	0.0017 (10)	0.0015 (10)
C4	0.0424 (11)	0.0383 (10)	0.0636 (14)	0.0011 (9)	-0.0189 (10)	-0.0162 (10)
C5	0.0677 (15)	0.0672 (15)	0.0414 (12)	-0.0327 (13)	0.0031 (11)	-0.0089 (11)
C6	0.103 (2)	0.0478 (13)	0.0464 (13)	-0.0329 (14)	-0.0056 (13)	-0.0022 (10)
C7	0.090 (2)	0.0433 (13)	0.0573 (15)	-0.0114 (13)	-0.0043 (14)	-0.0107 (11)
C8	0.0627 (14)	0.0482 (12)	0.0491 (13)	-0.0138 (11)	0.0050 (11)	-0.0087 (10)
C9	0.0516 (12)	0.0421 (10)	0.0383 (11)	-0.0199 (9)	-0.0060 (9)	-0.0105 (8)
C10	0.0500 (12)	0.0423 (11)	0.0462 (11)	-0.0165 (9)	-0.0036 (9)	-0.0108 (9)
C11	0.0642 (14)	0.0580 (13)	0.0425 (12)	-0.0310 (12)	-0.0055 (10)	-0.0008 (10)
C12	0.0448 (12)	0.0818 (17)	0.0503 (13)	-0.0248 (12)	-0.0002 (10)	-0.0073 (12)
C13	0.0452 (12)	0.0687 (16)	0.0562 (14)	-0.0060 (11)	-0.0112 (11)	-0.0042 (12)
C14	0.0489 (12)	0.0544 (12)	0.0428 (12)	-0.0122 (10)	-0.0103 (10)	0.0036 (10)
C15	0.0431 (10)	0.0472 (11)	0.0352 (10)	-0.0190 (9)	-0.0102 (8)	-0.0040 (8)
C16	0.0423 (11)	0.0463 (11)	0.0430 (11)	-0.0141 (9)	-0.0099 (9)	-0.0034 (9)
C17	0.095 (2)	0.084 (2)	0.0752 (19)	-0.0251 (17)	-0.0280 (17)	-0.0129 (16)
C18	0.084 (2)	0.092 (2)	0.096 (2)	-0.0307 (17)	-0.0325 (18)	-0.0203 (19)
C19	0.086 (2)	0.109 (3)	0.092 (2)	-0.0224 (19)	-0.0425 (19)	-0.034 (2)
C20	0.0716 (17)	0.089 (2)	0.0643 (17)	-0.0151 (15)	-0.0242 (14)	-0.0176 (15)
C21	0.0434 (12)	0.0682 (15)	0.0641 (15)	-0.0006 (11)	-0.0167 (11)	-0.0247 (13)
C22	0.0491 (13)	0.0804 (18)	0.0590 (16)	-0.0037 (13)	-0.0168 (12)	-0.0234 (12)
C23	0.094 (2)	0.0747 (19)	0.088 (2)	-0.0216 (17)	-0.0221 (18)	-0.0403 (17)
C24	0.083 (2)	0.0746 (18)	0.090 (2)	-0.0330 (16)	-0.0194 (17)	-0.0229 (16)
C25	0.0807 (19)	0.089 (2)	0.0634 (17)	-0.0311 (16)	-0.0094 (14)	-0.0180 (14)
N8	0.0666 (13)	0.0675 (13)	0.0563 (12)	-0.0171 (11)	-0.0154 (10)	-0.0189 (10)
C27	0.0594 (13)	0.0383 (11)	0.0583 (14)	-0.0029 (10)	-0.0216 (11)	-0.0111 (10)
C28	0.0711 (16)	0.0411 (11)	0.0533 (14)	-0.0038 (11)	-0.0189 (11)	-0.0124 (10)

Geometric parameters (Å, °)

Ag3—C4 ⁱ	2.0449 (19)	С8—Н8	0.9300
Ag3—C3	2.048 (2)	C9—C10	1.465 (3)
Ag2—C2 ⁱⁱ	2.056 (2)	C10-C10 ^v	1.326 (4)
Ag2—C2	2.056 (2)	C10—H10	0.9300
Ag1—C1	2.058 (2)	C11—C12	1.364 (3)
Ag1—C1 ⁱⁱⁱ	2.058 (2)	C11—H11	0.9300
Fe—O1	2.1365 (15)	C12—C13	1.368 (3)
Fe—O2	2.1392 (16)	C12—H12	0.9300
Fe—N1	2.1440 (17)	C13—C14	1.378 (3)
Fe—N4	2.1489 (16)	C13—H13	0.9300
Fe—N2	2.1522 (16)	C14—C15	1.377 (3)
Fe—N3	2.1539 (17)	C14—H14	0.9300

- · · · · · · · · · · · · · · · · · · ·		a	
O1—H1W	0.75 (2)	C15—C16	1.462 (3)
O1—H2W	0.76 (2)	C16—C16 ^{vi}	1.324 (4)
O2—H3W	0.74 (2)	C16—H16	0.9300
O2—H4W	0.73 (3)	C17—C18	1.360 (4)
N3—C3	1.133 (3)	C17—H17	0.9300
$N_2 - C_2$	1 129 (3)	C18-C19	1.367(4)
N1 C1	1.125(3)	C18 H18	0.0300
	1.120(3)	C10 C20	1.274(4)
N4	1.155 (2)	C19 - C20	1.374 (4)
N5—C5	1.333 (3)	С19—Н19	0.9300
N5—C9	1.343 (2)	C20—C21	1.386 (3)
N6—C11	1.332 (3)	С20—Н20	0.9300
N6—C15	1.347 (2)	C21—C22	1.471 (4)
N7—C17	1.327 (3)	C22—C22 ^{vii}	1.322 (5)
N7—C21	1.336 (3)	С22—Н22	0.9300
C26—C23	1.378 (4)	C23—C24	1.352 (4)
C26—C27	1.387 (3)	C23—H23	0.9300
С26—Н26	0.9300	C24—C25	1 371 (3)
$C4 - Ag^{3iv}$	2.0449(19)	C24—H24	0.9300
C5 C6	2.0449(19)	C_{25} N8	1.318(3)
C5_U5	1.309 (3)	C_{25} U_{25}	1.318(3)
	0.9300	C25—H25	0.9300
	1.360 (3)	N8	1.335 (3)
С6—Н6	0.9300	C27—C28	1.469 (3)
C7—C8	1.369 (3)	C28—C28 ^{viii}	1.320 (5)
С7—Н7	0.9300	C28—H28	0.9300
C8—C9	1.382 (3)		
C4 ⁱ —Ag3—C3	179.00 (8)	C10 ^v —C10—H10	117.5
C2 ⁱⁱ —Ag2—C2	180.000(1)	С9—С10—Н10	117.5
C1—Ag1—C1 ⁱⁱⁱ	180.00 (16)	N6-C11-C12	123.8 (2)
01—Fe—O2	177.77 (6)	N6—C11—H11	118.1
O1—Fe—N1	88.80 (6)	C12—C11—H11	118.1
02—Fe—N1	90,70 (7)	$C_{11} - C_{12} - C_{13}$	118.7(2)
01—Fe—N4	88 18 (7)	C_{11} C_{12} H_{12}	120.7
$O_2 = V_1$	80.65 (7)	$C_{12}^{12} = C_{12}^{12} = H_{12}^{12}$	120.7
	89.03 (7) 00.20 (7)	C13 - C12 - H12	120.7
NI—Fe—N4	90.30 (7)	C12-C13-C14	118.5 (2)
OI—Fe—N2	90.90 (6)	C12—C13—H13	120.7
O2—Fe—N2	89.60 (6)	C14—C13—H13	120.7
N1—Fe—N2	179.69 (6)	C15—C14—C13	119.9 (2)
N4—Fe—N2	89.68 (7)	C15—C14—H14	120.0
O1—Fe—N3	91.17 (7)	C13—C14—H14	120.0
O2—Fe—N3	91.00(7)	N6-C15-C14	121.16 (19)
N1—Fe—N3	89.61 (7)	N6-C15-C16	115.02 (17)
N4—Fe—N3	179.35 (6)	C14—C15—C16	123.81 (18)
N2—Fe—N3	90.41 (7)	C16 ^{vi} —C16—C15	125.7 (2)
Fe—O1—H1W	126.2 (17)	$C16^{vi}$ — $C16$ — $H16$	117.2
$F_{e} = 01 = H^2 W$	110 1 (10)	С15_С16_Н16	117.2
$H_1W \cap H_2W$	119.1 (17)	$\sum_{ij} \sum_{j=1}^{ij} \sum_{ij=1}^{ij} \sum_{j=1}^{ij} \sum_{j=1}^$	11/.2
$\Pi \Pi W = 0 \Pi = \Pi Z W$	10677		
	106(2)	N = C I =	124.3 (3)

Fe—O2—H4W	116 (2)	C18—C17—H17	117.9
H3W—O2—H4W	106 (3)	C17—C18—C19	117.6 (3)
C3—N3—Fe	178.0 (2)	C17—C18—H18	121.2
C2—N2—Fe	174.23 (18)	C19—C18—H18	121.2
C1—N1—Fe	176.22 (19)	C18—C19—C20	119.7 (3)
C4—N4—Fe	177.91 (19)	C18—C19—H19	120.2
C5—N5—C9	117.53 (19)	С20—С19—Н19	120.2
C11—N6—C15	117.80 (18)	C19—C20—C21	119.2 (3)
C17—N7—C21	118.4 (2)	C19—C20—H20	120.4
C23—C26—C27	119.3 (3)	C21—C20—H20	120.4
C23—C26—H26	120.4	N7—C21—C20	120.8 (3)
C27—C26—H26	120.4	N7—C21—C22	114.9 (2)
N3—C3—Ag3	179.1 (2)	C20—C21—C22	124.3 (3)
N2—C2—Ag2	176.6 (2)	C22 ^{vii} —C22—C21	124.8 (3)
N1—C1—Ag1	175.4 (2)	C22 ^{vii} —C22—H22	117.6
N4—C4—Ag 3^{iv}	178.9 (2)	C21—C22—H22	117.6
N5—C5—C6	124.1 (2)	C24—C23—C26	119.5 (3)
N5—C5—H5	118.0	С24—С23—Н23	120.2
С6—С5—Н5	118.0	С26—С23—Н23	120.2
C7—C6—C5	118.0 (2)	C23—C24—C25	117.7 (3)
С7—С6—Н6	121.0	С23—С24—Н24	121.1
С5—С6—Н6	121.0	С25—С24—Н24	121.1
C6—C7—C8	119.4 (2)	N8—C25—C24	124.3 (3)
С6—С7—Н7	120.3	N8—C25—H25	117.9
С8—С7—Н7	120.3	С24—С25—Н25	117.9
C7—C8—C9	119.7 (2)	C25—N8—C27	118.2 (2)
С7—С8—Н8	120.2	N8—C27—C26	120.8 (2)
С9—С8—Н8	120.2	N8—C27—C28	115.41 (19)
N5—C9—C8	121.18 (19)	C26—C27—C28	123.8 (2)
N5-C9-C10	115.36 (18)	C28 ^{viii} —C28—C27	125.7 (3)
C8—C9—C10	123.46 (19)	C28 ^{viii} —C28—H28	117.2
C10 ^v —C10—C9	125.1 (2)	C27—C28—H28	117.2
	(-)		
Q1—Fe—N3—C3	-98(7)	C7—C8—C9—C10	-176.4(2)
Ω^2 —Fe—N3—C3	82 (7)	N5-C9-C10-C10 ^v	-158.2(3)
N1—Fe—N3—C3	-9(7)	C8-C9-C10-C10 ^v	21.1 (4)
N4—Fe—N3—C3	-91 (9)	C15 - N6 - C11 - C12	1.8 (3)
N2—Fe—N3—C3	172 (7)	N6-C11-C12-C13	0.6 (4)
01—Fe—N2—C2	6.4 (19)	$C_{11} - C_{12} - C_{13} - C_{14}$	-2.0(4)
Ω^2 —Fe—N2—C2	-171.4(19)	C12-C13-C14-C15	1.0 (4)
N1—Fe— $N2$ — $C2$	5 (14)	C11 - N6 - C15 - C14	-2.8(3)
N4—Fe— $N2$ — $C2$	-81.7(19)	$C_{11} = N_{6} = C_{15} = C_{16}$	176.90 (17)
N3—Fe— $N2$ — $C2$	97.6 (19)	C13 - C14 - C15 - N6	1.5 (3)
O1—Fe— $N1$ — $C1$	153 (3)	C13—C14—C15—C16	-178.2(2)
O2—Fe—N1—C1	-29(3)	N6-C15-C16-C16 ^{vi}	-159.6(3)
N4—Fe— $N1$ — $C1$	-119 (3)	$C14-C15-C16-C16^{vi}$	20.1 (4)
N2—Fe—N1—C1	155 (12)	C_{21} N7 C_{17} C_{18}	1.7 (4)
N_3 —Fe— N_1 — C_1	62 (3)	N7-C17-C18-C19	1.1 (5)
	(-)		(~)

O1—Fe—N4—C4	-34 (5)	C17—C18—C19—C20	-1.9 (5)
O2—Fe—N4—C4	146 (5)	C18—C19—C20—C21	0.0 (5)
N1—Fe—N4—C4	-123 (5)	C17—N7—C21—C20	-3.8 (4)
N2—Fe—N4—C4	57 (5)	C17—N7—C21—C22	176.0 (2)
N3—Fe—N4—C4	-41 (9)	C19—C20—C21—N7	3.0 (4)
Fe—N3—C3—Ag3	-52 (20)	C19—C20—C21—C22	-176.8 (3)
C4 ⁱ —Ag3—C3—N3	-52 (18)	N7-C21-C22-C22 ^{vii}	-167.0 (3)
Fe—N2—C2—Ag2	-54 (5)	C20-C21-C22-C22 ^{vii}	12.9 (5)
C2 ⁱⁱ —Ag2—C2—N2	95 (100)	C27—C26—C23—C24	-0.2 (4)
Fe—N1—C1—Ag1	-20 (6)	C26—C23—C24—C25	-2.4 (5)
C1 ⁱⁱⁱ —Ag1—C1—N1	-164 (100)	C23—C24—C25—N8	2.5 (5)
Fe—N4—C4—Ag3 ^{iv}	-78 (13)	C24—C25—N8—C27	0.4 (4)
C9—N5—C5—C6	0.7 (3)	C25—N8—C27—C26	-3.2 (3)
N5-C5-C6-C7	2.2 (4)	C25—N8—C27—C28	175.4 (2)
C5—C6—C7—C8	-2.6 (4)	C23—C26—C27—N8	3.2 (4)
C6—C7—C8—C9	0.2 (4)	C23—C26—C27—C28	-175.4 (2)
C5—N5—C9—C8	-3.3 (3)	N8-C27-C28-C28 ^{viii}	-167.6 (3)
C5—N5—C9—C10	176.02 (18)	C26—C27—C28—C28 ^{viii}	11.0 (4)
C7—C8—C9—N5	2.9 (3)		

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*; (iv) *x*+1, *y*-1, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) -*x*+2, -*y*+2, -*z*; (viii) -*x*, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
01—H2 <i>W</i> ···N5	0.76 (3)	2.07 (3)	2.829 (2)	174 (2)	
O2—H4 <i>W</i> …N6	0.73 (3)	2.09 (3)	2.823 (3)	174 (3)	
$O1$ — $H1W$ ···· $N7^{ix}$	0.75 (3)	2.14 (3)	2.870 (3)	164	
O2—H3 <i>W</i> ····N8 ^x	0.74 (3)	2.15 (3)	2.868 (3)	162	

Symmetry codes: (ix) x-1, y, z; (x) x, y+1, z.